It will be assumed that anyone taking this course for credit
has had a first course in probability and statistics. In particular,

he should be familiar with the following notions.

1. The population

Any attempt at making a probabilistic prediction or a
statistical inference rests on the assumption that we have a well-defined
population, i.e. an aggregate of items each of which bears a mark (or
several). Leaving aside certain mathematical difficulties, we may allow
the number of items to be infinite and the marks to form either a discrete
set or a continuous. In either event, we must know enough about the
marks to be able to make a complete list of different marks (discrete
case) or give a range (continuous). This might be called a population
space.

It is essential that we be able to pronounce, for every item, that
it either does or does not belong to the population. This is far from
easy - witness the large amount of discussion about the rejection of
observations.

Certainly, the specification of the population is an essential
preliminary to everything else and should be approached with the greatest

care.

2. Frequency distributions

Populations are described by frequency distributions. Standard
methods of describing them are assumed known, e.g. density and distribution

functions, as are the usual features of them, e.g. moments.



3. Randomly chosen samples

In practice, randomness 1n selecting samples must enter as an
undefined element. What one should or can do to ensure or approximate
randomness varies from one population to another. The objective,
however, is clear. Randomness is involved to ensure that only the
frequencies in the population dictate the outcome of the sampling.

More precisely, randomness implies that the probabilities of the out-
comes are equal to the corresponding freguencies in the population.

It is important to perceive that, without randomness, there

can be no probabilistic predictions or statistical inference.

4, Probability and random variables

The point of view here adopted 1s that probability is defined
only in situations where a well-defined population can be sampled
randomly. Familiarity is assumed with the ideas associated with the
following words: sample space, random variable, independence, mutual

exclusiveness, conditional probability, expectation.

5. The following facts will be assumed known
a) E(sum) = sum (E) always
b)  E(product) = product (E) for independent variables
¢)  Var(sum) = sum (Var) + 2 sum (Covar)
d) A lipear function of independent normal variables is normal
e) The central limit theorem
) Tests of significance, XZ, t, F

g) Confidence limits.



The practice will be followed here of using symbols like
Eis Ly one to represent observations already made or yvet to be made,
or a variable ¥ and also to represent random variables distributed
according to the distribution of x.

Only one theorem, and a shallow one of that, is needed.

6. A set of independent random variables, ml, xz, N xn normally
distributed with variance ¢ and possibly different means, is transformed
by an orthogonal linear transformation into set of independent normal
variables, each with variance G2, to be called yl, Yos wor Y- Only

the means are changed
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will be used frequently.
In what follows, the transformations to be used will all have

the feature that the values of alj will be equal, hence equal to 1/v¥n

n
It follows that ) a;; =0, all ¢ > 1. Then, if x, ~ w{n, o2},
J=1

¥ = l/fﬁ.ij =vn xz. E Yy, = ¥y and for € > 1, E y; = Eaij E %y =

uZa.., = 0.

7. The random variable X%p) can be defined as the sum of the squares

of p independent variables, each ¥(0,1). The variables Yyo iz 2,

resulting from the transformation are independent ¥(0,02). Hence the
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(n-1) o2 and 82 = E[wi - h] /ni~1 is an unbiased estimator of ¢2.

8. Degrees of freedom

It is convenient and customary to say that a sample of =
observations has n degrees of freedom. That is, the sample (ml,xz, ...mﬁ),
plotted as a point in #-space, may lie anywhere and is not coastrained to
any subspace. Under the transformatien we have used, one d.f. has been

given the task of isolating the mean, leaving the remaining n-1 d.f.

to exhibit only the effects of error.

9. The analysis of wvariapce distribution

2
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Let X(p) and X(q) be independent. Then F(p,q) x%q)/q

has a

known and tabulated distribution., It is called the analysis of
variance distribution, first announced to the world by R.A. Fisher,
in 1924, in Toronto, at a meeting of the International Congress of
Mathematicians and published in its Proceedings. Fisher prefered to
use it in the form 2 = %—log F and published suitable tables for z.
Later, Snedecor tabulated F itself and introduced the symbol F for
this purpose.

An earlier test function, t(q), is, from its definition
related to F

2 —
(1,q) by t(q) - F(l,q)°

2
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Returning to the transformatiom, (y; - ) = o? X(1y and



yg + ...ty =ag X%n—l)’ hence

(yl - f’{u]z/[[yé + oot y:)/(nul)} = F(l, 1)

— 2
In terms of the z's, this 7 ratio is n(z—n) /82, and £

(?’l"l) = ‘/E (E—U)/SQ

the familiar test function for testing p or for calculating confidence

limits for p. WNote that a two-sided test using t(q) is the same as a

one-sided test using F

(1,q)



Two Samples

Suppose that a sample is drawn randomly from each of two
populations, in circumstances in which the peopulations may be different

in some respect. Let us say, though, that they are both normal,
2 2
my o N(ul, olJ, T, N(uz, GZJ.
Within this framework, there are two special situations both

important.

1. 0, = Oy the question being the equality or otherwise of
ul and “2' This dis usually the nature of an experimental
situation.

2, The question at idssue concerns the equality or otherwise

of ¢, and 0,. Usually, we would not be concerned here

also with the difference My=h, .

The more general question of studying the difference M =H,

without the restrietion o, = d, (the Behrens-Fisher problem) will not

be raised here, belng rather remote from practical considerations.

1. Assume oy, = 0, = 0. Let the observations from ™ and T,
be T 2 =121,2 a=1,2 ... n. Our assumptions allow us to write
2
P VP I £ ~
Tiw = Mg T Eig w0, o )

Adopting an obvious symbolism, we can lay out an orthogonal

transformation as follows.

&1 LTyp v oo o xln Ly Loy v v s o m2n divisor
yl 1 1 e e e 1 1 1 v e e i Van

Y, 1 1 e e 1 -1 -1 e | V2n



orthogonal

I

Clearly yl is of no interest, but Y, displays the difference

between the two means, in addition to error.

As a first step in our enquiry, we may check whether y2 does,

in fact, contain more than error.

Yy, - Va2 (u-u,)

(yi + .. F yin]/(Zn—Z)

~Fe, one2)

If in this, we put ¥y = U and find the resulting number too

2
big to have come randomly from the F distribution, we have evidence

that ﬁl # uz. This is the standard test of significance.

It is worthwhile to exhibit the required numbers for this

test in a table, called an analysis of variance table.

source degrees of freedom sum of squares
between samples i y;
. . 2 2
within samples 2n-2 Yy + ... F Yo

Let us write
T. =) x, G=T +7T
z e 1 2
o
The transformation is a useful instrument for displaying the

structure of the data and for establishing the necessary distribution

theory, but only occasionally is it a useful tool for computation. Rather,
we will use it to derive computing rules, to be applied directly to the
observations.

Let us write T, = L, 7,47, = G. Theny, = G/V2n and
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We then assemble these numbers in the table
source af $8

2 2 2 2

between 1 [Tl - Tz) /27 or [Tl + Tz)/n - G /2
within 2n-2 by subtraction
total 21 2z x5 - ¢’ /om

The within-samples sum of squares calculated above by

2
subtraction is easily seen to be ZZ[miu-Ei ] = (2rn-2) 82 .

Comments

If the two samples came as the result of an experiment - e.g.
an attempt to compare two populations which arose through our doing
two different things (i.e. treatments), our object, in the event that
E& - Eé differs from zero by more than error can reasonably account for,
is to conclude that the difference between the treatments caused the
observed difference between the responses. An experiment is carried
out to make pronouncements about cause and effect. We are to envisage
a causal system C, which may be quite elaborate, subject to our control
in the sense that we can make changes in some of 1ts variables and keep
the others fixed. Then, we must have an effect system E which is
observable, and may be simple (one variable) or more elaborate
(several wvariables).

If we introduce a change in { and observe a change in &, we
shall say that the change in C caused the change in F, provided:
(1) everytime the same change is introduced in €, the same

change is observed in E.

(2) we can be sure that nothing else is responsible for the

observed change in £.



These two conditions are simply the traditional tements of science.
{2) asserts the need for control and (1} asserts that unless a finding can
be repeated it cammot have any claim to acceptance as a fact.

Evidently there are some difficulties here. (2) implies that
we know all the variables in the causal system and have kept them under
contrel, a rare situation indeed. Furthermore, observations in the E -
system are inevitably afflicted with error, which can upset both the
conditions which have been laid down.

It is the business of statistics to bring about some accommodation
between what we would like to do and what we can do.

A first step in this direction is to develop the notion of what
is to be meant by error. Speaking roughly and vaguely, error shows itself
through the differences among the results when we try to do the same thing
more than once. 1t is not intended that error include. the consequences
of mistakes and blunders or the effects of bias. Errors, as envisaged
here, must behave as if they come randomly from some frequency distribution
of errors, which have mean zero and a variance which does not change
throughout the experiment. This construct has several implications
about the conduct of experiments, which will be explored later.
Experiments

If what we call an experiment is intended to yield evidence
about cause and effect, it follows that it is wholly concerned with
changes, i.e. differences. Some of these differences will be caused
by changes introduced into the causal system, obscured, of course, by
errors. It is essential, then, that some provision be made to perceive
what error contributions alone are capable of. An exercise that makes
no provision for the definition and estimation of error cannot properly

be called an experiment.
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Contrasts

Any linear combination of the observations whose coefficients
add to zero will be called a contrast. 1In the light of what has been
said, the evaluation of the outcome of an experiment consists entirely
of a study of contrasts, suitably chosen to correspond to changes

introduced into the causal system.

This is the reason why we shall always include in the trans-
formation on which we base our analysis, a component all of whose co-
efficients are equal. This ensures, through orthogonality, that all

the other components must be contrasts.

To return to the question of two samples: the usual supposition
is that we have two populations, with equal variances and possibly
different means. A sample is selected randomly from each. In
experimental situations, we have to start with a number of experimental
units (animals, plot of land, etc.), presumably carefully chosen to be

as much alike as possible.

Randomness now takes the form of random allocation of units to
treatments. This has the effect of converting whatever differences
there are among the units into a frequency distribution which is sampled
randomly.

To perceive this point, think of an agricultural experiment
carried out in a row, to keep the argument one-dimensional (or an
experiment on a wire, or a rope). Let the length of the row be L and

let x denote points along it.

Presumably, growing conditions will vary from point to point along
the row, and will contribute to the differences among treatments that we
will observe. If we could know the level of fertility (y) at each point
x, we could use it to make corrections, but we could not talk about these
fluctuations in terms of errors. UFor any designated value of y, call it
Y, calculate the measure of x for which y = Y. Call this F(Y¥). Then
F(Y)/L igthe distribution function of a random variable, which can be

sampled randomly by random selection of x.

Of course, the experiment will be carried out in intervals, not
points and we will be using a grouped form of this distribution. The

argument extends without change to higher dimensions.
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If this curve depicting the variation in growing conditions has

any persistant trends, it is easy to see that the resulting error

distribution will be skewed. For this reason and others, blocking is

usually worthwhile (see later).

In the two sample experiment, error enters, by definition,

through differences among experimental units and is estimated by

gathering up the differences among units treated alike, the within-

samples sum of squares.

If the two samples have unequal numbers of observations,

the orthogonal transformation must be changed if Y, is to gather up

the contribution of ul—uz.

Ty Ty e n, 21 Loy + v
yl 1 1 1 1 i ..
Y, n2 n, nz -n, .-
y3

orthogonal
Y
n1+n2
12
then y, = o (ylmuzj + error
1 "2
ys e e ynl+n2 exhibit error only.

The assumption of constant error variance

divisor

Generally speaking the assumption of constant variance is not to

be accepted lightly. In experiments, though, that have been carefully

planned and carried out, this assumption is usually satisfied fairly well.

An exception might arise when the treatments have vastly different effects,

but here no experiment is needed to establish this.

will be mentioned later.

A few special cases
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Occasjonally, the experiment may be carried out for the express
purpose of finding out whether the treatments effect the error variance.

The test of significance here is the two-sided
2,2
F = sl/s2 n:E{nz—l, nz—l]

Three (ox more) samples

mlz mlz Cree wlnl le m22 e x2n2 L3y Ly, Tq ; divisor
Y, 1 1 .s 1 1 1 .. 1 1 1 . 1 ¢n1+n2+n3
2 2 2
Yy, @ a .... a b b ... b ¢ ¢ ... e VQEa +n2b tnge

. orthogonal.

Y

nl+n2+ﬂ3
We can write an orthogonal transormation as shown by choosing
a, b, ¢, a, B, v such that

n, a + n, b +n, =0

3

n, o 4+ n B + n3 Y = 0

il
(]

ao + nz b B+ na ey

then Y, = n, ap + nszz + njcu + error
We would, of course, want to choose a, b, ¢ so that Yy, would

display some desired contrast of Hys Ugs Mg for example g = 1/n1,

b = —l/nz, ¢ = 0. Having done so o, B, y are determined and lead to a

Yy that exhibits a linear function of My s Uy Mg whose coefficients

involve sample sizes. 1In general, this is of no interest (except,

perhaps, in the context of regression). Therefore, in general, this

experiment cannot be analyzed by means of an orthogonal transformation,
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except in the case when the sample sizes are equal.
Even so, we can make choices of a, b, ¢, o, B, vy that satisfy

the orthogonality conditions. The components Yur Yg »ver Yy o 1
1 23

will then, through orthogonality with Y,2Y,sY, have zero means and

will therefore reflect error contributions only. The estimate of G

will be s2 = (y S & yn R J/(nl+n2+ﬂ3¥3).To see one way of

computing this sum of squares, observe that the point of the transformation

that deals with variation among samples may be written

T
Tl Tz 3
i 1 i
Y,
Y a o) e
2
y3 o g Y
or better
Tl/V%1 TZ//E; Ta/V%; divisor
4, /n, /n, Vi, nytn,ing
2
Yo n.a Vn,b Ve \/nlaz-mZb 4%302
2 2
Y3 nia iy n3Y ‘/”1‘1 o8 gy

In this form, it displays an orthogonal transformation of

2
2
the Ti/Vni into y's. Hence yi ty, y3 ) EE
i n.
T

and the among samples sum of squares is

2 T.
vty =] 4o __ &
T M.
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Therefore, we can f£fill out the analysis of variance table as

follows. dar s8
72 2
among samples 2 z L&
ni N

within samples nl + n, + ngda 3 by subtraction

7.
3 7
total n o tn, + n, -1 Z L x

L, -
7=1 o=1

2
70
(N =n, +tn, + na] .

Orthogonal Experiments

An experiment which can be analyzed by means of an orthogonal
transformation will be said to be an orthogonal experiment. Analysis,
here, means the study of the contrasts the experiment was designed to

explore. Two sample experiments are always orthogonal, but with

three or more samples, orthogonality is ensured only with equal
sample sizes.

It is usually a simple matter to layout the contrasts we wish
to study and to calculate their standard errors. The use and inter-—
pretation of these values require carve however (see next section).

It shoiild be noted that there are penalties for non-
orthogonality. The precision of the contrasts diminishes as the
&isparity among the sample sizes increases. Also, the comparisons we

wish to study may not be independent.

The choice of components

Consider a three sample orthogonal experiment. The
transformation is set up by choosing any three numbers which add to
zero (a, b, ¢). Since only the ratios of the three numbers is

required, there is only one free choice to be made. Then, numbers
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o, B, Y are sought, such that

0

a+ B+ v

It
o

ao + bR + ey

The ratios of u, B, v are thus completely determined. Any component
orthogonal to Y,» Y,5 Y, must have coefficients that sum to zero

within each sample and can therefore exhibit errors only.

The analysis of wvariance table is:

af 88

2 2
among samples 2 Yy + Y,
i thi les 3n - 3 Z s
within samples n - Y, e Y
2 2
total 3n - 1 LEix -4&/N

This preliminary table should always be calculated, even
though it does not exhibit everything we want. It does not require
that choices of @, b, ¢, o, B, vy have been made, because the among samples
sum of squares is the same for all choices,

In any truly experimental situation, the object of the
exercise is to perceive certain well-defined contrasts which, in turn,
dictate the choice of a, b, ¢ and the other contrasts. It is not
necessary that all the contrasts of interest cam be put into an
orthogonal transformation, because any contrast can be expressed as
a linear combination of the set of orthogonal contrasts. Often the
set of contrasts forms a hierarchy in which the order in which the

conftrasts are scrutinized is Important.
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An example
Suppose that treatment 1 is a standard and 2 and 3 are
experimental variants of it. Then, the following choice of contrasts

seems reasonable.

Tl TZ TB
v, 1 1 1
Y, -2 1 1
y 0 -1 1

ya inquires whether there is a difference between the two
variants. If not, Y, becomes reasonable to test whether their average

differs f£rom the standard. However, 1f Y, is significantly large, yz

becomes meaningless, because, as a matter of statistical decency, we
never average things that differ through more than error. To do so

is to distort and deceive.

Another example

Suppose that Tl is some standard treatment, T2 differs from
it through the addition of one unit of some additive and T3 through
the addition of 2 units of the same additive. Then, a graph can be
drawn, showing the dependence of the response on the amount of
additive. Anything we may do by way of analysis can be thought of

as an Inquiry into the nature of the graph

Tl Tz _T3
-1 0 1
y2
Y -1 2 -1
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Then, if the points lie on a straight line, Yy = 0 and y, yields
the slope of the line. Hence we first test y,. If significantly different
from zero, a test of significance of ¥, becomes useless and should not be
made, because nothing depends on the significance or otherwise of Y, Its
value is useful, though, in writing the equation of the curve (a regression
question).

If Yy is not significantly different from zero, we conclude that a
straight line will suffice and proceed to y, to study its slope. If y, is
not significant, the additive has had no effect.

In both these examples, we might display the analysis of variance

table, for our own purposes at least, in the form.

df e af  ss

among treatments 2 y% + yg Q:::l yg
1y

3

within treatments 3n-3

total 3n-1

In the second example, if we have more than three samples, the
appropriate ceoefficients to use to display linear, quadratic , cubic....
components are not geometrically obvious. When the abscissae are equally
spaced, as in the example, suitable coefficients are tabulated as values
of orthogonal polynomials.

Experiments of the sort we have been discussing, in which the
corresponding analysis of variance is between-within, with error displayed
in the within-samples sum of squares are called completely randomized

experimental plans.

Factorial Arrangements

Think of an experiment to compare two diets by feeding them to
rats. Suppose we know or suspect that females will respond to the diets
rather differently from males (or that we want to find out whether this

is so). We would then think of comparing diets on both females and
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males, equally often if orthogonality is to be maintained. We might
then assign 4n animals randomly to the four "treatment'" combinations,
# to each.

In a sense, there is neothing new here. We have a completely

randomized experiment with 4 samples (treatments)

ar
among 3
within dn -~ 4
total 4nn - 1

The thing that is new here is the nature or structure of the
treatments, made up as they are by combining two factors, sex, diet
in all possible ways. This dictates the comparisons we should make
among the treatments.
We have three questions to be settled
1. Do the diets yield different responses?
2. Do thesexes yield different responses?
3. Is the observed difference between diets the same
for the two sexes?

Corresponding to these questions, we have

T T T divisor sex
11 12 21 22
: 1 2
i 1| 7 T

Y, 1 1 1 1 4n diet 11 12
4, 1 1 -1 -1 Jin 20 Tor | o
v, 1 -1 1 -1 Vi 1 T
y 1 -1 -1 1 Vi
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¥, displays the difference between diets, averaged over the sexes

Y, displays the differences between the sexes, averaged over
the diets (y2 and y, are called main effects).

¥, contrasts the diet difference between the sexes, or
equivalently, the sex difference between the diets
(yh is called an interaction component).

Gf these components, Yy is the most important and must be Inspected
first., If yLF is significantly different from zero, we have at once,
some conclusions.
1. the diets do yield different responses
Z. the sexes do vield different responses
3. the difference between the diets is different in the
two sexes or, equivalently, the difference between the
sexes ils different in the two diets. Therefore the
averaging performed in Y, and y, is unwarranted and
these two components represent an attempt to answer a
too-simple question. There is no occasion to test

Y, and Y-

If Y is not significantly different from zero, the averaging
in Y, and ys is not forbidden and we may proceed to test them for
significance.

It is to be noted that the component Yy, may be formed by a
column by column multiplication of the coefficients of y2 and Yye
Hence, we get the usual notation for Yo, i.e. sex x diet. (interactdion)

It is easy to check that this kind of multiplication between two

main effect components always ylelds an interaction component. There are
also other ways of obtaining interaction components. These questions will

come up again.

The final analysis of variance table takes the form
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ar
diets 1 yi [ = (5 + 1) /o - 6%/t
sexes 1 yi [ = [T?l 4 T?Z) /2 - Gz/An]
diet x sexes 1 yi {or subtraction)
error 4n - 4 by subtraction
total n - 1

We might say that when there is no ¢ x d interaction, our two-
dimensional question decomposes into two one-~dimensional questions. The
margins of our two-dimensicnal table contain all of the information.

When an interaction exists, we still have one two-dimensional question.

The body of the table is needed to properly display the information and

the margins are not useful (except for computations) and can be misleading.
Note, if we have m sexes and n diets, then mn-1 d.f. among treatments

would partition into

af
sexes m -1
diets n~-1
g xd (m-1) (n-1)
among treatments mn - 1

The writing of models

In the experiment discussed above, we could use mija’ i = 1,2,
J=1,2, a = 1,2,...,n to represent an observation on diet 7, sex j.
We think of the variation among the x's in terms of ».. =1 + €., ,

170 id 1o
which corresponds to the preliminary analysis of wvariance table. Then,
to take account of the structure of the treatments we may write

.y = + 6, +o. + 1., ibi
uLJ B 61 UJ T%J, a tautology, of course, but one that exhibits
the way in which we propose to interpret the data.

By adopting the convention that ¥ 6, =0, L ¢,=0, £ 1,, =0,
,&’L j A

.. = 0, we have the correct number of parameters and the number of

LT
. 1g

J
each kind corresponds to the number of degrees of freedom.
It is instructive to substitute this structure inte the components

Yps Ygs Y, More on factorials later.

The completely randomized experiment Is not often used. Usually,
we know of reasons why our experimental units vary among themselves and
can use this knowledge, in some measure, to circumvent its introduction

inte the contrasts and into error.
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Blocking

Pursuing the biological example somewhat further, suppose it is
known that animals from the same litter respond in a more uniform manner
than do those from different litters. It follows that contrasts made
within litters will be more precise than contrasts that involve
differences among litters. To take advantage of this, if we can get an
adequate number of suijtable litters each of which supplies 2 males and
2 females, we could allocate randomly one male and one female of each
litter to diet 1 and the others to diet 2. Then differences between
diets, between sexes and their interaction are perceptible within litters,

If n litters are used, n-1 degrees of freedom will be used fo
display differences among litters, 3 degrees of freedom for treatment
differences and, it should be obvious, 3(n-1) df for the interaction of
treatments and litters. It may not be obvious, though, just where one
would look to see the contributijons of error only. We do not now have,
as we had earlier, several observations which should be the same, apart
from error. 1In this sense, there are no repetitions. On the other hand,
something has been repeated, namely, each of our contrasts has been
repeated u times, once in each litter. The differences among these
contrasts, as we proceed from litter to litter, should provide a sensible
definition of error, provided we use only litters that are not too
different from one another, i.e., each should be an attempt to carry out
the same trial as every other.

To say the same thing in another way: The litters should be chosen
s0 as to ensure that there shall be no genuine interaction between litters
and treatments. The litters x treatments interaction sum of squares will

then reflect error only.
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The responsibility for the selection of litters that meet the
condition of mo interaction with treatments must rest on the experimenter,
who may properly be expected to have comnsiderable knowledge to start with.

The litters, in this example, represent an attempt to group the
experimental units into sets within which they are more uniform than
they would be without the grouping. It follows that we would expect
greater differences between sets than within sets., These sets are called
blocks after an agricultural prototype. In the example, the blocks were
large enough to receive all the contrasts, hence they are complete blocks.

They may also be called replications, inasmuch as each block receives all

the contrasts under study. The term replication is best used only in

this sense, one trial involving all the contrasts, with blocking implied.
It is best not to use the word to describe the repetitions in a completely
randomized experiment.

The arrangement we have here, in which we have suitable (complete)
blocks, with the treatments assigned randomly to the experimental units
(sometimes called EEQEE) within the blocks, is called a randomized
(complete) block arrangement.

If we represent by xijk the observation on diet Z, sex J, litter k,

we have the following computational scheme.

af
blocks n-1 ZT?.k/’g,— G2/4n
treatments 3 ZEsz;/% - G2/4n
bl. x t. 3(n-1) by subtraction
total 4n-1 zzzmijk"" - G%[4n,
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An orthogonal transformation corresponding to this arrangement

could be
Titr Tr21 Tar1 Fazr oo v Ty Toon Touy Toop
1 1 1 1 1 1 1 1
bl. ai al al al an an an an
d. 1 1 -1 - 1 1 -1 -1
5. 1 -1 1 -1 1 w]. 1 -1
d x s 1 -1 -1 1 1 ~1 -1 1
bl x d az al -al -al an an —an -an
bl x s al —al al ~a1 an -«a?1 a, —an
blxdxs al mal -al a1 an "an “an a,

Here Eak = 0 and the ¢'s represent the n-]l orthogonal choices
that can be made.

One encounters, now and then, the view that replications should
be tested. If significant, some doubt exists about the adequacy of the
experiment, This is, of course, nonsense. The whole object in
blocking is to arrange less variation within blocks than between.

On the other hand, if the variation attributed to replications (or
treatments) is huge, one might well be suspicious that the postulate of
no replication x treatment interaction might be vioclated and a study

of residuals might be in order.

Another, rather extreme, view shows itself occasionally: If the
replications sum of squares is not significant, it mayv be pooled with
the error sum of squares to augment the degrees of freedom allotted
to error. This kind of self indulgence is intolerable., It is simply

a way of saying: Choose the error you like best.
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In the definition of error

Speaking generally and somewhat loosely, error shows itself
when we try to do the same thing several times and come up with
different results., In the completely randomized arrangement, we have
a number of experimental units treated alike and perceilve error in
the differences among the results they yield. In the randomized block
pattern, while we may not have several units treated alike, we have
tried to repeat something, mamely, the contrasts we are examining, which
are repeated from replication to replication. The differences among
these differenceg, i,e. the replications X treatments interaction,
reflect error.

We could think of an arrangement in which both ways of displaying
ervor enter. To use the same illustration as before, suppose that we have
an adequate supply of litters which contain 4 males and 4 females. Two
of the males chosen randomly, are given diet 1 and the other males
diet Z; similarly for the females. If we use r litters, the analysis

of variance reads:

df
replications r-1
experimental effects 3
rep. % exp, effects 3{r-1)
within pairs by,

The within pairs sum of squares reflects a primitive, inevitable,
local sort of error which must enter into all the contrasts, The
rep. ¥ exp. effects,in addition to this local effort, may reflect other

sourcesg of error, arising from some lack of control from replication to
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replicatien. It is likely, therefore, to run somewhat largexr than
the local error and is the proper error against which to test the

experimental effects. Tt is therefore called experimental error, in

contrast with the local sampling error.

Clearly, the provision for estimating sampling error is wasteful
and would not be done unless we had reason to compare sampling and
experimental error. |

It is useful to think of the progression from the completely
randomized to the randomized block as a restriction on randomness, in
which certain degrees of freedom are withdrawn from error and given
the job of isolating certain (potential) systematic effects, thus
preventing them from entering into our contrasts and into error.

It should not be necessary to emphasize that the criteria for
blocking must.be based on dependable knowledge, presumably gained
through prior experience. Irresponsible blocking can be costly and

even calamitous.

Paired comparisons

An extreme form of "the randomized block design arises when each
block contains two observations, one on each of two treatments. This

case is often discussed separately under the heading paired comparisomns.

If $ij is the observation on treatment 7 and in block j, then
dj = mlj - xzj may be regarded as an observation on a population with

mean W, - ki, and variance 2062, The estimate of 2¢2 is
82 = 2(d; - d)2/(r-1) and

d - (uy - py) is ¢ .
-1
o/ Ve =)
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From this we get at once a test of significance for W =k, = 0,

or indeed any speculation about Uy = U,
The only point of interest here is that the test can be seen to
be unaffected if we drop the assumption of equal variances and

independence. If x,. and wzj are observations on a bivariate normal

]

2

with variances and covariance ¢,%, © 2

5+ U1

, then the dj may be regarded

as an observation on a population with mean My oMy, and variance

0.2 + 5.2 - 2g

1 2 12° These considerations extend easily to those rare

instances in which treatments may affect the variance, when we have
more than two treatments. TFor example, we might study xlj + mzj - ngj,

or any other contrast we may wish to inmspect.

The factorial arrangement

We have seen, up to this point, two types of experimental design,
the completely randomized and the randomized block. The!difference
between them lies in the definition of error and the provision made to
exhibit and estimate it.

The term factorial, on the other hand, refers to the particular
character of the treatments. We envisage two or more factors each at
several "levels'", The treatment combinations are formed by combining
each level of each factor with every level of every other factor. They
may be tested in a completely randomized design, randomized block or any
other. Our concern is with the interpretation of such treatment

differences as may appear.
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Only one situation will be discussed, that in.wﬁichlgne, at
least, of the factors has "levels" that can be specified numerically.
Then, graphs may be plotted and the analysis amounts to an elucidation
of these graphs.

The example discussed earlier may be adapted to make an illus-
tration. If diet 1 is some standard diet and diet 2 is diet 1 plus one
unit of some additive, the responses to the treatments (averages or totals)
may be plotted. This graph will depict only the raw data, not any attempt
at analysis or reduction. |

If we think of curves joining the points (in this instance, they
must be straight lines), the interaction component displays the difference
in slope of the ¥ and F lines. If this component is significant no
further reduction is warranted.

If the interaction component is not significant, the main effects
become meaningful and further reduction can be made,

This diminutive example is too small to exhibit some features
of the analysis of factorial experiments. If we think of adding a third
diet made up by adding two units of the additive, we get 6 totals or
averages, which we could be plotted on a graph. We have then to ask:

(1} are these curves parallel in the sense that one can be superposed

on the other by a vertical displacement? If they are, (2) is the average
curve straight or curved and (3) what is the distance between the two
response curves?

The following transformation contains the answers to these
questions. It is assumed that these contrasts are tested in some suitable
design that supplies an estimate of error, and that each treatment is
tested # times. Only the portion of the transformation that displays

contrasts among the treatments is written.
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T22 Vi " division

Tin Tio Tiz T 23
sexes y, 1 1 1 -1 -1 -1 Vén
L ¥y -1 0 1 -1 0 1 Vin
diets
g Yy, -1 2 -1 -1 2 -1 Viln
s -1 0 1 1 0 -1 Vin
Ye -1 2 -1 1 -2 1 V1an
diet
1 2 3
1 Tll T12 T§3 T].
sexes
2 T?.l T?.Z T23 Tz.
T.l T.z T.3 G
df ss
sexes 1 yz = [Tz + T ]/3n - G2/6m
2 1. 2.

s . . 2
. 2 2
diets 2 Y, +y, = £ sz/2n - G2/6n—<yz

f

ﬁmom transformation

¥, ~ by subtraction
2 2 2 _ .
exd 2 Yy + g by subtraction Ye from transformation
' : 2
Ye ~ by subtraction

The coefficientszin y3 and y4 come from a table of walues of

the orthogonal polynomials.

If neither of yg and yz is significant, we test yz. If not

gignificant, test yé. These have to do with the shape of the average
curve.

Although the examples used here are small, factorial
arrangements with several factors each at several levels can be
very large indeed, which can cause difficulties for several reasoms.

Several devices for circumventing these difficulties are available.
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Incomplete blocks - confounding

The randomized block arrangement is, in a way, a2 standard and
preferred design, to be used whenever possible. One reason why it may
not be possible, particularly in large experiments, is that natural and
sengible blocks are not large enough to accommodate all the treatments.
In consequence, a replication will require two or more blocks. Each
block is then said to be incomplete. The allocation of treatments to
blocks and the consequences of various ways of daing s becomes an
extensive and acutely important question. It will be pursued here for
the case where the treatments arise from a factorial arrangement.

To adopt the earlier example, with two sexes and two diets,
thus 4 treatments, let us say that litters of 4 are not available, and
that litters of 2 are in good supply. Then, 2 litters will be required
for one replication. Evidently, there are several ways in which diets
can be introduced into this system. Let us pursue the consequences of
some of these. |

Think of using litters of 2 M and 2 F. We have still some choice
about how diets are to be introduced.

Arrangement 1

litter 1 litter 2 litter 3 litter &

M M F F M M F F
diet 1 diet 2 diet 2 diet 1
sexes 1 i -1 -1 1 1 ~1 -1
diets 1 L -1 -1 -1 -1 1 1

g x d i 1 1 1 -1 -1 -1 -1
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P Here, it is seen that all the treatment contrasts also gather
up litter (block) differences. 1In these circumstances, it is said that
treatments and litters are confounded. The only contrasts perceptible
within litters are differences among animals treated alike, a sampling
error, which is unsuitable as an error term for testing treatments.
Obviously, this is an unacceptable arrangement.

Arrangement 2

Rep 1 Réﬁ 2
litter 1 litter 2 litter 3 litter &
M M F F M M T F
diets 1 2 1 2 1 2 1 2
s 1 1 -1 -1 1 1 -1 -1
d 1 -1 1 -1 1 -1 1 -1
sxd 1 -1 -1 1 1 -1 -1 1

Here, we see that sexes and litters are confounded and that diets
and ¢ x d are not confounded with litters. This may well be an accept-—

able state of affairs and worth pursuing. The full transformation is

given below.

Rep 1 Rep 2

litter 1 litter 2 litter 3 litter 4

M M F F M M F F

1 2 1 2 1 2 2
reps 1 1 1 1 ~1 -1 -1 -1
sexes 1 1 -1 -1 1 -1 -1
diets 1 -1 1 =1 -1 1 -1
exd 1 -1 -1 1 1 -1 -1
rxg 1 1 -1 -1 -1 -1 1 1
rxd 1 -1 1 -1 -1 1 ~1
rxexd 1 -1 -1 1 -1 1 1 -1
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Inspection shows that three of the components, reps, sexes,

r x g are confounded with blocks, the rest are not. The analysis

splits into two parts, among blocks and within blocks.

d.f. ss
among blocks 3 %—Z Bi - G2/8
within blocks 4 by subtraction
total 7 5e’ - G/8

One or the other of two views may be suitable here. If, for
any reason, we are content to ignore contrasts that have been confounded
with blocks, we proceed with the within-blocks analysis. We could use
the transformation to make these computations, but it is simpler to

set up a sex-diet table.

diet
1 2
| T4 T | Iy :
sex
2 T21 T22 TZ'
7.1 7.2 &
1 2 2.
sexes 7 ZT@. - G /8
. 1.2 _ 2
diets 7 ET.j & /8
s x d by subtraction
treatments ;-ZT%. - 62/8
2 TT4g
diets 1

within blocks 4 sxd 1

error 2 by subtraction
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If we wish to inquire into sexes and if we can regard reps X

sexes as error, we can separate

1 2 2
reps 1 4 ZTr - &/8
among blocks 3 sexes 1 from earlier calculation

r x g (error) 1 by subtraction
In this case, of course, with 1 df for error, this is
ridiculous.
Tf we choose to use litters containing one male and one female,

we might adopt the following arrangement

litter 1 litter 2 litter 3 litter &
M F M F M F M F
1 2 2 1 1 2 2 1
sexes 1 -1 1 -1 1 -1 1 -1
diets 1 -1 -1 1 1 -1 -1 1
s x d 11 -1 -1 1 1 -1 -1

Here, 8 x d is confounded with blocks, sexes and diets are
not.

One sometimes reads or hears that when one is faced with
the need to sacrifice certain compeonents in a factorial arrangement,
through confounding with blocks, one should confound interactions. If
the interactions to be confounded are all of high order, there is good
reason for this, because there are good grounds for thinking that
genuine interaction inmvolving many factors (or more than 3 or 47)
rarely exist. Experience seems to confirm this expectation.

On the other hand, it may happen that it is preferable to

confound a main effect than to sacrifice a low-order interactionm.



33.

The splitting of an experiment into two or more sectioms,
each with its own error term, can occur in a variety of situations.

The split plot experiment

It happens not infrequently that some of the factors are
such that different levels can be applied to the same experimental unit,
whereas the various levels of other factors require different units.

If, in the small example used earlier, we compare, instead
of diets, two treatments which can be applied to the same animal (say,
applications on the skin, one on each side), still taking the view that
the two sexes may yield different results and that litters exercise
experimental control, we could get a number of litters, each made up of
1 male and 1 female apply both treatments to each animal. If we use ¥

litters, the analysis of variance would read:

d.£f.
reps r-1
among animals 2p - 1 sexes 1 .
rx g . -1 (error)
treatments 1
g % t 1
within animals 2p
’ rx t 2(r-1) (error)
rX g xt

The experimental arrangement is structurally the same as the
confounded arrangement discussed earlier. 1In this case, though, the
main effect (sexes) is necessarily the one to be confounded with animals.

Another example, in agriculture, could arise in the following
way. Let us say that a number of varieties (v) are to be tested in a

randomized block with r replications. Let us say further that, in each
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replication, each of the v plots is subdivided into ¢ sub-plots, each
of which is to receive, by random allocation, a different fertilizer
treatment.

It is to be expected the variety contrasts will be exposed to
larger errcrs than the fertilizer contrasts, in view of the larger plots
used for varieties. The r v £ - 1 d.f. will therefore be assembled as
follows.

among large (main) plots e = 1

within main plots i.e.

among small (sub) plots rv(t-1)

within main plots

reps r-1
main plots rv - 1 varieties v -1
r X v (r-1){v-1) (error)
fertilizex £t -1
suﬁ‘ﬁiSts rp (E-1) v X f. (v—l)(til)

rx f (r-1) (£-1)
{(error)
rxvx f (r-1)@-1)#-1)

The split plot arrangement is sometimes criticized because a
main effect is confounded‘with the large main plots. This is, of
course, true, but this is not necessarily a weakness and, in any event,
it is often unaveoidable.

The split plot arrangement does occur more often than one
might expect. It is frequently the most natural arrangement and is
sometimes guite inescapable.

We can, of course, have split-split ... plots. They are

sometimes called nested designs.
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More on factorial experiments

When several factors or several levels are used, the number of
treatments can be large. The total number of tests required, especially
when replicated, can be embarrassing and the control of heterogeneity can
be difficult.

Several devices can be used here, each of them reflecting the
hierarchy that exists among the contrasts and the expectation that
interactions among several factors do not, in fﬁct, exist,

The use of incomplete blocks, with which are confounded
selected contrasts (preferably omly high order interactions), has
already been mentioned. This notion will be pursued further in a

few special instances.

The 2" factorial

Experiments of this sort, often with quite large numbers of
factors, are freéguently used for screening, to select certain Ffactors
for further study, to obtain qualitative information about the various
factors and their interactions.

To make a start, think of a 2% experiment, with levels (ao, al),

(b b,), (ey, ;). There will be 8 treatments a; bj s 7 ., k=20, 1.

03

Another symbolism used here treats ao, bg, CO ags i1f they represent absence

of the factor (this meed not actually be s0) and @ etc. as the presence

of a given amount of the factor. Then, using (1) to be aobﬂco, we get

(1) =ay by ey, (@ =ay by ey, (B) =a by ey, (e) =ay by e

(ab)= a, bl Cys (be) a, by ey, (ca) = a bo e, (abe) = a, b, e
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A transformation (of the treatment totals) to display the
main effects and interactions shows that each of the components is
a contrast between one set of four treatments and the other four.

Indeed, these contrasts may be enumerated by setting up a generating

function.
1 = (atl) (B+1) (et+l) 4B = (a-1) (b~1) (e+1)
A = (a~1) (b+1) (e+1) BC = (a+l) (b-1) (e-1)
B = (at+l) (b-1) (c+1) c4 = (a-1)(b+1) (e-1)
C = (a+l) (b+1) (c-1) ABC = (a=1) (b-1) (c-1)

If, now, we raise the question of subdividing the blocks,
to obtain smaller, incomplete blocks. Then, at least i1f the blocks
are to be all of the same size, we must think either of 2 blocks of
4 or 4 blocks of 2.

If we think of 2 blocks, each to contain 4 treatments, the
transformation shows at once the allocation of treatments to blocks
that will confound any particular component. For examplé, if we wish
to confound ABC with blocks, we put those tréétments which receive a +1
in ABC into one block and those which receive a -1 into the other. Then,
ABC  becomes confounded with block 1 - block 2. Thus, in each
replication we would allocate:

hlock 1 @, B, (e, (abe)

block 2 (1), (ab), (be), (ca).

Allocation to units within blocks would, of course, be
random. In some circumstances, we would also decide randomly which

block get which set of treatments.
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(a) (b (e) {abe) (1) (ab) (be) (ea)

A 1 -1 -1 1 -1 1 -1 1
B ~1 1 -1 1 -1 1 1 -1
C -1 -1 1 1 -1 -1 1 1
4B -1 -1 1 1 1 1 -1 -1
BC 1 -1 -1 1 1 -1 1 -1
CA -1 1 -1 1 1 -1 -1 1
ABC 1 1 1 1 S | -1 -1

The same allocation of treatments to blocks could be reached
without the transformation by writing out

ABC = (q=1) (b=1)(e~1l) =abc - ab - bec ~ca+a+D +c -1
If we now think of dividing each replication into 4 blocks, each to
receive 2 treatments, then at least three of the treatment contrasts
must be confounded with blocks.

The arrangement '

[la) (B, [(e) f(abe)], (1) (@B)l, [(be) (eca)l
is seen to confound ABC, 4B, ¢ with blocks. The remaining components
are computed within blocks.

It appears that we could choose any two of these components
to be confounded with bloéks and then the third would be determined.
Some general considerations bear on this.

If we look at the rows of this transformation (8-tuples) as
simply a set of elements, with multiplication defined as we have been
using it, we see. that the system has the following properties.

1. If two elements, K, and Rz, belong to the set, so does R, R

1 17

2, The set contains an identity, 1, such that Rl 1= Rl.
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The set defines a group, under the operation we have called
multiplication. The group may be specified by any four independent
elements (generators).

We can speak of producing an "interaction" of any two
elements Rl and R2 by multiplying them to get Rl R2 .

By reverting to our original notation, we can compute the
interaction of AB and ABC as (4B)(4BC), which is seen from the trans-—

formation to be ¢. Now, for any element R, R2 = RR = 1. 1In the above

product, we could, acting as if the usual rules are applicable, write

(AB) (4BC) = (4B)2C or A2B2C which is simply C.

In the example we have been discussing, when we made the
allocation into blocks that confounded ¢ and ABC, their interaction,
(4BCY(CY = ABC? = 4B was also confounded.

The elements (¢, AB, ABC form a sub-group of the 23 group.

With larger 2" factorial, it is often possible to use
confounding in which only high-order intéractipns are con%ounded.

Plans are listed in such places as the Fisher and Yates tables and

Cochran and Cox.

Double Confounding

R.A. Fisher, in his Design of Experiments, points out that,
in some circumstances, one sub-group of treatment effects can be
confounded with one type of hetercgeneity and another subgroup with
another. His example envisages a 27 factorial, i.e. 128 treatment
combinations, to be applied (presumably) to the skins of cows. Each
cow provides 8 sites, so that 16 cows are required for one replication.
Each cow then becomes an incomplete block. The question is : can we

find an incomplete block arrangement in which a controlled set of

Ny
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contrasts is perceived also within sites?

To provide a simpler example, suppose we have a 2% factorial
and that each cow provides 2 sites then 4 cows are needed for one
replication.

We may select the sub-group 4, BC, ABC to be confounded with
cows, leading to the blocks [(a), (abe)l, [(B), (&)], [(ea), (@h)],
[(be), (L)].

With respect to the other source of heteogeneity, sites,
we may choose to try an independent sub-group, say 4B, to confound
with sites

4B = {(abe) + (@b) + (&) + (D} - {®e) + (ca) + @) + B} .

The following transformation displays the consequences of

this double confounding

Block 1 Block 2 Block 3 Block 4
Site 1 Site 2 Site 1 Site 2 Site 1  Site 2 Site 1  Site 2

(@) (abe) &) (e) (ea) (ab) (be) (1)
4 1 1 -1 -1 I 1 -1 -1
B -1 1 1 -1 -1 1 1 =1
C -1 1 -1 1 1 -1 1 -1
AB -1 1 -1 1 -1 1 -1 1
BC 1 1 -1 -1 -1 -1 1 1
CA -1 1 1 -1 1 -1 -1 1
ABC 1 1 1 1 -1 -1 -1 -1

We see that 4, BC and ABC are confounded with blocks. AB is
confounded with sites., The remaining components, B, , CA are computed
within blocks and within sites. O0f course, these components have the
structure blocks x sites, e.g. B = (4)(4B), so one would need assurance

that such interactions do not exist. In this example, replication would

.
i
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be required to define and estimate error and, in any eveﬁt; 5; this
small example there is too much confounding to be generally tolerated.
In Fisher's example, only interactions with several factors are confounded.
We are here approaching combinatorial questions of the sort
encountered in latin squares.
If this plan is replicated » times, the analysis of variance
would read, for those instances in which we would regard components
confounded with blocks and sites to be not-whol;y lost and in which

appropriate randomness has been introduced:

af
reps r-1
among blocks 4r—l<<:blocks within gC i
reps 3r ABC 1
reps % A,BC,ABC 3(r-1)
B 1
1
s _CA 1
within blocks 4p reps x B,C,CA 3(r-1)
AB 1 ‘
reps X AB r-1

Partial Confounding

It may happen, particularly when the factorial is small, that we
are unwilling to forego all information on any component through
confounding it with blocks in every replication. For example, in the
23 factorial discussed earlier, conducted in two blocks per replication,
we might prefer to confound ABC in one replication and another, say 4B,

in another. Such an arrangement is easily laid out.
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The analysis of variance table may be calculated in a number of

ways. The s.s. for ABC and 4B, coming from only a portion of the data,

are best computed from the transformation.

blocks 3 the dashes on AB and ABC are
yl 1 simply reminders that they are
B I partially confounded.

C 1

AB’ 1

BC 1

C4 1

ABC! 1

error 5

total 15



Rep 1 - '”Rep 2
(ABC confounded) (4B confounded)
block 2 1 1 2 1 2 2 1 2 1 1 2 2 1 1 2

(1) (@ @) (ab) (&) (ea) (be) (abe) (1) (a) (B) (ab) (e) (eca) (be) (abe)

bl -1 1 1 -1 1 -1 -1 1 0 0 0 0 0 0 0 0
bl 0 0 O 0 0 0 0 0 -1 1 1 -1 -1 1 1 -1
reps 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1
A -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1
B -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1
C -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1 1 1
AB 1 -1 -1 1 1L -1 -1 1 0 0 0 0 0 0 0 0
BC 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1
cA 1 -1 1 =1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1
ABC 0 0 0 0 0 0 0 0 -1 1 1 -1 1 -1 -1 1
repx 4 -1 1 -1 1 -1 1 -1 1 1 -1 1 -1 1 -1 1 -1
repx B -1 -1 1 1 -1 -1 1 1 1 1 -1 -1 1 1 -1 -1
rep x £ -1 -1 -1 -1 1 1 1 1 .1 1 1' 1 -1 -1 -1 -1
repx B¢ 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1 1 I
repx C4 1 -1 1 -1 =1 1 -1 1 o T 1 1 -1 1 -1
ABC -1 1 1 -1 1 -1 -1 1 0 0 o0 0 0 0 0 0
AB 0 0 0 0 0 0 0 0 -1 1 1 -1 -1 1 1 -1
reps 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1
AB 1 -1 -1 1 1 -1 -1 1 0 0 0 0 0 0 0 0
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Depending on the number of replications used, various other
components could be partially confounded as well. If one were willing
to carry out enough replications (in this instance, 7) one could arrange
that each component is confounded with blocks in one replication only.

This is the case of balanced confounding.

Hidden replication

In large factorials, provision is made‘for ingpecting all
interactions even though there are strong grounds for believing that
they do not in fact exist. We might, therefore, to avoid replicating a
large experiment, carry out only one replication, intending to estimate
error using the components of interaction involving several factors.
Fisher refers to this as hidden replication, not a felicitous title.
As a principle for estimating error, it is clearly weaker than that based
onigenuine replication. Tt may involve some posterior picking and
choosing of error components and needs some restraint to avoid picking
the error one likes best. This is not, however, a condemnation of the
whole idea. Without it, some experiments would demand so many observations
that they would not be undertaken. Indeed, with very large factorials,
the number of observations required for even one complete replication is
too large and the question arises of carrying out only a subset of the
factorial combinations. Considerations that bear on the selection of

subsets are explored in the next section.

Fractional factorials (partial replication)

To perceive, in a small example the conmsequences of testing
a subset of the factorial combinations, go back to one of the examples
used in discussing confounding in incomplete blocks, say the one in

which, with a 2% factorial, the ABC interaction is confounded with blocks.
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If, now, we think of testing only the combinations in one of
the blocks (either ome), there will be, of course, only 3 d.f. for
treatments and we see, from the transformatiom, that:

1. ABC has disappeared entirely. There is no place in this
experiment where a contribution from ABC can be identified. We may say

that ABC has been identified with 1 and write A4BC = 1.

2. BC and 4 have become identified, i.e. confounded 4 = BC.
Similiarly, B = 4 and (' = AE. It is sald that A and BC etc. are
aliases for one another or that 4 and BC are aliased, not an attractive
or necessary use of the word.
All of these confoundings can be deduced from ABC = 1, which
is called an identifying relation. For example A2%BC = 4 whence BC = A.
This particular arrangement would be intolerable except in
highly special circumstances, owing to the confounding of main effects and
first order interactions. In large factorials, however, %t is possible
to find fractions in which main effects and low-order interactiomns are
confounded only with high—ordér interactions, which may be presumed not
to exist. It may also be possible to arrange that some high-order
interactions are confounde@ only with other high-order interactions and
therefore reflect error only and provide an estimate of the error variance.
This approach to selecting fractions of factorials is based
on the desire to retain orthogonality. Other criteria are sometimes
used, as in the fitting of response surfaces, a topic that will not be

pursued here.

Weighing designs

In some special circumstances we may be certain that interactions

do not exist and fractional factorial designs, even of low order, can be

.
1
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useful in cutting down the size of an experiment or in iIncreasing its

precision. A prototype of this situation is the weighing design. (Yates)
Suppose we have three objects, @, b, ¢ whose weights are to

be measured on a balance. Let us say also that a zero correction is

needed, i.e. a reading with both scale pans empty (call it wl). Then

if each object is weighed individually, 4 readings will be needed. If

W& is the actual weight of a and w, the measured weight of «.

- = 4 ‘
wa wl Wa error

Var(wa—wl) = 2¢2,
Let (@) stand for : object a is weighed
(ab) stand for : objects @ and b weighed together etc.
(D : both pans empty.
Then, as first pointed out by Yates, the four weighings
(1), {(ab), (bey, (ca) yield estimates of W&, Hb’ Wé with half the error

variance as would:be obtained from individual weighings. |,

Y1 Yab “be T Yy
(1) (ab) (be) (ea)
A -1 1 -1, 1
B -1 -1 i -1
c -1 -1 1 1
4=- Wy T Up T Ve T Ve
= - + (Wab + wl) - (Wbc + wl) + (Wca + wl) + error.
Now W&b = Wa + Wb (nc interaction), etc.

= — TS W
A Wa -+ Wb Wb W& + ﬁc + W& + error.

2KV + error
a

Var(d) = 4a%, Var(4/2) = o2

.
I
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W& = A4/2 + error and the variance with which Wa is estimated
is ¢?, half that obtained with individual weighings.

Similarly W, and Wc are estimated from B/2 and C/2.

We have, of course, used a % fraction of 23 factorial, of a
sort that confounds main effects only with interactions. The complementatry
set of weighings could equally well be used, (@), (&), (¢}, (abe).

These two fractions could be combined if we put objects in
both pans, distinguished by + and - .

(@) - (be) (®) - (ca) (e} - (ab) (@be) - (1)

4 1 -1 -1 1
Then W& = A/4 + error and the variance a/4 is ¢2/4.

0f course, the more often we weigh an cbject, the more

precisely its weight will be estimated. What we have here is simply

an economical way of doing so.

The Latin Squdre Experiment !

As a small example, think of an agricultural trial in which

three treatments are to be tested in three replications as shown

trend
S S T l
Ty | T3 | T3
v T, |1,

One could say that this arrangement is buttressed against
trends in the direction of the arrow, or that the effects of such a
trend have been blocked out, inasmuch as all the contrasts are perceptible
within the same levels of the trend. A trend parallel to the blocks,

on the other hand, would distort the contrasts and inflate the error.

N
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It is reasonable, therefore, to ask whether it would be possible to
gain control over both trends at the same time. That is, is it pessible
to arrange that the contrasts are made, not only within each row, but
within each column as well. Evidently the requirement here is that each
treatment appear, within each row and within each column, once and only
once, {(or at least, the same number of times, if orthegonality is to be
maintained) with every other treatment.

The combinatorial question thus raiséd is easily answered.

Enter Tl, T., T, in the first column, permute cyclically to get the

2* 73

second column and again to get the third. There is no suggestion here
that this construction yields all possible arrangements that meet the
two conditions. Indeed, it does mnot.

Such arrangements, called latin square arrangements, may be
thought of as arising through an additional restriction on randomness
compared with the randomized block design. It may not be obvious, here,
just how full ?éﬁéomness, within the restraints, is to be:obtained.
Evidently, rows, columns and treatments may be permuted randomly without
destroying the latin square properties. However, such rearrangements,
starting from any given square, cannot yield all possible squares. A
deeper inquiry, based on systematic counting of squares, reveals that
all possible squares fall into sets (transformation sets) within which
these permutations can put any square into any other, but not into a
member of any other set. A succinct discussion of these guestions, with
rules for the introduction of randomness into latin square experiments,
is given in the introduction of the Fisher and Yates tables.

It may not be cbvious, either, that the latin sgquare

arrangement does what it is supposed to do, i.e. provide treatment and
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error contrasts free from row and column differencegs. The transformation
below shows that it does in fact do so. mij(k) represents the
obgervation in row Z, column J on the treatment k assigned to this

place by the latin square.

*11¢1) F12(2) F13(3) T21¢2) T22¢3) F23(1) F31(3) F32(1) F33(2)

1 1 1 1 1 1 1 1 1
rows al al al CZZ a2 f’xz CZ3 a3 Cl3 ‘
columns bl b2 b3 bl b, b3 bl b2 b3
treatments cl 02 63 e, 03 cl 03 cl ¢,
error dl d2 d3 dB dl d2 d2 d3 dl

3 3 3 3
iy % izl P10 7:21 G0 L %0

Each selection of a's etc. can be made in two orthogonal ways.

It is seen that the treatment components sum to zero within
each row and ééiﬁﬁn and the error components sum to zero ﬁithin each row,
column and treatment.

Emerging from this discussion, but not dependent on it, is

the existence of a pair of latin squares;

1 2 3 1 3 2
¢, ¢, ey d2 dl d3
e ey c, d3 dz dl

which have the property that, when one is superposed on the other, not
only does each ¢ and each d appear once in each row and once in each
column, but each ¢ is paired once with each d. Such squares are said

to be mutually orthogonal. They have led, in this instance, to the
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separation of the 4 d.f. for row x column interactions into 2 orthogonal
sets of 2 d.f., one of which has been identified with treatments.

This leads to an important reservation covering the use of
latin square arrangements. The sources of variation identified with
rows and columns must not interact and, by symmetry, must not interact
with treatments either. Rows and columns should, ideally, have the nature
of replications. They need not, however, be simply topographical
stratifications. They may be individuals, days;‘or whatever kind of
blocking is required.

The same kind of discussion for u treatments in a n x n

latin square yields an analysis of variance table:

d.f.
rows n =1
columns -1
treatments n -l
ercor (n-1) (2-2) |
total n? - 1

When a square, orthogonal to that used (sometimes called a
graeco-latin square) exists, it could be used to split n-1 d.f. out of
the error term and identified, if desired, with an additional source of
systematic variation, leaving (n-1)(n-3) d.f. for error.

When a complete set of orthogonal squares exists, i.e. n-1
squares, orthogonal to each other, the (n-1) (n-2) d.f. may be split
into #-2 sets of xn~1 d.f., orthogonal to each other, some of which
may be ddentified with other sources of systematic variation.

The uncovering of sets of orthogonal latin squares is thus
seen to be an important combinatorial problem. Again, Fisher and Yates

is a good reference.
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Setg of latin squares

Often small latin squares do not provide a large enough
experiment and must be replicated. If an »n X #n square is replicated
v times (each with its own randomization), each square provides an

analysis of variance.

d.f. S.5.

TOWS n -1 E,

7

columns o= 1 é{
treatments n -1

error (n-1) (n-2) Ei
total n - 1

Combining these r analyses into one, we would have, except

in special circumstances,

squares r - 1

rows within squares r{n-1) ZRi
columns Withiﬁ squares r{n-1) ZCi :
treatments n -1

squares * treatments {(r-1) (n-1)

error within squares r{n-1) (n-2) in

total o2 -1

One could engage in some debate here about the proper error
term, squares X treatments or pooled error within squares or a
combination of both. In principle, squares X treatments is correct,

but maybe one can be too stiff-minded here.

Cross—over designs (switch-back)

Suppose we have two types of desk calculator to be compared

with respect to the speed in making a specified calculation, say the
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calculation of the sum of squares of a given list of numbers. Let us
say that we propose to test each machine 10 times. There are, of course,
several plans we can think of:

1. Get 20 skilled operators and assign them randomly to the

20 tests. This is a completely randomized experiment.

2. Get 10 skilled operators and assign two tests to each, one
using machine A, the other B. This is a randomized block design.
Presumably, it would be decided randomly which m;chine each operator
tests first.

3. Let us say, now, that it is deemed possible that there is a
persistent difference between the first test and the second. If there
is, this trend should not be allowed to enter into the comparison of
the machines. The allocation of machines to order of test should not
be left to randomness, but should be built in as a systematic effect.
To maintain orthogonality, 5 of the operators, chosen randomly, would
be given the 4 - B order, the others the B - A order. Note that this
arrangement requires that the number of replications be a multiple of
the number of treatments.

This arrangement is called a cross—over design. Clearly it
identifies "order" with oné of the operators x {reatments components or,
symmetrically, treatments with one of the operator x order components.

To perceive the structure by means of an orthogonal

transformation, use 4 operators.
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operator 1 operator 2 operator 3 operator 4
first second 1 2 1 2 1 2
A B 4 B B 4 B A
operators Gy ay a, @y Oy aq ay a,,
machines 1 -1 1 -1 -1 1 -1 1
op. % mach. a; Ty an, Ay ~aq aq ay, a,
order 1 -1 1 -1 01 -1 1 -1 .

"order" is seen to be component of operators x machines, obtained by
choosing a; =a, = 1, ay =a, = ~-1.

If this arrangement is to succeed, it is necessary that the
effect of order is the same for all operators.

The argument here is seen to have some of the features of the
latin square and, indeed, we might think of the arrangement as a set

of 2 x 2 latin squares sharing the same rows.

operator 1 2 3 4 5 6 7 8 9 10
row 1 (first) A B A B A B A B A B
row 2 (second) B 4 B A B A B 4 B A

The analysis of variance would read
operators 9
treatments 1
order i
error 8

total | 19
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The 3n factorial

¥ , (] . , .
The 3 factorial, as does the 2° factorial, admits a certain

amount of "

general" theory, which will net be pursued here. 1In
particular, the 3% factorial has received considerable discussion,
starting with R.A. Fisher (Design of Experiments), probably because it
is elegant, in connection with the question of confounding in 3 blocks
of 9 observations in each replication. One woﬁld hope, in such confounding
that only two treatment d.f. need be confounded‘ahd that, with a
suitable arrangement, these two d.f. would come from the three-factor
interaction components.

If the two-factor interactions are to be perceptible within
blocks, it is necessary that each @b pair, each b¢ pair and each ca pair
must appear together in each block (the factors are denoted ai, bj’ ck,

1,4, kK = 1, 2, 3) thus, the enumeration of the combinations to go in

one of the blocks comes down to a latin square arrangement,

1
'

by b, By
4 %1 %y 43
Gy Cy  f3  Z
aq e, e ¢,

The other two blocks would be obtained from this by cyeclical permutation
of the symbols cl cz 03.

An orthogonal transformation shows that, in fact, only two
d.f. of the three factor interaction are confounded with blocks. Indeed

the 8 d.f. for this interaction are split into 4 independent sets of 2

one set of which is confounded.
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Another choice of the initial latin square on which this
allocation is based leads to the confounding of another pair of these
degrees of freedom. There are 4 different latin squares which cannot

&

be put, one into another, by cyclical permutation of cl, 62’ 3"

1/3 of a 33 factorial and 1/9 of a 3%

If only the combinations in one of the blocks are tested, we
have a fractional factorial with truly horrendous confounding. If we

focus on two factors, 4 and B say, we have

A 2
B 2
4 x B 4<<:C 2

Now, using the two orthogonal squares, we can identify 2 of
the A %X B components with a third factor ¢ and the other pair with a
fourth factor D. . Through symmetry we see that each main effect is
confounded with a portion of each of the two-factor interactions.
Reference to the transformatidn shows that each main effect is also
confounded with parts of the higher—order interactions. Only in the
most special of circumstances {(i.e. no interactions) could the observations

be interpreted with confidence.

Dummy comparisons

R.A., Fisher, Design of Experiments, Chapter 8, introduces
two new notions, to which he attaches the terms dummy comparisons and
interaction of quéntity and quality. His arguments are carried by an
agricultural experiment, in 5 replications, to study 4 sources of

nitrogen; M., Mz, M., M

1 30 My each at 3 levels of application; 10’ Zl, 12.



block 1 block 2 block 3

111 122 133 212 223 231 313 32] 332 112 123 131 213 221 232 311 322 333 113 121 132 211 222 233 312 323 331

A.ANV a a, a @, a, a, a, a; d, a a, a a4, 4, a, a; a; a, a a a a, a, a, am gw am
m_,w,wv b, b, b, b, b, b, b b, by b, b, b, b, b, b, b, b, b, b, b, b, b b, b, b b, b,
QANV Q”_. QN Qw QN Qw QH Qw QH QN QN Qm Qu_. Qw QH QM QH QN Qw Qw QH QN QH QN Qw QN Qw Q”_.

AB,AC, BC | by multiplication

ABC(8) d dy d, dy d, d; d, d; dy d, d, dy dy dy d, dy d, d dy d, dy d, dy dy dy dy d,
¢, €, e3 €3 & &, e, e; & &, &3 & & e, & & e &, ey € &, & &3 & & & &

%H Fo fy £, 5 Fy £y 5, 6 fo 1y %w Fa Ty f1 £ I3 £, fa % fo £y 5 5, 5, I fy

g, 9, 9, 9, 9, 9y 9, 9 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, Gy Iy I3 93 9y I3 I3 G5 Iy
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The analysis of wariance would then normally read

replication 4

sources 3
treatment 1] &—levels 2
g x 1 6

error 44
We could lay out a transformation of the 11 treatment d.f.,

foliowing the usual practice.

7 7 7 7 7 T T T T T
Milo "MyTy "Myly "Moly "Myly "Ml "Malg TMil, "Ml "ML,
sources (3) ay ay al a, a, a, a3 ay Ay a,

levels (2) py p, Py Py Py Py Py Py Py Py
sx b (8 apy apy ampy appq dpPy dyPg APy APy APy AP
This transformation, as will be seen, is not correct.

Following Fisher, let us say that the level ZO is, in fact, a
zero application. Then, the combinations MlZO, MZZO, MBZO’ MﬁZO are not
different and cannot enter into ‘any component that displays differences

among fertilizers. Indeed, the response curves are necessarily curves

radiating from a point on the response axis. Clearly they cannot be

parallel (the usual notion of interaction) and the meaning of dinteraction

must be reconsidered in this context. This question will be addressed

later.

MAZl

Consider first the modification of the transformation to remove

the "dummy comparisons'”.

Myl
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10 11 12 20 21 22 30 31 32 40 41 42

sources (3) 0 al al 0 a, a, 0 a3 aq 0 a, a,
Zl 0 -1 1 0 -1 1 0 -1 1 0 -1 1
12 -2 1 1 -2 1 1 -2 1 1 -2 1 1
s % Zl {3) 0 —a; aq 0 -a, a, 0 Gy 0 ~a,

Clearly, differences among fertilizers can be seen only at levels 1 and
2. Hence, there can be only 3 d.f. for interactions, instead of 6 and
the repg % treatments (error) will lose 4 x 3 = 12 d,f, correspondingly.
These 12 + 3 = 15 d.f. represent differences among dummies within reps.

The analysis of variance table now reads

reps 4
sources 3 1
treatments 8 levels 2<:::l
s x L 3

’effbr (between blocks) 32 (reps x treatménts)
errvor (within blocks) 15 (sampling error)

The computation is obwvious. Form a treatment table ignoring

ZO:
Ly Ly
My w1 Ty
M,
My
M
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The two-way analysis yields

sources 3
levels 1
g x 1 3

The second levels d.f. is best computed from the
transformation. The sum of the two error s.s. can be obtained by
subtraction. If it is desired to separate the two kinds of errvor,
the s.s. for error within blocks can be calculatéd directly and
subtracted from the whole. Perhaps it is worth remarking that the
computation yielding "sources" and that yielding s x I are of the

same kind, the first conducted on 7 7 the second on

M.

+ 7,
it Tt

T

%Wilz - Mizl’ this is obvious from the transformation. We can write,

if we wish:

1 2 2
gources 3 - I |T 4 7 - v |T + T
10 M£12 Mizl 40 { MiZZ Mill }
l l ’ 1 2
g x L 3 —=%§ 7T - T ) - = z
10 Milz Mizl 40 { fM.Z - TM.Z
7 2 7z 1

The interaction of quantity and quality

If the four sources are identical in their action, except
for possible differences in potency, they would yield identical response
curves if they could be plotted against the amount of active ingredient
instead of against the total bulk applied. We would, in such a
situation, surely want to say that there is no interaction between
sources and levels. The response curves are superposable with a
suitable re-scaling. In this case, if two response curves differ,
we would expect to find the difference increasing, with increasing

levels. TFollowing Fisher, taking ZO =0, Zl =1, 12 = 2, we would

M
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expect to find twice the difference at level 2 that we find a level 1.
To study whether this is so (i.e. no interaction), we would inspect
(difference in response at level 2) - 2 (difference in response at
level 1), rather than (difference in response at level 2) - (difference
in response at level 1), as would be done in the usual case to inquire
into interactioms.

The transformation needs modification to represent this

altered definition of interaction. We can lay it out as follows

Tugr, T, Twgpy T, Twg, T, Twr T,
levels 1 -1 1 -1 1 -1 1 -1 1
sources 3 a 2a b 2b ¢ 2c d 2d
sx 1L 3 -2 a -2b b -2 e -2d d

The 8 x [ components have been laid out to reflect the proper interaction

components and the s components have been made orthogonal to them. The

i

sum of the s.s. for ¢ and 8 x I is not changed. '

The s.s. for sources can now be obtained from
2 2

1
T 40 EZTM.Z t Ty

i 2 771

1
10 Z(ZTM.Z YR
T 2 7 1

and that for ¢ x 7 by subtraction or directly by calculating

2 2
|7 Y '

Milz Mizl

1

E‘E

w1

i 2

- 2y T 40
7 1

This argument seems a bit loose and, in any event, rather special.
It is properly discussed in the context of biclogical assay.

This situation, in which the usual notion of interaction must
be modified, can occur outside the field of bioassay and one should always
be on guard. The thing to watch for is, of course, a set of response

curves which must radiate from a point.
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Variance components

Sometimes sampling is carried out in patterns which resemble
the arrangements we have been discussing but with rather different
objectives. Consider, for example, a process that produces a continuous
tlow of irom plates, all supposed to be identical but, in fact, varying
from item to item as do all products of an industrial process, Let us
say that we select randomly a set of plates and on each measure the
thickness of % randomly chosen points. We could then calculate an

analysis of variance table of the form

d.f.
among plates n -1
within plates n(k~1)

We can, of course, carry out a test of significance to decide
whether there is more variation among plates than can be explained by
the variation within plates. In any event, our concern unld be to
characterize this variation quantitatively, to-describe a feature of
the production process.

One way of making use of such data is to plot them on a control
chart, with a view to checking on the fact that the plates come from a
stable and unchanging population. The mechanics of this procedure will
not be pursued here, but it will be assumed that the processg is in
control and that the plates, in so far as their average thickness is
concerned, may be regarded as coming from a population of plates generated
by the process. The objective of the sampling would be to characterize
this population and to estimate parameters of this frequency distribution.

With the sampling envisaged here, we could think of an individual

measurement as made up of three elements; the mean of the population, the

ar
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deviation from this of the average of the individual and the further

deviation owing to the variation within the plates. Thus:

r., = + 1. + ¢, =1, ..., n = ey K
1o H o te ? ? “ 1, ?

We will want to treat v and £ as random variables, hence the
necessity for randomness in selecting the plates and in choosing the
points within the plates. It will be assumed that 7 is N(O, ci), e is
N[O, UZ] and that 7w and e are independent, an important assumption that
may net be met.

We wish, then, to estimate u, Gi and ¢%. It seems obvious that
v is estimated by the overall average. It is obvious, too, that o2 will
be estimated from the within-plates s.s. where no variation from
appears. The estimation of ci requires some scrutiny.

Think of a suitable transformation that leads to the appropriate
anélysis of variance table. There will be n-1 components representing

contrasts among plates. Each of them will be of the form:

y =1 a, oz, , Za. =0
i o to ;¢
=fa.z (u+m, +e,)
7 o
=kIZa.7n. +Z L a.ce.
i s
E(y) = 0
2 2
B2 =Vary =1 T a> o- +5 % a>o? = k> + g2,
NE R . 7 T
i a
. 2
since kia., = 1.
7

The s.s. among samples is the sum of n-1 such y2. Therefore,

E y?/(n-1) = & Ui + o2
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d.f. S.S. m,S. F.m.s.
among plates n-1 A k-ai + g2
within plates n(k-1) W G2

Then, equating m.s. and E.m.s., we get the estimate

02 ., A=W
K

"
Distribution problems for such estimates are difficult and are usually
approached through approximations.

These ideas may be invoked with all the patterns in which
observations may be taken. They become extremely troublesome when
orthogonality is lacking. To extend this example somewhat, we may
suppose that the plates come from various batches of steel and that »
batches are sampled, n from each. Following the same kind of

calculations, we get:

d.f. E.m.s.

2 2 5 o
among batches r -1 nk Og + k o to
among plates r{n-1) . k cﬁ + g2
(within batches)
within plates e (k-1) o2

One can, in principie, always regard the sywbols in a model as
random variables, provided the requisite randomness has been provided
in the sampling. Thus we have fixed effect models (model 1), random
effects models (model 2) and mixed models. This kind of thinking has
run through, if only informally, some of the earlier discussions {(split-

plot) and bears on the selection of appropriate error terms.
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Long term experiments, series or sets of experiments,

experiments in which true replication is not possible.

As an example, we may think of an agricultural experiment.to
compare fertilizers (say), with a view to selecting a fertilizer which
performs best over a large area or, as another possibility, an experiment
carried out over a succession of years to pick out a fertilizer which
performs best in all years. In either instance, we are confronted with
a number of experiments, presumably each carriedvbut properly with
adequate replication to provide a reasonable estimate of error. This
error is, however, local. It cannot be expected to apply over the whole
set of experiments and, indeed, it may well wvary from one experiment to
another. There is no way in which we could think of replicating the
whole set of experiments, thus defining a suitable error.

Let us discuss a situation in which p places are chosen. If we
are seeking findings which are to apply teo a whole region, these places
should be choseﬁ ;éndomly from it. At each place, the same experiment is
to be carried out, say a randomized block with ¢ treatments and »r

replications. ¥or each place, then, we will have an analysis of wvariance

d.f. 5.5. m.S.
replications r -1 E.
treatments t -1 Ti
error (-1 (-1 E, 85 = I./((r-1) (t-1))

Difficulty may arise when we try to combine these local analyses into one
overall analysis.. Presumably we would like to have an analysis of

variance of the form:
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d.f. 5.8,
reps within places p{r-1) T Ri
places p-1
treatments t -1
places % treatments (p-1) (t-1)
error within places p(r-1) (£-1) b Ei

We can, of course, make these calculationsg, but the table may not be
all that meaningful. It may be, for example, tha£ the local errors are
genuinely different and should not be pooled. This could be checked by
Bartlett's test. This test proceeds as follows.

There are a estimates of variance, 82 =1, ..., a based

on fi d.f. Compute

—2
s

2
L fy 8/t 8y
1 z

=
I

—2 2
(iMfi]—Zog g - i fé Log 5; |

- 1 1
A=l e Ef‘i}
i

Then, #/C is approximately Xz(a The approximation is not good with

-1)°
very small f%.

In any event, we woﬁld no doubt wish to compare the p X ¢
interaction with the pooled errox, to get some indication of this
interaction.

If we can properly envisage a structure in which the average

response to treatment in place 7 is

X,.,=u+Tm.,4+T,+u..%€., ,2T.=20
T T d g (] . J
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2
and if we can regard the “ij as independent random variables N[O, g ]
and independent of the e's, we can compute the expected values of our

mean squares as follows

E.m.s
treatments o2 + sz + E?% % T.
places x treatments o2 + rcﬁ ?
local error o2

This would dictate a test of significance for treatments using places X
treatments as error., There may be real grounds for fears, though, that
this model is too simple. It may well be that the p x t interaction is
composed of heterogeneous components. If so, we can only separate the
experiment into parts within which these interactions behave in a
reasonably uniform fashion. Thils can be done by choosing a set of
orthogonal contrasts among treatments and partitioning the p x ¢
interactions correspondingly. :

To make a diminutive example, take p = 2; t =3

place 1 place 2
tl tz t3 tl t2 t3
p 1 11 -1 -1 -1
T1 1 -1 0 1 -1 0
T, 1 1 -2 1 1 -2
p % Tl 1 -1 0 -1 1 0
pxT 1 1 -2 -1 -1 2
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We then have

d.ft. d.f.
Tl i T2 L
p X Tl 1 (error) p x T2 1 (error)

Clearly there can be no satisfactory general theory here.

The assumption of constant error variance — transformations

There are some situations in which it is known a priori that
the assumpiion of constant variance is insupportable. For example,
think of an experiment to compare a number of ways of planting seedlings,
based on plots each of which receives n seedlings. The response will be
the number or proportion of surviving seedlings.

Here we are dealing with binomially distributed variables and,
strictly speaking, analysis of variance procedures are not applicable,
However, we may.use them as approximations, usually very good ones, in
the same sense as the normal distribution approximates the binomial.
However, in this instance, if.the treatments do cause different
proportions surviving, the variance will change with the treatment.

If each plot contains » seedlings, of which x survive, E[%} = T,

Var(g] = ﬂ[l—ﬂ)/n. R.A. Fisher raised (and answered) the question:

. . &£ . .
instead of analyzing > s can we seek some function of x/n which has

constant variance, at least approximately? He showed that by replacing

x/n by siﬂ_lfgp the variance is reasonably constant except nearv

P

L Dand 7 = 1.
This fact may be deduced in a direct fashion. %Let ¥ be an

unbiased estimate of a parameter t. Let 2 = f(£) then

Var z = qi f’z(T) + £ (1) F£"(1) Hq + o

:



. 2
Now, in the usual cases,-ot

etc. and to first oxder,

Var g = ci f’z(f)

Applying this to the binomial, Ep =

We seek some function 2z = f(p) such that
2 2
Var =z = Op ' (a) = constant,

i.e. f’z(ﬁ) = en/(n(1-71))

A solution of this differential equation
Fflm) = Zﬁgﬁ'sin_lfg
When 7 is constant throughout the
replace p by sin_lvg_.
A more careful inquiry shows that

non-uniformity in variance., It has been

64.

3
is of oxrder 1/n, Hy is of order 1in

T, Var p = w{(l-w)/n,

the variance of % is constant

is

experiment, we may simply

p =0and p = 1 introduce

suggested that the situation

can be met by replacing sin_l/a'by sﬁn—lVl/4n and sin_l/1¥by /2 -

sin"lVl/An (Bartlett).

In the limiting case, when the binomial is effectively Poisson,

the above argument yields z = ﬁg, & a count.

Not uncommonly, we encounter situations in which the coefficient

of variation is reasonably constant, i.e. the standard deviation is

/2

proportional to the mean. The same argument applied to this case yields

the transformation z = log x, where x is

measurement,

an observation, usually a

A particular case of this occurs in experiments conducted to

compare variances. Suppose each portion

. 2 2
estimate Si of ci based on n d.£f..

of the experiment yields an



65,

. . 2 b
Assuming normality,we have & SE = 02, Var s; = Zci/n. Thus

/ 2 .
E[sé] o, V&r[si] . Hence the advice: compute the logarithms of the
variances and proceed with the analysis of wvariance of these

logarithms.






Gains in Weight of Rats in 100 Days on a Stock Ration
with various Amount of Gossypol Added

No Gossypol 047 L07Z .10% L13%
228 186 179 130 154
229 229 193 87 130
218 220 183 T+ 135 130
216 208 180 116 118
224 228 143 118 118
208 198 204 165 104
235 222 114 151 112
229 273 188 59 134
233 216 178 126 98
219 198 134 64 100
224 213 208 78 104
220 196 94
232 ... 150 ,
200 160
208 h TS
232 110

178

{a) Make an analysis of variance for within and between
groups.

(b) Sketch a graph of the means.

(¢) What should be the next step in the analysis?




2. In the following table are the amounts of fat absorbed by 48
mixes of doughnuts while being cooked. The object of the investigation
is to learn whether the various fats are absorbed in significantly
different amounts.

Grams of Fat Absorbed by Mixes of
24 Doughnuts during Cooking Period

Fat Number

1 2 3 4 5 6 7 8

164 172 177 178 163 163 150 164
177 197 184 196 177 193 179 169
168 167 187 177 144 176 146 155
156 161 169 181 165 172 141 149
172 180 179 184 166 176 169 170
195 190 197 191 178 178 183 167

Make an analysis of variance for between and within fats
N ‘
ignoring the fact that the data in differenthrows were 6btained on
different days and show that the differences between fats is not
significant. Then make an analysis of variance with between days,
between fats and error and show that when the variation due to days

is eliminated in this way from the error estimate, differences

between fats are revealed.



3. The mean and its standard error are quoted below for the
tensile strength of samples from each of two closely related timber
species, one sample being tested from each tree. How would you

proceed to investigate statigtically the difference between the two

species?
Number of trees e T b 27
Mean tensile strength .. .. .. 27.5 32.4
Standard error of mean . .. .. 2.27 3.15
4, In an investigation into the effect of deficiencies of

trace elements on sheep, the following data were cbtained:

Control Cobalt Copper Cobalt + Copper
13.2 ... 11.9 14,2 15.0

13.6 12.2 4.0 15.6

11.9 13.9 15.1 | 14.5

13.0 12.8 14.9 15.8

14.5 12.7 13.7 13.9

13.4 12.9 15.8 4.4

The animals selected were judged to be homogeneous and
were allocated at random to the treatments. Carry out an analysis
of wariance and, further, make a suitable partition of the treatment
sum of squares to identify the cause of the significant treatment

effect.



5.

An inter-laboratory test of a proposed method of determining

percent iron was planned. A standard solution containing 2.950 percent

iton was prepared, and distributed to two different laboratories. 1In

laboratory I, the two analysts each made 4 independent determinations

of percent ironj in laboratory II the three analysts each made &4

determinations.

Their observations were as follows:

Determinations of Percent Iron

Lab. T Lab. IT
Analyst A B C D E
2.743 2.873 3,155 2.905 3.045
3.098 3.012 3.266 3.085 2.961
2.921 2.966 2.954 2.891 2.974
3.001 2,796 3.064 3.090 3.023

following
(a)

(b)

(c)

(d)

The.experiment was intended to provide answers,to the
questions:

Is the proposed metﬁod biased, i.e. does it tend to
give high (or low) results?

Does one laboratory tend to give higher values than
the other?

Are there significant differences between the analysts
of Lab I?

Are there gignificant differences among the analysts

of Lab I1?

For this purpose, carry out an analysis of wvariance,

partition the sum of squares appropriately, and make significance

tests.



6. The data recorded in the following table represent measurements
made during an investigation of the influence of annealing temperature
upon the density of a high silica borosilicate glass. The annealing
treatment was carried out at temperatures from 450 to 625°C. by 25° ¢
intervals and was prolonged until constant density was reached. Tests were
carried out on specimens cut from a sample plate, with a random
assignment of two specimens to each temperature.

Temperature 450 : 475 500 o 525

Density 2.23636 2,23574 2.23544 2.23625
2.23654 2.23493 2.23486 2.23522

550 575 600 625
2.23517 2.23712 2.23699 2.23891
2.23508 2.23636 2.23797 2.23913
We wish to express density as a polynomial in temperature of degree
nét higher than 3.
(a) Sketch-a graph of the observations. :
(b) Do an analysis of variance, separating out orthogonal
linear, quadratic, cubic and higher components.
(c) By successive tests, determine the degree of the polynomial
which provides a suitable representation of the data.

(d) Estimate the coefficients of the polynomial and plot the

curve.
Orthogonal polynomials, n = 8
g{ -7 -5 -3 -1 1 3 5 7
gé 71 -3 -5 -5 -3 1 7
gé -7 5 +7 +3 -3 -7 -5 7

r

1
3t = 22% - 2727 + 103z - 99.

Forx =1, 2, ..., 8; E&E, =2x - 9, Eé = g2 - 9z + 15,



7. A certain device for the armed services is produced by 10
manufacturers, and they each make 12 such items. The relative effect-
iveness, on an arbitrary scale, of each item, is given in the attached
table. These numbers are, however, unknown and can only be obtained
by destructive testing. The services are willing to destroy 10
percent in order to estimate the average effectiveness and the
variability in effectiveness.
(a) Compute the mean and the variance fof‘fhe output of each
of the 10 manufacturers,
(b) Choose a random sample of 3 manufacturers. From the
output of each of these 3 manufacturers, choose a
random sample of 4 items. Tabulate the effectiveness
data for this 10 percent sample of the whole population.

(c¢) Carry out an analysis of variance of the data in the sample.

Effectiveness
Manufacturer '

I IT ITT v v VI VIL VIII XI X
15 74 64 48 77 50 1 71 26 64
85 15 10 23 40 100 51 1 75 40
47 100 11, 7 69 55 35 76 39 90
13 25 35 71 26 56 87 0 19 40
10 52 49 6 55 96 33 i 26 20

5 82 9 75 6 50 67 42 78 26
65 79 37 0 50 60 89 5 79 18
59 60 68 26 53 39 68 37 89 31
31 53 70 6 31 10 5 11 21 36
91 50 &4 15 59 46 46 2 17 44
63 72 75 0 59 35 73 48 35 21

89 - 99 73 hé 72 20 47 55 100 46



8. Double base solid propellants for guns and rockets are a
combination of nitrocellulose (NC) and nitroglycerine (NG). The
combination is not always stable and, when unstable, some of the
NG is slowly extruded from the solid grains and appears on the
surface in the form of liquid drops. An experimental propellant
has been subjected to various conditions to determine its stability.
Three batches of propellant were_used for which the NG
content was known accurately. The percentages;‘by weight, of NG in
hatches T, ITI and TII were respectively, 8.50, 9.23, and 8.04, From
each batch, four five-pound specimens were taken and put in storage
under four temperature conditions: constant temperatures of ~40° F,
70°F, and 120°F, and a cycling procedure in which the temperature was
held slternately at the two extreme temperatures for 24-hr. periods.
After 3 months, a few grains of propellant were taken from each
specimen, themgxternal liquid NG removed, and the percentage of
combined NG remaining in the solid measured.AIThe observétions are
tabulated below.

Percentage NG remaining in specimens

Batch Storage Temperature

-40 F 70 F 120 F  cycled

I 8.43 7.24 5.85 6.93

After 3 months II 9.01 7.77 6.56 8.12
III 7.80 6.54 5.28 6.70

T 8,17 7.02 5.39 6.82

After 6 months IT 9.22 7.50 6.00 7.53
1TT 7.86 6.50 5.14 6.65

I 8.31 6.79 4.92 6.42

After 12 months II 8.90 7.28 5,52 7.24
ITI 7.73 6.18 4,34 6.14

Over



Batches were not expected to interact with the other factors,

go it seemed reasonable to use the second order interaction terms as

an estimate of error.

(a)

(b)

(c)

(d)

(e)

Set up an analysis of wariance table which separates main

effects, first order interactions, and error.

(i) Test the hypothesis that batches do not interact
with the other two factors. If not significant,
would this result justify the ;ésumption of no real
second order interaction? If significant would the
result cast doubt on the assumption?

(ii) Test the hypothesis that the average reduction in
NG is the same for all batches.

Make significance tests of the time -~ temperature interaction

and, if necessary, of the main effects.

ItA@ight be reasonable to assume that, in the period

observed, NG is extruded at a cons?ant rate, dépending

on temperature; i.eé., for a fixed temperature, the

absolute reduction in NG is proportional to the time

elapsed. Can you construct a test of this?

Summarize your conclusions about the stability of the

propellant.



9.

factorial experiment is carried out in a randomized

block design with two replications.

Calculate an appropriate analysis

of wvariance with each of the sets of data given below and make the

tests of significance that are required.

both a and b are equally spaced).

analysis.

a)

b)

19.86 26.37

15.3> 22.82

4,01 10.34
Rep. 1
% )

20,15 24.87

21.86 29.38

21.66  30.59

29.72
27.12

15.64

30.06

"34.78

36.80

Rep. 2
a4 )
20.88 24,38

15.86  20.98

4,48 9.36
Rep. 2
& a4

25.44  30.93

$ 26,92 34.13

25,93  40.04

{Assume that the levels of

Plot the graphs indicated by the

29.64
24.27

14.03

35.49
40.72

42,55



10. A 7° factorial in blocks of 4 units was replicated 4 times

with all interactions partially confounded with blocks.

Rep T
Block 1 Block 2
(abe)  31.13 (ab) 23.70
(a) 15.41 {ac) 18.45
(b) 21.72 (bc)  19.13
(c) 18.12 (L 9.60
Rep III
Block 5 Block 6
(abe) 26.11% {ab) 27.63
(bec) 21.07 (ac) 20.69
(a) “;3f7l (b 20.98
(L 13.63 (c) 16.67

Block 3

(abe)
(ac)
(b)
(1)

Block 7
(abe)
(ab)
(e)

(1)

. 18

10.

19

14

Rep II

Block &

14 (ab) 27.00
.63 (be) 24,51

45 (a) 15.88

29 (c) 17.15

Rep IV

Block 8

.70 (ac) 18.18
.40 (be)  19.75
.96 (a) 11.57

.33 (b) 18.60

Calculate the appropriate analysis of variance for this

experiment and make the required tests of significance.



11.

A 3% factorial experiment replicated twice in blocks of 3

units yielded the observations

Block 1

(albl) 19.86

(a2b2) 22.82

(a3b3) 15.64

Block 4
(albl) 20.88
(a2b3) 9.38

(a3b2) V24027

Calculate the appropriate analysis of variance for this

Rep T
Block 2
(alb

2) 15.35

(asz) 10.34

(aBbl) 29.72

Rep IT
Block 5

(ale) 15.86
(azbl) 24.38
(aBb

3) 14.03

Block 3

(alb3) 4.01
(azbl) 26.37

(a3b2) 27.12

Block 6

(alb3) 4,48
(azbz) 20.98

(agby) 29.64

experiment and make the required tests of significance.



12, In a food research laboratory, an experiment waszéarried out
on a cake icing. The best formulation had been determined, and the
object of the experiment was to determine the tolerances of the product
to ingredient variations (factors C through H) and to preparation
variation, (water-level-AB). The variables were:
AB (water - 4 equally spaced levels), C (sugar type 1 - 2 levels),
D (sugar type 2 - 2 levels), E (stabilizer #1 - 2 levels),
¥ (stabilizer #2 - 2 levels), G (stabilizer #3 - 2 levels) and
H (setting agent - 2 levels).
The response was a measure of the viscosity.
A 1/4 replicate of a 4 x 2° factoriai‘was set up using ~ACDFG
and ABDEFH as defining contrasts. The 64 treatment combinations and
the coded responses, were as follows:
Treatment combinations for a 1/4 replicate of a 4 x 2°

factorial and the responses (in parentheses).

(1) (26) agh ( 6) bh (43) abg { ~«3)
cg (16) ach (10 begh (69) abc ( ~5)
dgh (12)  ad (13)  bdg (45)  abdh (~13)
cdh (22) acdg 7D bed (45) abedgh { -4)
eh (29) aeg (13 be {54) abegh ( &)
cegh (30) ace (17) beceg (54) abceh { 5)
deg (29) adeh (16) bdegh (43) abde { =2)
cde (34) . acdegh (16) bedeh (67) abcdeg,  ( -3)
fgh (32)  af (19 bfg (64) abfh ( 6)
cfh {30) acfg (18) bef (27) abefgh { 6)
df (27) adfgh (29) bdfh (50) abdfg { 6)
cdfg (35) acdfh (22) bedfgh (53) abedf (7
efg (53) aefh (29) befgh (74) abef { 8)
cef (46) acefgh (21) becefh (73) abcefg {13)
defh (35) adefg (23) bdef (69) abdefgh (203
cdefgh (42) acdef (27) bedefg (69) abedefh (10)

{a) Tabulate the aliases of all main effects and 2-factor interactions
in the design.

(b) Carry out an analysis of variance separating out components for
each of the main effects, for the 2-factor interactions, and
residual.

(c) Assuming that 3-factor and higher-order interactions are
negligible, make the appropriate tests of significance.

(d) For the product to be acceptable, the average response must
lie between 25 and 30. Give a rough indication of how much
each of the ingredients and the water-level can be permitted

to vary during production.



13. An experiment with shaped charges of a particular size and
design was carried out to study the way in which mean penetration into
armour plate depended on cone thickness. Later, the experiment was
repeated 3 times, with different combinations of fuses and explosives
to determine whether the dependence relation was affected by these
factors. Unfortunately, the four replications were carried out at
widely separated times with the result that a different batch of armour’
plate was used in each replication. Three cone thicknesses, proportional
to the numbers 2, 3 and 4, were used. Two fuses and two explosives
were tested.

Results were as follows

Penetration: Mean of 10 rounds. (Coded data)

Batch of Armour plate Fuses Explosive Cone thickness
2 3 4

1 ’ I I 103 111 101

2 T 11 94 104 93

3 IT I 101 106 111

4 " 1 11 90 95 94

Note that both fuse and explosive comparisons are subject to
both residusl variation and to variation among batches of armour plate;
but that cone thickness comparisons are subject only to residual
variation. Assume that armour plate does not interact with the other

factors.

Over



(a) Set up an analysis of variance table separating out the
main effects and interactions of fuse, explosive and cone
thickness.

(b) What do you use as estimates of (i) residual variation,
and (ii) variation due to armour plate?

(c) Make significance tests to obtain answers to the
following questions,

(i) Does cone thickness interact with fuse?

(ii) Does cone thickness interact with explosive?

(1ii) Does cone thickness affect mean penetration?
{(On the average over the observed conditions.)

(iv) Is the difference in fuses negligible?

() Is the difference in explosives negligible?



14, The yield of a certain product of a chemical reaction is
believed to depend on the temperature at which the reaction takes
place. Discrepancies in the work of previous investigators have
been attributed to minor differences in the apparatus used, and to
differences in individual technique. Therefore, a Latin square design
is chosen in which 4 men (rows) conduct the experiment at 4
temperatures (treatments) using 4 pieces of apparatus {columns) .

The letters A, B, C, P in the Latin square below represent
temperatures of 100°, 200°, 300°, 400° respectively.

Treatment and Response, ¥y

A 8.53 D 10.39 B 7.06 c 13.89

B 9.77 c 12.24 A 5.29 D 11.50

C 13.62 A 8,70 D 9.14 B 11.59

D 11.97 B 10.25 c 9.29 A 6.17

!

(a) Compute the mean yield for each treatment and'plot
against temperature.
(b} Set up an analysis of variance table with row, column,
treatment and residual components.
(¢) Partition the Ereatment sum of squares into 1 - d.f.
components and, by successive testing, determine the
degree of the polynomial that adequately represents
the yield —- temperature relation. Estimate the polynomial.
(d) It is possible that there is on interaction between men
and apparatus. Can you separate out a 1 - d.f. component

from the residual in order to test this?



15, A biological assay of the digitalis-like principle of ouabain

and other cardiac substances used a technique of slow infusion of a
suitable dilution of the drug into an anaesthetized cat. When death
occured, the total dose was measured and recorded, Three observers
collaborated in a test of 12 drugs, A, B, ..., L. ZEach drug was
tested on 12 cats, One observer could only test four cats per day,
however, and to balance out possible observer and day-to-day
differences, a 12 x 12 randemly-selected Latinyéquare was used.

The results are given in the table below. The columns represented
the dates on which observations were made. The rows represent the
first and second cat (a, b) tested by each of the observers (I, II, III)
in the morning and afternoon of each day. The drug used is entered
in each cell, together with the response to be analyzed: 100 x log
dose in ug.

{a) Set up an analysis of variance table and test for

1
'

differénces among

(i) drugs, (ii) days, (iii) observers and (iv) between
morning and afternoon.

(b) Use a procedure to compare drugs two at a time and state

which pairs of drugs are significantly different.

Over
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16. The table below gives the results of analyses of samples

of cheese for moisture content.

Moisture Content of 2 Cheeses from each of 3 different

Lots, determined 2 times

Lot
Cheese
T T} IIiI
1 39.02 35.74 37.02
38.79 35.41 36.00
9 38.96 35.58 35.70
39.01 35.52 36.04

Estimate the components of variance for Lots, Cheeses
within lots, determinations within cheeses.

Supposing that the cost factors per lot, cheese and
determinations are in the ratios 10 to 3 to 1, what is the most
economical allocation of sampling effort to produce an estimate
with variance 1.0907? What is the cost effective way of sampling
if it is to cost no more than $100, if the 10, 3, 1 above are

actual dollar costs.



17. ITn manufacturing certain articles by sand-casting, it is
observed that the composition of the alloy used varies from one
article to the next, and even within the same casting. An experiment
is conducted to locate the source of variation and to estimate their
effects. Four batches of alloy are mixed in the furnace: from each
batch, four castings are made, and three specimens to be analyzed are
taken from each casting.

The percentages of lead in the specimens are tabulated

below:
Batch No. Mold No. #% Lead

11 6.8 6.0 4.8

1 12 6.0 4.6 2.8

13 6.3 4.9 3.0

14 7.1 3.2 5.0

21 10.4 12.3 11..1

e 22 12.4 12.4 :12.2

2 23 12.8 10.6 11.9

24 13.3 13.8 13.4

31 8.6 8.8 9.5

32 8.4 8.3 8.0

3 33 7.7 7.0 8.3

34 7.6 8.1 6.5

41 2.1 4.0 3.4

42 4.9 4.8 6.2

4 43 3.5 3.7 L£.1

44 5.7 2.4 2.4

Over



Assume the model

=+ +
Vi TH eyt Bt Y

i, 9=1,2, 3, 4; k=1,2,3

2 2 2
a, : N(O, ¢7), B.. : N(0O, ¢7), ¥ 1 N(O, o) .
o 13 B Y

iik
Carry out an analysis of wvariance.
(a) Derive the expected mean squares for batches, molds

and residual.

(b) Test the hypotheses

(¢) Estimate the important variance components.
{(d) Summarize your conclusions, interpreting them in terms
of the physical situation. Can you make any recommendations

or suggestions concerning the best way to go about reducing

1
'

the variability of the final product?



18. A chemical paste is made in batches and put into casks. As
a routine, three casks selected at random from each delivery were
sampled, and the samples were kept for reference. It was desired

to estimate the variability in the paste strength from cask to cask
and from one delivery to another. Ten of the delivery batches were
chosen at random and two analytical tests carried out on each of the
30 samples. 1In order to ensure that the tests were independent, all
60 strength determinations-were carried out iﬁ a random order. The

resulting data are given in the table below. (Delivery = batches)

% Paste Strength of Samples

Batch Cask 1 Cask 2 Cask 3
1 62.8  62.6 60.1  62.3 62.7  63.1
2 60.0  61.4 57.5  56.9 61.1  58.9
3 58.7  57.5 63.9  63.1 65.4  63.7
4 57.1  56.4 56.9  58.6 64.7  64.5
5 55,1 55.1 54.7  54.2 58.8'  57.5
6 63.4  64.9 59,3 58.1 60.5  60.0
7 62.5  62.6 61.0  58.7 56.9  57.7
8 59,2 59.4 52,2 66.0 64.8  64.1
9 54.8  54.8 64.0  64.0 57.7  56.8
10 58.3 59.3 59,2 59.2 58.9  56.6

From this data estimate variances due to analytical error,
variation between casks within batches and the variation between

batches.



19. An experiment on the effectiveness of two treatments for a
disease was carried out in each of four hospitals. In each hospital,
100 patients received treatment A, 100 received treatment B, and

100 served as controls.

Number of patients (out of 100) showing
complete recovery within three months:

Hospital Treatment A Treatment B Control
I 19 18 5
11 19 9 B 5
11T 23 8 5
v 6 15 11

We wish to make inferences about all hospitals of which the
four participating in the experiment are a sample; but only about
the particular treatments used. (Mixed model).
Transform the data to stabilize the variance, and make
éignificance tests to get answers to the following questions:
(a) Do hospitals and treatments interact? ‘
(b) Do hospitals affect a recovery rate at all?

{¢) Are the treatments effective in increasing the

recovery rate?

In each variance ratio used for a test, justify your choice
of denominator variance, which is not necessarily the same in all
cases.

(d) Obtain a 95 percent confidence interval for the difference

in the proportion who recover between treatments A and B.



Ty 20, An inter-lahboratory test to evaluate and compare methods for

determining the proportion of aylon in mixtures,

Three different mixtures were used, all prepared in one of
the laboratories to contain known proportions of nylon.
Mixture 1. Nylon and wool, 52.4% nylon.
Mixture 2. Nylon and viscose, 52.5% nylon,

Mixture 3. Nyvlon and cotton, 50.9%7 nylon.

Two methods of analyzing the mixtures, for the proportion
of nylon in them, were tested, Method F, based on formic acid and

Method B, based on hydrochloric acid.

Four laboratories, A, B, C, D participated and each provided
two experienced analysts. Each analyst was given randomly selected
duplicate pairs of each mixture to be tested by each method. Thus,
he was given twelve mixtures, identified only by a code, and a
preassigned random order in which they were to be tested. With
eight analysts participating in the test, each providing twelve

determinations, a total of 96 analyses was reported.

The test was planned having in mind the following sources
of wvariation. - !

{a) Variation in the test material.

(b} The inability of an analyst to reproduce exactly any
determination, using the same materials and working under
the same conditions, in so far as they can be controlled.

{c) Differences among analysts working with the same materials
under the same conditioms.

(d) Differences among analysts working with the same materials
under different conditions - i.e. laboratories.

{e) Differences among materials.

(£) Differences between methods.

A statistical analysis of the data should provide information
on all these questions,
Lastly, since the true proportions are known, the presence

of bias in the methods can be studied.

The results of the analysis, expressed as percent nylon in

the mixtures, are given in the following table.



Results of Analyses of Nylon Mixtures - Interlaboraforjr "'I'.rials

METHOD
P H
ANALYST ANALYST
MIXTURE 1 2 1 9
. 53.6 53,1 53.5 53.3
54.8 53.1 53.0 53.5
) 50.3 51.4 53.2 53.6
" 50.9 51.6 53.4 53.1
A 3 51.8 . 51.5 53.1 | 51.7
51.0 51.8 53.0 52.0
ANALYST ANALYST
MIXTURE 3 4 3 4
L 53.7 53,7 53.6 53.5
53.6 53.6 54.0 53.4
) 49.3 47.1 54.4 54.2
LAB 50.0 49.4 54.6 54.4
B ) 51.5 51.7 52.9 52.7
51.5 51.7 53.0 52.5
ANALYST ANALYST
MIXTURE 5 . 6 5 6
. 52.7 52.6 51.6 53.8
52.4 52.3 55.7 53.6
) 51.5 51.8 54.4 53.6
LAB 52.0 51.6 55.6 53.9
c 5 51.4 51.3 52.9 53.5
51.1 51.7 52.9 53.5
ANALYST ANALYST
MIXTURE 7 8 7 8
. 53.0 53.3 53.4 52.3
53.1 53.7 53.6 52.5
) 51.8 49.7 55.3 55.2
LAB 52.0 49.0 55.5 54.8
D 5 52.1 51.2 53.4 52.7
| 52.1 50.2 53.4 52.8




21. A rabbit assay of insulin was designed to éoﬁbé%e the potencies
of two preparations, which may conveniently be called the '"standard" and
the "unknown". Each preparation was administered at two dosage levels.
Each experimental animal was given each of the four doses on four
different days. The observations on four animzls were arranged in a
latin square, "rows" corresponding to days, "columns" to animals, and
"treatments" to doses. This latin square was repeated 4 times, using
different sets of animals, each set with its own random arrangement ofﬁ
doses, but administering the doses on the same days. The treatments
were: treatment 1 -~ 0.30 units of the unknown preparation,

treatment 2 - 0,60 units of the unknown, treatment 3 - 0.30 units of

the standard, treatment 4 - 0.60 units of the standard. The table

below gives the observations in milligrams of glucose per 100 cc. of
blood. The number of the treatment is recorded under each observation.
Calculate the appropriate amalysis of variance for this experiment and

make the required tests of significance.

1
'

Milligrams of glucose per .100 cc of blood

Rabbits 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Days

1 59 56 45 62 42 49 83 56 47 90 79 50 45 52 57 64

3 02 1 4 1 3 2 4 2 1 3 4 4& 3 1 2

2 56 58 41 49 39 61 81 54 46 74 63 69 61 31 30 83

1 4 3 2 2 1 & 3 4 3 2 1 1 2 4 3

3 41 73 30 63 44 38 101 65 62 61 58 66 45 35 57 74

2 3 4 1 4 2 3 1 1 2 4 3 3 & 2 1

4 54 69 28 84 61 43 96 58 76 63 87 59 71 8L 50 67

4 1 2 3 3 4 1 2 3 4 1 2 2 1 3 &




