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... Preliminaries

KpreeeX, o are symbols, representing numbers, we may

1" et

speak of this set of symbols as Xsr i=1,2,...n . If we wish to

write a set of directions for adding these numbers, we may eXpress

n
them in the form ) x; , which is to be taken to mean
i=1
(x, + x, + ... + x ) . This use of the symhol ) is said to be

summation notation.

Verify each of the following statements by writing it

without the |} - notation.

n
1. z ¢ =nc¢, ¢ any constant.
i=1
) )
2 c X, =¢C X, :
i=1 * =1t
) ] ]
3 ) (%, vy, = x, + V.
=1t * i=1 *oi=1 0t

(%) (1 v = 1 1
4 X, N4 = X, Y.
i=1 T 421 j=1 4=1 *+
_ 1 D _ 1 B
Writing x = z Z X: Y =3 .E Vi or verify the



n . -5 n -2 n ) (Z xiJQ
6. ) (x-x)°= ] xi-nx = ] xi- —
i=1l i=1 i=1 1
n n
2 n n (;E XlJ[.Z Yl]
7. Y o(x,-X){ly.~y) = ) X, y, -nxy= ) x y,- i=1 i=1
i=1 i 1 i=1 T 1 i=1 * L n

Formulae & and 7 are useful for making calculations when the X

and y; are given numerical values.

Further notation

1. The symbol n! , n any integer,to be read n factorial,

means the product of all the integers up to and including n ,

that is, =n! = n(n-1)(n-2)...3.2.1

When n n.

]
=
-

is to be taken to have the value 1
2. The symbol [2] stands for the binomial coefficient

n! _nn-1)...(n-x+1)
%! (n-x)!7  x(x-1)...3.2.1 *

This number, necessarily an integer, is called the number of
combinations of n objects, x at a time (also symbolized by
n Cx<jrC§) , the number of possible selections of =x objects
from n , and the number of different arrangements, in a seguence, of
n objects, ®x of which are indistinguishable from one another and

the remaining (n-x) of them are indistinguishable from cne ancther.



ét |x+y| stands for the &bsolute value of x + y . For example,

13-2] =1, |2-3] =1.

Objectives

It may be convenient to speak of the purpose of statistics under

two headings, even though they are by no means distinct:

(i) to reduce a collection of observations, perhaps large and
unorganized, so that one can recognize answers to the questions
that led to the making of the observations; to simplify the

set of observations as much as is warranted without over-
simplifying to the extent of suppressing or distorting information;
(1i) £o make the observations in such a way as to support trustworthy
and indispﬁﬁagle conclusions. '
The study of (i} is a study of statistical techniques; (ii) is

discussed under two headings, design of experiments and theory of

sampling.

Obviously, ({(ii) takes precedence over (i), because a study of
improperly taken observations can only lead to mistakes. It is con-

venient, though, to begin with (i) .



- 4 -
Vﬁ%ﬂe population and the sample.

In all instances, a set of observaticns will be called a
sample, the implication being that not all the observations that
might have been made actually were made. The totality of observations
that might, in principle, be made is called the population. It is

the

aboutA?opulation that we want to reach conclusions, but for reasons

that are practical and insurmountable, we can get only a sample.

Often the population is genuinely infinite. In most other
instances, it is large compared with the sample to be drawn from it
and no violence is done in treating it as infinite, in the sense that

it is not changed appreciably by the sampling.

The notion of population is largely conceptual and in practice
the population is often difficult to define, in the sense of being
able to pronounce that an item is or is not a memher of the
population we wish to study. For example, in an election poll,
the population we would like to study is the population of people
who will vote, hut we are obliged to study the population of people

eligible to vote, which may be substantially different.

As another example, the actuary makes a mortality table from

the records of people who have died, but obviously he does so in



the belief that they represent adequately people who have not

died and who, indeed, may not yet be born. Here he depends

heavily on experience which says that these populations are stable,
in the sense that they change only slowly with time. This
dependence on stability is crucial and is not to be taken lightly;

Only empirical evidence can demonstrate stability.

In these examples, the impression may have been left that
populations are aggregates of people. Actually, the people are
only bearers of numbers or other marks and these marks constitute
the population. It is convenient, though, not to observe this

distinction too rigidly.

The organization of samples.

For the moment, let us act as if our samples are large, so
the question of organizing our numbers is real and important.
It is worthwhile to keep in mind that our numbers may be reached in

one or the other of two ways, by counting and by measurement.
Example 1.

Let us say that we have gathered up a sample of 100 ten-vear-

old boys, with a view to ascertaining from each a count of the



number of teeth missing. Each observation is reached by
counting and is an integer , 0 , 1 , 2 etc. Our observations,
then, consist of 100 integers, perhaps in a list, perhaps each

written on a card.

To reduce these numbers to a more compact form, we can count
the number of 0's7the number of l‘s,etc. and enter these counts in

a list.

Number of Number of
teeth missing children
0 26
1 35
2 21
3 10
4 5
5 2
6 1
7 0
32 0
100

We may speak of this list in a more formal way by saying : let
X represent the variable we are studying (i.e. number of teeth

missing) and ﬁx the number of times x 1is counted in the sample.
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;ﬁhen, the list (x, 6X) , x =20, 1, 2,... 1is the list enumerated

above. X may be called a statistical variable and 6x the

frequency with which x occurs in the sample. The list is called

a freguency distribution.

For many purposes, a more useful list is one that displays the
proportions of the sample falling in the various categories, that -

§
is (x, ?F = px}, where n represents the sample size.

® Eﬁ This form of the list may be called the relative

0 -26 freguency distribution or , if there is no chance of
z :2i confusion, simply the frequency distribution. The

3 . size of the sample is not included in this list, and

must be recorded separately.

A graphical representation of the frequency distribution can
be made by plotting the points (x, Px) . These points should not
be joined, but they may be emphasized by drawing vertical bars.

P




Another pictorial representation, not actually a graph, may
be made by taking an axis of x and putting a weight Py 7at
each point x . This provides a mechanical analogue to the
frequency distribution, which will provide some clues to further

reduction of the frequency distribution.

o g—'u
H R——'o
o g
w —o

In making up the frequency distribution, we have lost nothing.
It represents simply a rearrangement of the raw records. If we
make the reasonable supposition that the counts were made with strict
accuracy, the frequency distribution gives a strictly accurate
account of the sample. The sample, however, cannot be considered
to give a strictly accuraﬁe representation of the population:. The
proportions Py in the sample ére presumably different from the
corresponding proportions in the population, owing to the vagaries

of sampling. We will want to say that the sample proportions are

wrong because of sampling error. Precautions which must be observed,

in the taking of the sample, to make possible the discussion of
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_the difference between the population and the sample in terms of

error will be gone into later on.

Example 2.

Let us speak again of a sample of 100 boys, but let us say
now that each boy supplies a number cobtained by measurement, say
the measurement of his height. Again our saﬁple is a set of 100
numbers, but this time they are not integers. 1Indeed, it is a con-
venient abstraction to think of height as a continuously varying

quantity, even though we cannot measure it on a continuous scale.

If we want to construct a frequency distribution from the
sample, we must break up the range of heights into intervals,
presumably equaihiﬁ'length and count the number of measurements

falling in each interval. This is called grouping.

In contrast with counts, measurements are made
with some inaccuracy and still more inaccuracy is introduced by
grouping. Even so, these inaccuracies should be trivial compared

with the variation in the heights themselves. Except in the physical

sciences, inaccuracies in measurement are, or can be made to be,

inconsequential compared with other sources of error.
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A reasonable working rule is to group into 10 - 20 groups.
Having grouped, it is customary to assign to each member of a group
the value of the measurement equal to the mid-point of the interval.
In choosing intervals, then, we should aim for simple mid-points

and simple boundaries.

interval mid-point = X frequency relative fregquency

- - X 6 P,
1 x1 x1
- - - % §
2 x2 sz
- e . x 6 p
k Xk xk
N 1

Here again- we.can make graphical representations of the
frequency distribution. The histogram is constructed by laying out
the end-points of the intervals on an axis of x and constructing

rectangles on them whose areas are equal to the corresponding

frequencies. The cumulative frequency distribution or ogive is

constructed by plotting ) g, against t
XSt
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In constructing the ogive, it is reasonable to join the

plotted points by a smooth curve.

The ogive is useful for answering questions like the
following.
What value of a measurement is greater than or equal to exactly
half of the measurements in the sample?‘ This is the value of
t corresponding to an ordinate Y% . It is called the

median of the sample.

On the difference between a population and a sample drawn from it.

l.gi_a_g

Samples are sometimes taken in a way that persistently mis~
represents the population that is ostensibly being.sampled. This
can come about in all sorts of ways, some of them subtle and
unsuspected. An example of a dangerous instance of this is the
gquestionnaire, mailed or handed out, leaving to the person who
receives it the decision whether to answer and return it. Leaving
aside the irresponsibility that can enter into the responses,
ambiguity in the guestions and the like, the population being
sampled here is the population of people who choose to return the

gquestionnaire, which may be grossly different from the population

about which conclusions are sought.
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A sampling procedure which persistently misrepresents the

population is said to be biased.

2. Error.

Even in the absence of bias, a sample is sure to differ from
the population, simply because no subset can be identical with
the whole in all respects. .Differences arising in this way may be
big or small and there is no way of knowing the extent to which a
particular sample differs from the population. We can, however,

assess a sampling procedure and predict {(in a sense yet to be

described) how frequently differences of a given magnitude may be
expecﬁed. In order to carry out this program, it is essential that
the sampling be carried out in such a way that the theory of
probability can be invoked to describe the.behaviour of samples.

For this reason, we will turn presently to the theory of Probability,
which will provide simple models against which to compare real
populations and clues to the conditions to be observed in the taking
of samples. Before doing so, let us look at a further reduction

of a sample, often made. In this, we follow a clue provided by

the mechanical analogy to the frequency distribution.

In mechanics, a most useful notion has been that of the centre
of gravity. This, in turn, depends on the notion of turning moment,

which we shall call here first moment. If weights p, are
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located at points x along a line, the first moment of the system

(about the origin) is ) x P .

The centre of gravity is that point at which the whole weight,
if concentrated at the centre of gravity, would produce the same

first moment. If x denotes this position, we have
X ) p =1 X pg

If we apply the same calculation to the frequency distribution,

L ppy =1 and X =] x py - X is called the average of the

distribution. x is also the first moment about the origin, It is

seen too that z X py is simply the sum of the numbers in the
divided by the sample size,

sample (in the case of counts, at 1east)Aso that x , the average

of the distribution, is simply the average of the sample, whether

or not we choose to rearrange it into a freguency distribution.

Evidently the average tells us nothing about the distribution
itself. It only tells us where the distribution is, i.e. its
location. This is a drastic reduction indeed, if we think of
replacing the distribution by its average and one may surmise that
it is usually too drastic., So it is. At legst, we need something,

in addition, to express some important features of the distribution
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itself. With this in mind, the following definition is made.

kth

The moment of the distribution about a point x

C
is J(x - xo)kpx . In particular, if x_  is taken to be Xx ,

the k&R

moment about x reflects some intrinsic feature of the
distribution, inasmuch as its value does not depend on the location
of %he distribution. The most important of éﬁese numbers correspohdé
to k = 2 , which yields the second moment about the average,

Jix - 802 p, + This number indicates the spread of the distribution,
large values arising from widely-spread and diffuse distributions,
small values indicating narrow and highly concentrated distributions.
[Question: if the second moment about the average of a particular
distribution has value zero, what kind of distributign ig it?] This
‘is, of course, an important feature of the distribution, but it

must be recognized that the second moment about the average says
nothing about the shape of the distribution. To speak of shape,
moments of higher degree a?e needed. This will not be pursued here,
but it is worth noting that if a distribution is symmetrical about
its average, the third moment about the average‘has value zero.

Note also that the first moment about the average, J(x - Xx) p_ ,

necessarily has value zero.
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The introduction of the notion of moments of a distribution
has to do with the reduction of a sample to a few important numbers
which summarize what the sample has to say about guestions we want
to ask about the population. This direction of thought will be

taken up later, after the introduction of the notion of probability.
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E P;;babilii_:z

It is sometimes said that probability theory provides a way
of dealing with uncertainty or with the unknown. There may be some
grounds for such statements, but they are not useful. Obviously no
theory can cope with every instance of uncertainty or lack of
knowledge. Indeed, the first step ié to recoqnize'those instances
in which the reasens for the uncertainty can be identified and made
the basis for useful and verifiable predictions. This is most
easily accomplished in gambling games, for reasons that will be

mentioned iater.

To make an example, think of a baé known to contain equal
numbers of black and white beads. One bead is to be drawn from the
bag. The outcome of this drawing is unknown, to be sure:; indeed, it'
is unknowable. Is there anything we can say, then, about the outcome
of the drawing, in view of our knowledge that blacks and whites are
equally numerous? There is:a strong intuitive appeal to the notion

of defining the probability of getting a black bead to be Y% ,

i.e. the proportion of blacks in the bag, but it is important to
recognize that there is no sensible answer to the question as it

has been asked. This arises because of what we do not know. For
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%zﬁample, it may be that all the blacks are on top, or they may be
distributed throughout the bag in any manner whatever and the way
in which the drawing will be made will largely determine the outcome,
regardless of the proportion of blacks in the bag. Clearly what is
needed here is a procedure for drawing the bead that will not
reflect the initial distribution of beads and therefore reflects
ohly the proportion of black beads. A procedure which possesses

this property will be said to be a random procedure.

In this instance, we know a way of meeting this requirement.
Before making the drawing, we will mix the beads thoroughly. We
might also say that the object of the mixing is to give each bead
the same chance of being drawn as that of every other bead. With
this proviso, then, we will define the probability of drawing a
black bead to be Y., i.e. the proportion (or relative freguency)
of black beads. Similarly, if it is known that the bag contains twice
as many blacks as whites, Qe define the probability of getting a

black in one randomly made drawing, to be %.

The bag of beads here is a population. The drawing of a bead

is the taking of a sample of one observation. We know enough about
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the population to make a complete list of all the possible out-
comes of our sampling, in this instance black, white. This list

is called a sample space. (Often the items in the list are numbers

and can be plotted in a geometrical space.) In any event, the

items in the list are often called sample points.

We also know the freguencies in the population that determine
the probability of each item (or point) in the sample space,

provided the sampling is carried out randomly.

sample point probability
black A
white. bé :
1

This list, describing randomly chosen samples of 1 , also describes

the population, if we substitute the word frequency for probability.

We must, ©of course, think of more elaborate samples than
samples of 1. If, for example, we propose to draw a sample of

2 beads, the sample space could be

Number of blacks

black, black

oxr 2
black, white
white, black 1

white, white . 0
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Thus, the notion of sample space does not dictate any one form.
The list of possible outcomes can be made up in several different
ways. We would naturally choose the one (or ones) most suitable

to the questions we are asking.

The attaching of probabilities to sample points, assuming
randomness in the sampling, requires computations using the

calculus of probabilities, which will be introduced later.

To sum up the points of view put forward here, the notion
of probability depends on two essential elements, a well-defined
population with known frequencies and a procedure for drawing
samples random}y:ﬂ The notion of randomness is essgntially
undefined, although the objectives are clear enough and ways of
achieving randomness must be devised in every application. In
gambling games, both elements are well provided for, but in a

wider context we can encounter real difficulties with each of them.

In one class of instances, like the bag of beads, in which we
can envisage a finite number of items, each of which bears one or
another of a set of marks {(the marks constituting the population),

randomness in the sampling takes the form of ensuring somehow that
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all sets of items, of the size dictated by the sample, are equally
probable. In these instances, there is a simple and natural
definition of probability, which will be given shortly.

Events.

Think.of any population of the sort singled out above, say
the bag gf beads and any random sampling, for example, the drawing
of 5 beads. Any outcome, or any collection of outcomes, will be
called an event.

Examples: 2 white and 3 black; at least one black; 5 black or

5 wpite. An event, then, is simply a set of sample points made

up torcorrespond to some guestion that has been raised. It is
coﬁvenient to egtand the use of the word event to the two extremes,
in which (1) the set of sample points includes the whole sample

space; (2) the set of sample points contains no sample point. An

example of (1), in the sampling of 5 beads from a population of

black and white beads, is the event : at least one black or at
least one white. An example of (2) is the event : 5 whites and 5
blacks. In (1), the event is certain to cccur; in (2} the event

cannot occur.

Capital letters will be used to symbolize events: &, B, E, X, etc.
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. A deFinition of probability

A random sampling can result in one and only one of a set
ocf N equally probable outcomes. Of these, n produce an event A
and the other N - n possible outcomes do not produce A . The

probability that A will occur is defined to be The

I;l‘ .
N
probability will be given the symbol P(a).  Thus, P(a) =T .

With populations of the sort for which this definition has
meaning, we can calculate the probability of any event whatever
simply by counting to obtain n and N . The simplest probability
calctulations are carried out so, but when the events are complicated,
direct counting can be difficult and confusing and we can get real
help from a few rules which are easily derived from the definition.
These rules reduce the calculation of theyprobability of a complicated

event to a combination of the probabilities of simpler events.

Some examples.

The population: a deck of playing cards.

The sample: a sample of 1 card to be drawn randomly.

(1} The event: a heart or a spade will be drawn. By a direct

[\

count, P(heart or spade) = m% = i% + %%

P(heart}+ P(spade). If

we let A represent the event: a heart will be drawn and B: a spade
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will be drawn, we can write the solution as

P{A or B) = P(a) + P(B)
We might say that we have "decomposed" the event A or B into
a combination of A and B and our rule combines the probabilities
of A and of B to give the probability of A or B .
(2) The event: a heart or-a face card will ‘be drawn.

By a direct count, there are 22 out of the 52 cards that pro-
duce this event. We might also carry out the count as follows:

there are 13 hearts and 12 face cards; the probability of getting

a heart (A) is therefore P(A} = %% ; and of getting a face card (B)
is P(B) = %% . The required probability is not, however,
p{A) + P(B) , as it was in example (l) , because we have counted

the face cards that are hearts both as face cards and as hearts.
Clearly, then we have

P(A or B) = P(A) + P(B) - P{A and B)
This seems to be not a lﬁng step forward. We have expressed the
probability of one complicated event, A or B, in terms of the
probability of another complicated one, A and B. It is a fact,
though, that often one of the complicated ones is easily calculated

and the rule becomes most useful.

The distinction between example (1) and example (2) is
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: 1important. The two simple events in (1) are such that if one of
them happens the other cannot. Events of this sort are -

said to be mutually exclusive. In example (2}, the two simple

events can both happen.

The use of the words and and or in these examples deserves

some comment. In example (2),

A or B means at least one of A and B and

A and B means both A and B. In example (1),
A or B implies exactly one of A and B, because no other

possibility exists, while A and B is impossible.

In example (2), we could ask for the probability of exactly
one of A and B . This event is composed of two simpler ones,
(A-and not B) and (B and not A). The event {exactly one of A and

B) is the same as (A and not B) or (B and not A).

10

10 3
52 !

P(A and not B) = £ !

P(B and not A) =
and these two events are mutually exclusive. Therefore,
10 , 9

P{exactly one of A and B) = 55 t 55 -

Notation.
Arguments of the sort we have been going through are greatly

facilitated by the use of a good notation to take the place of the
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most important words that have been needed to describe events

and make statements about them.

1.

not.

When we have an event A and wish to specify that A must not
occur, we will write this as A (sometimes called the com—
plementary event to A). Clearly A and’ A are mutually ex-

clusive and one of these must happen, that is, A and A are

exhaustive (the events A and A exhaust the possibilities),
Since ‘"certainty" obviously has probability 1, we have

P(A or A) = P{A) + P(Z) =1 . P(Aa) =1 - P(A).

Qr.

If we want to replace or by a symbol, one common notation is to

use + , with the clear understanding that the syﬁbol used so
does not imply arithmetical addition. On the other hand, one
of the rules for P(A or B) becomes P(A + B) = P{A) + P(B) ,
a kind of "addition" rule. The + on the left means or and the +
on the right means arithmetical addition.

and.

The symbol to be used as a replacement for and will be a
multiplication symbol. A and B then becomes A,B or simply

AB . One of the rules for P({(A or B) now becomes

P(A+B) = P(A) + PB(B) - P(aB)



certainty and impossibility

It is convenient to have symbols for these special "events".
The symbols 1 and 0 will be used here.

Then, P(l) =1, P(Q) =0 , obviously.

is the same as *the event

We had occasion earlier to say that two different descriptions
specified the same event. We shall use the symbol = for this

purpose.

We are now in a position to write statements about events wholly

in symbols. For example,

A+A=1 means A and A are exhaustive.

A B

i

0 means: A and B are mutually exclusive.

Further examples.

We have a rule for evaluating P(A + B) which may involve the

calculation of P(AB) . This example is concerned with evaluating

P {(AB)

The population : a deck of playing cards.

The sample : one card to be drawn randomly.

Two events : A the card will be a heart.

B the card will be a face card.

The question : What is the probability that both A and B will

happen?



- 26 -

We are asked for P(AB) , which is easily seen by a direct
count to be g%-. The important gquestion, though, is whether

this answer can be given by some combination of P(A) and P{(B) .

The answer is : in general, it cannot.
We can calculate P(A} = %i . To convert this to the value
cf P({AB) requires a multiplication by f% , iL.e.

P(AB) = P(2). & ,

3

Can we interpret i3

as a probability in any useful way?

The fraction f% is seen to be the probability of drawing a face
card, provided the sampling is confined to the 13 hearts. It will be
called the probability of B conditional upon A and given the
symbol P(B/A) . Wé have, then, P{AB) = P(A) P(B/A)'. In the

same way, we could reach P(AB) = P(B) P(A/éj . This rule will be
called the multiplication rule. It states that the probability of

a symbolic product, AB , is the arithmetical product of the

probabilities P(A) , P(B/A)

Independence.

A most important special situation is that in which the
conditional probability P(B/A) 1is egual to the unconditional

probability P(B) . In words, the occurrence of A does not affect
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: the probability of B . When this relation holds, it is said that
If B is independent of A, it follows that A is independent of B

B is independent of A . /\sinma P{AB) = P(B} P(a/B) = P(A} P(B/A)

= P{A) P{B) when P(B/A) = P(B)
we have P(A/B) = P(A) , which says that A is independent of B .
We may therefore simply speak of A and B as independent of each

other and the multiplication rule becomes P(AB) = P(A) P(B) .

In the case of independence, then, P{AB) can be expressed

entirely in terms of P{A) and P(B) .

Recapitulation.

We have two general rules, each with an important special case.

1. P(A + B) P(A) + P(B) - P(AB)

1'. = P{A) + P{B) when A and B are mutﬁally exclusive.
2. P{AB) = P(a) P(B/A) = P(B) P(A/B)
2., = P(A) P(B) when A and B are independent.

These rules can be extended to deal with more than two events.

1'. P(A + B + ) = P{A) + P(B) + P(C) when A, B, ¢ are mutually

exclusive.
2. P{ABC) = P(A) P(B/A) P(cC/AB)
2. = P{A) P(B) P{(c) when A, B, ¢ are independent.

Rule 1 becomes rather complicated.
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A few problems will illustrate ways in which the rules may

be put to use.
Example.

Think of a game in which we have two boxes, the first containing
5 white and 15 black beads, the second 10 wh#?e and 10 black. The
game is to be played by choosing one of the boxes by some probabilistic
rule and then drawing randomly one bead from the box so chosen. The

player wins if he draws a white bead.

Let us say that the box is to be chosen by throwing a die If
it shows 1 or 2, we choose box 1, otherwise we choose box 2.
The most effective way of bringing the rules into play is

to attach symbols to the various events that are encountered in the

game.
Let A1 represent the event : box 1 will be chosen.
Let A2 represent the event : box 2 will be chosen.
{Note that A+ A, = 1.)
Then, P(Ai) = % P P(AQ) = %
Let W represent the event : a white ball will be drawn. We

seek the value of P(W)
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By direct argument, we see that W can be decomposed into
two mutually exclusive and exhaustive events, WAi’ and WA2 . We

can write W = WA1 + WA2 and P(W) = P(WA1 + WAQ) = P(WAi) + P(WAQ)

P(n,) P(W/A;) + P(a,)) P(W/A,)

Now P (W/Ai )

1 =
7 PO/R) =35 .

Therefore, P{W) =

11,
L.

The essential feature of this solution is a particular instance
of a general rule. 1In a given sampling, an event W may happen.
If it does, it must happen in conjunction with one and only one of
a set Qf events A

A_...A . (i.e. Ajs By A are matually

17 72 k 2 k
exclusive and expggﬁtive. In symbols, A1 + A2 +...-f-Ak =1, Ai Aj = 0
all i# 3 .) Then, W= WAi + WAQ...+ WAK' and
P(W) = P(WAi) + P(WAQ) S P(WAk) . This fact is sometimes given

as a theorem.

Examgle.

In the foregoing example, another question can be answered,
one which sounds bizarre, partly because of the way it is usually
asked. If the game has been played and a white ball has been drawn,
what 1s the probability that box 1 was chosen in the course of the

game? This sounds like asking for the probability of a "cause".
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In any event, it seems that we are asking for the value of
P(Ai/w) . Now, the multiplication rule states that

P(A1W) = P(A,) P(W/Ai) = P (W) P(Al/W)

i

Pa,W 1/,
Ly

Thus, P(Al/w) = v e S 5/12 =

This use of the multiplication rule is sometimes called Bayes'’

Theorem.
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Random Variableg

In a random sampling of any sort from a population, we have
envisaged a complete list of possible outcomes (the sample space)
and the probabilities associated with them (which may reguire
some calculations to obtain). This coupling?of outcomes and

probabilities is called a probability distribution. Often the

outcomes are specified by numbers (e.g. the number of heads in 10
throws of a coin,) but whether this is so or not, there are

many natural ways in which numbers become associated with sample
points, for example, a payoff in a gambling game. We then have

a list of numbers and the probabilities associated with them.

If X, is one of the numbers in the list and f(xi) the

corresponding probability, the set of numbers X0 f(xi) specifies

the probability distribution of a variable x . This wvariable,

x , is called a random variable, because its values are defined on

a sample space.

X £ (x) This list is seen to have the same form as the
X, £(x,) frequency distribution discussed earlier to describe
X, £i{x,) a sample. Indeed, it describes a population in

exactly the same sense. 1In statistical situations,

"
Hh
™

object of the sampling would be to estimate the

1 probabilisﬁic situations, the f(xi) are known or

values of the f(xi) would not be known and the

X £ix, ) values of the £(x,) or something equivalent. In

the
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calculable and can be used to make probabilistic predictions.

Clearly, we can make calculations with a probability distribution
in the same way as we did with the frequency distribution of a sample,

to get numbers descriptive of it. For example, the "centre of

.4
gravity" caleculation yields ] x, £(x,) , which will be called
i=1 -
the mean of the distribution, stbolized by u , and the seccnd
k
moment about the mean, E (xi-u)2 f(xi) , called the variance
i=1

of the distribution, with symbol o2 . The square root of the

variance, o -, 1s called the standard deviation of the distributien.

Expectation

Calculations of this sort are nicely brought together by an
operation called the calculation of the expectation (or mathematical

expectation) of a random variable. If x 1is any random variable,

taking values Xy 1 RprewoXy with probabilities f(xl) ; f(xﬂ) ,...f(xk),
the expectation of =x is defined to be
i
Ex = x, £{x,) ,
i=1 +
that is, it is simply the mean of x . With this notation,
then, u = Ex , 02 = E(x-u)2 = E(X*Ex)2 . Note that the expectation

of a random variable is simply a number, descriptive of the distribution.
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The notion of expectation is important because the operation
has two important properties.
l. The expectation of a sum of random variables is equal to the
sum of their expectations.
2. The expectation of a product of random variables is equal to

the product of their expectations,‘grovided'thez are independent.

Let x and y be two random variables, taking values X, i=1,...k

and Yj' j=1,...m with probabilities f(xi) and g(yj) .

Then x and y are said to be independent if P(x=xi and yzyj)

= f(xi) g(yj) .

Proof of 1. when x and Yy are independent.

X + vy 1is a random variable taking km values X; + vy o i=1...%x,

J = 1...m (not necessarily all different).

k m
By definition, E(x+y) = ] ]} (x; +ys) £(x;) gly,)
i=1 j=1 J J

= x, £(x.) gly.) + v. £(x:) gly.)
st sty ¢ ] Ly s sty

(0 f(xi)](§ g(yj)J + (§ Y5 g(yj))(§ £(x;))

1
= Ex + Ey , since ] £(x,) =] gly,) =1 .
1

The theorem may be proved without the condition of independence, in

a somewhat more elaborate calculation.

™4
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Proof of 2.

Exy

H
-t~

g(yj)]

Ex Ey

These theorems are easily extended to sums and products of three

or more random variables.
Verify from the definition of expectation that

l. Eec = ¢, ¢ any constant.
2. fex =c¢ Ex .

3. E(x - Ex} =0.

4. E(x - Ex)? = Ex® - (Ex)?
5. E{ax + b) = a tx + b
6. Var{ax + b) = a2 var X

5 and 6 show the effect of changing the origin and the unit of

measurement of a statistical wariable.

We will shortly be obliged to put to use the notion of the
distribution of sums of random variables and in particular to
be able to write guickly expressions for the means and variances of

these distributions. The means we can already manage.
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".The mean of a sum ig the sum of the means.

It will be convenient to have a similar rule for variances.

Var (x+y) E{x+y - E(x+y)}:2 = E{(x-Ex) + (y—Ey)}2

E{ (x-Ex)* + (y—Ey)2 + 2 {x-Ex) (y=Ey) }

E(x—Ex)2 + E(y—Ey)2 + 2E{x—-Ex) (y-Ey)

i

The term E(x-Ex) (y-Ey) has not arisen before. It will be called

the covariance of x and vy .

We have, then,

Var (x+y}) = Var x + Var y + 2 Cov (%,v} .

Now, if x and y are independent,
Cov (x,y) = E(x-Ex) (y-Ey) = E(x-Ex)E(y-Ey) = 0
Thus, when =x ‘and y are independent, the variance of their
sum is the sum of their variances.
Exercises.

Verify, by making the appropriate calculations, the following
rules. x and y represent random variables, a and b stand
for any constants.

1. E(ax + by) = atx + bEy .
2., Var(ax + by) = a2 Var x + b2 Var y + 2ab Cov (x,v).
3. Ef{x~y) = Ex - Ey .

4. Var(x - y) = Var x + Var y , if x, y are independent.
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The Binomial Population

A population in which each item bears one or the other of
two marks (black and white, head and tail, pass and fail, 0 and 1)
is called a binomial population. In all instances we can identify
the marks with 0 and 1. A sample from a binomial population is

then a set of 0's and 1's.

A binomial population is wholly specified by the proportion
of 1's in it, if it is infinite. If it is finite and this fact
must be taken into account, the total number of items in it must

also be known.

Samples from an infinite binomial population

The population will be described by a variable x , which takes
values 0 and 1, and the proportion of l's'and 0's,say p and

1 - p =g, in the population. In a statistical problem, p is not

known.

X f{x)

1 j&

0 g
1

After a randomly chosen sample of size n has been selected,

we have a set of numbers which will be designated XKyr XppeeoX

In this instance, each of the Xy is 0 or 1 . We may ask, then,
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Qhat can be learned or inferred from the sample about the population.
The answer must be : very little, unless we view this sample in

the context of all the samples of size n that might eventuate

in a random sampling of this population. To this end, we will
regard the symbols Kyr XpreeoXy not only as standing for numbers
which we have obtained in an actual sample,‘But also as random
variables describing what we can get in a sampling of this kind. 1In
this instance, there are 27 possible samples, each in some sense

different from the others. The set of symbols x KoreeoX,

17 =2

represents all these 21 samples.

The sample, when we get it, can be rearranged in the form of

a frequency distfiﬁution, simply by counting the number of 1's

and 0's
X f P .
- X X Intuitively, one would expect P, to be
1 n P " n :
1 1 c¢lose to" the unknown proportion p . Note
n
0 n, P, that n, 1s simply the sum _Z X, and P,
—_— —_ i=1
n i n
. 1 -
is = z X. = X . Hence, we
n o, i
i=1l

are led to study the sum and average of the set of independent

random variables X,, Xp,...X . Let us write y = ) x, and X = % .

y 1s a random variable, defined as the sum of n identical
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independent, random variables xl, x2,...xn . We do not know the

distribution of vy (it will be derived later), but we do know
the distribution of each of the x's. It is dictated by the
population. We can write, for each of the Xy

E X, = l.p + 0.qg =p

2 . 2
var x, = (L - p)p +‘(0 - pl g =pg

Therefore, using our rules:

Ey = np Ex = p
and

Var y = npq Var x = %%

We see, then, that x is a random variable whose mean is p ,

the same as the mean of the population and whose variance

- "
is %? ' the variance of the population. The distribution
of X% is thus more "closely packed" about the mean than is the

population.

After the sample is taken and the average calculated, we
can regard its value as a single observation drawn randomly from
the "population" described by E = X . The "observed" value of x ,

then, ought to be closer to the mean ({(p) than an observation

drawn randomly from the population.



.mThe binomial distribution.

The random variable y 1is the number of 1's in the sample.
It may take each of the values 0, 1l,...n . For any such value

of y , the probability of getting y 1's and n -y 0's , in a

: . y n-y , n! - (n
given order, is p° ¢ (independent). There are v n - y)! [y

different events of this sort.

The probability of y 1's is therefore

7T E'Y)' pY qn—y , {(mutually exclusive)

y =20, 1,...n

This is the pinomial distribution, so called presumably because
each of these probabilities is a term in the binomial expansion

n
of (g + p)

The negative binomial distribution

The infinite binomial population may be sampled in another way.
Tf items are drawn randomly, one at a time, until a 1 is drawn,

the number of draws is a random variable, say x , whose possible

values are 1, 2, 3,... . The probability of making x draws 1is
evidently qul p. . More generally, if the sampling is to
terminate when the kth 1 appears, the probability of making x
draws is (k—{?;%iik)! x-k pk , X =k, k+1,...

This kind of Sampliﬁg is sometimes called inverse sampling.
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It has some special uses, but will not be studied further here.

Sampling from a finite bincmial population

If the population contains N items, of which Np are
1's and Ng are 0's , the probability that a randomly chosen

sample of n items will contain exactly y . 1l's is
N N
) ()

_LrNﬁl:L r Y"_"Op l' 2,---n
n

This is uswually called the hypergeometric distribution. The

N-n

mean of y is np and the variance of y 1s npg §=1 ° The
average of the sample, E , has mean p and variance %? g;%

Scme uses of the binamial distribution

1

Standard uses of the binomial distribution will be encountered
from time to time later on. Two rather special uses will be
mentioned here.

Acceptance sampling.

Purchasers often buy items (ball bearings, say) in large
consignments. Inevitably, every consignment contains some fraction
of defective items and the purchaser wants some protection against
accepting consignments with too large a fraction defective. Usually,

for one or another of several reascons f{coasignment toc large,
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?%ésting expensive, testing destructive), complete inspection is
not feasible and the decision must be based on a sample, each item
of which is to be tested and declared either acceptable (0) or
defective (1) . The population (consignment) is then binomial
with an unknown fraction p of 1l's .

The number of rules we may think of for rejecting consignments
(because p is thought to be too large) is unlimited. The choice
among them will be based on many things (cost of sampling, cost of

testing and so on), but some of them are probabilistic.

To make an example, suppose we propose to accept or reject
large consignments of life rafts by choosing randomly a sample of
10 rafts and testing them. If no defective raft is found in the
sample, the consignment will be accepted; otherwise, it will be

rejected. What sort of protection does this rule provide?

Represent by p the unknown proportion of defective rafts in
the consignment. Then, the probability of accepting the con-
signment is (l—p)10 . Call this P10 . The graph of P, ,
against p is called the operating characteristic curve of the

plan. From it, we can read the probability of accepting

consignments having any value whatever of the fraction defective.
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Bepg

These curves are useful in comparing plans with a view to

deciding which to adopt.

Clearly, in any acceptance plan, we may make mistakes of
two kinds.
I. We may reject "good" consignments.

II. We may accept "bad" consignments.

If we are to make these notions gquantitative, we must be prepared
to say what good and bad mean in this context. This is a wholly

practical decision.

Let us say that we wish to accept consignments with p < .01
(goed) and to reject consignments with p 2 .05 (bad}. For the

plan we have been discussing, we can calculate, or read from the

0. C. curve, the probabilities of the two kinds of mistakes.

The probability of accepting consignments with p = .01
is .904 . Hence, the probability of making a mistake of type I
is 1 - .904 = .096 = a (say) . Similarly, the probability of
accepting consignments with p = .05 1is .599 = 8 (say). This

is the probability of making a mistake of type II. These two
probabilities were determined when the acceptance plan was chosen.

If we do not like them, we must devise another plan with more



SMiEéble values of o and B8 . We would like them both to be

small, but considerations of cost usually lead to compromises.

In many situations, the possibility of conducting a census does
not exist and in others, even though, in principle, possible, there
may be strong reasons for not doing so. An inétance s the
determination ©f the number of fish in a lake, A device that
has been used is to capture a number of fish, mark and release them
and subsequently sample the population again. The fraction of the
sample bearing marks can be used to estimate the size of the

population.

If the size of the population is N (unknown) and£f X (known}
marked individuals have been intrbduced,'markéd and unmarked
individuals make up a binomial population with parameter p = % funknown}

If the sample of n individuals proves to have X marked, then

yields an estimate of N .

ing |-

X . _ X ,
a estimates p = § - The equation F
The chief weakness of this procedure lies in our inability to

sample randomly and instances of fantastically wrong estimates are

abundant.

The procedure is called a mark-recapture method. There are many

variants of it.



- 44 -

Computations with the binomial distributions

1. When n 'is not large and p 1is a simple number not too
close to 0 or 1, the calculations are not difficumlt and arxe
facilitated by available tables,

2. When p is very small, then inevitably n must be large.
On both counts, the calcuiation of values of the binomial prcobabilities
is next to impossible. In these circumstances, it 1s reasonable to
seek an approximation when n gets large and p gets small in such

a way that np = m , a constant. It is found that, under these

- . 4
} p¥ ¢"Y approaches e ;T,, a much simpler

conditions,
calculation. This is known as the Poisson distribution. It is

extensively tabulated and is useful in dealing with rare events.

3. When n is large and p is not small, another kind of
approximation is needed. To set this up, we must now turn attention

to continucus random variables.

Continuous distributions

When observations are made by measuring, it is a convenient
idealization to regard all values, within some range, as possible.
Similarly, thinking of a population of men, we can think of their

heights taking every value.
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To see how to describe the distribution of frequencies in such
populations, one can think of taking a sample, form a grouping and
plot the histogram. Then think of adding to the sample indefinitely
and at the same time diminish the grouping interval. 1In a limiting
sort of way, the histogram becomes a smooth curve which, from the manner
in which it was reached, has the property thét the area under it
between any two values of the statistical variable furnishes the
proportion of the population with values in this range. The total
area under the curve must be unity. The curve is called the density

curve of the distribution.

To describe the curve in symbols, we may call the statistical
variable x and thé-density £(x) . The graph of £(x) against x

is the density curve.

The notion of expectation can be extended to apply to continuous
random variables. This will not be done here. It will be sufficient
to accept the fact that its properties remain the same as in the

discontinuous case. In particular, the theorems about expectations of

sums and products remain true.

The central limit theorem

Continuous random variables may have any distribution whatever,
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Fie

gut one distribution, above all others, plays a central role in
statistics, for both theoretical and empirical reasons. It is
called the normal (sometimes Gaussian)distribution Tts chief
importance derives from a mathematical proof that averages (or sums])
of samples from any population, continucus or discontinuous, have
distributions that tend toward the normal form Iin reasonably large

samples. The proof that this is so constitutes the central limit

theorem. The proof reguiresg the assumption that the first few
moments of the population be finite, but this imposes no restriction
to the use of the theorem with actual populations.

The normal distribution

For any rap§g$ variable x , we define the‘mean/ Ex , symbolized
by u , and the variance, E(x - plz , Symbolized b? 52 . The a
normal distribution is completely specified by its mean and its
variance. The notation N(H,UQ) will be used to stand for "a normal

. . . ] ” - 2
distribution with mean u and variance o¢"".

The normal curve is symmetrical about its mean, where it reaches
its highest point. It is sometimes described as "bell-shaped". In
addition to the central limit thecorem and the fact that it is com-

pletely determined by its mean and variance, the normal distribution
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: "has the further property that a sum of independent normal variables

is normal.

Standardized random variables.

Corresponding to any random variable x , with mean U and

variance o° » we can find another of the same kind (z) having

X - U
83

mean 0 and variance 1 , by writing z = 2 1is called a

standardized random variable. This device is particularly useful for

finding areas under any normal curve. If the area under a normal

2 . .
curve N{u, ¢°) between x and x is required, we can move to

1 2
the standardized curve N(0,1l) by writing 2z = 5—%—3 , and
X "M
find - the area under the standardized curve between Z2, = T
X, = ¥
and Z, = Areas under the standardized normal curve have

been extensively tabulated.

The normal approximation to the binomial.

If y has a binomial distribution with parameters n and p ,
where n is large and p 1s not too small, the central limit theorem

- Y_ —_np : i 1
asserts that =z VREg is approximately ©N(0,1) . Therefore, if
we seek P(y1 <y < y2) , the value of this probability is

y, — np
: _ 1
approximately the area under N(0,1) between z, = VT

e
I
o
T

and 2, = ~VEoe . 'The approx1matlon is improved by finding the



- 48 -

Erea under N(0,l) between

1 1
Yo 7 8P T 3 Yy, = 8P * 3
Z, = m———— and z, =
Vhipg ‘ Ynpq

Tests of Significance

An example.

A poll of 20 voters yields 15 intentions to vote for candidate A
and 5 intentions to vote against him. Does this provide strong

evidence that he will get more than half of the votes?

We can think of the population of voters as a binomial population
with an unknown proportion p of voters who will vote for A . We

must supposé that the sample of 20 voters came randomly from this
population; otherwise it has no use for any purpose. The question to

be settled, then, is : could we reasonably expect to get samples like

the one we did get if, in fact, p = 1/2?

Certainly it is possible to do so. The point is that while every
ocutcome from 0 to 20 is possible, those near 10 are not at all un-

expected and the farther we get from 10 the more unexpected (i.e.

improbable) they become. This line of argument may be made quantitative
by listing the possible outcomes that are more probable (if p = 1/2)

than that actually obtained, in this instance, 6, 7, &, 9, 10, 11, 12,

13, 14 and calculating the probability of getting one of these outcomes.
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:ﬁ§%direct calculation or using suitable tables, this probability

turns out to be .958 . It appears, then, that we would seldom
get an outcome as far away from 10 as is 15, if p = %& . The
probability of doing so is 1 - .958 = .042 . Our actual sample,

therefore, belongs to a set of samples which is guite improbable
if p = {é and we therefore conclude that to cling to the notion
that p = %5 is guite unreasonable. It will be said, in these

circumstances, that the outcome, 15, is significantly different

from 10, meaning that we cannot reasonably ascribe the discrepancy
between these two numbers solely to the errors that arise in
sampling.

The probabil%ty on which this conclusion.is based is the
probability of getting a discrepancy as large as or iarger than the

one observed. It is usually given the symbol P . Smallness of P

leads to the pronouncement significant, i.e. there is more here

than error. Smallness is, of course, arbitrary.

This procedure could be laid out in another way if we decide in
advance what we will consider to be a small probability in this
context. Let us say that we decide that any probability P less

than .05 will be considered "small". Then, .even before the sample
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is drawn, we can draw up a list of possible outcomes and attach

+0 each the conclusion that will be reached if this outcome is

actually cobserved.

In this example,. the list could be drawn up

in the following manner.

Possible outcome P Conclusion

10 1 NS

9 or 1l .814 NS

8 or 12 .504 NS

7 or 13 .264 NS

6 or l4 116 NS

5 or 15 042 S

4 or 16 .012 )

3 or 17 .002 S '

2 or 18 .000 . 5 |

1l or 18 .000 S

0 or 20 .000 ‘ s

The 5% cut-off point is called the level of significance, usually

symbolized

o3

Approached in this way, the test of significance looks to be

the same sort of thing as acceptance sampling.

deep and important difference.

a consignment when our rule fails to reject it.

There is, though, a

In acceptance sampling we accept

This is not a
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. ednclusion, it is a decision. In the test of significance, failure

to attain significance in no way implies the acceptance of anything-
or a proof of anything. In this example, a sample of 14 would be
judged not significant, that is, sampling errors might reasonably
have led to this outcome if p = %é ’ but this does not warrant the

conclusion that p = %E .

Another example.

Suppose, in the earlier example, a sample of 100 were taken,
yielding a count of 60 voters who will vote for A and 40 who will
vote against A . Is this inconsistent with the (hypothetical)

proportion p = /5 ?

This example differs from the earlier one only in the arithmetic
involved in the calculation of P . Invokiﬁg the normal approximation

to the binomial distribution, X~%—§9- is N{0,l1) and P is

50 60 - 50
5

v

2 Probly = 60) , i.e. 2 Prob( yg = 2] = .046 from the
normal table, just below the 5% level of significance.

The correction for continuity would lead to égiéﬁf—ég = 1.9 ,

which leads to P = .057 .

Certain formalities have grown up around the simple notion of

the test of significance, which is, after all, only a sensible
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piecaution to help us avoid explanations for a difference that
error alone may well have produced. It is sometimes said that
the test of significance tests the hypothesis that errors alcne
produced the difference in question. Sometimes this hypothesis

is called the null hypothesis and it may even be given a symbol, H

In the examples, it might be said that we are testing the
hypothesis HO : p = %E ;, by investigating the difference

between %& and the sample proportion.

Tests of significance based on the normal distributioniconfidence

intervals; estimation of population parameters.

One of the centrally important problems of statistics may be
set up as follows.:.. We have a population (here regar@ed as infinite),
the description of which involves certain unknown constants (mean,
vériance,'perhaps others) whicﬁ will be called parameters‘of the
population. A sample is to be drawn from the population with a
view to estimating the valﬁes of these parameters. For obvious
reasons, we must insist that the sample shall be dréwn randomly.
This granted, we face the question : what combinations of the
observed values will furnish the required estimates? There are
many answers, some better than others. Population parameters will
be symbolized by Greek letters and sample estimatcors of them by the

corresponding Latin letters. (For historical reasons, there will be

a few exceptions.)



Egstimation of the mean of the population.

A population (infinite), described by a statistical variable x ,
has mean uy and variance 2 . 2 sample of n observations
is to be drawn randomly. Designate the values which will be obtained

as x b4 X .+ Then, we may regard the x; as independent

1' 2’---n

random variables, each distributed accordiné'to the distribution
of the population. Therefore, each of the X, has mean Ex = y

and variance E(x -p)g = 02 .

The average of the sample, X = % 7 x; s is then a random

variable with mean

% = 1 =1 = i
Ex = 3 ) E X, o - BE=N and variance
- 1 v 1 2 a2 !
var x = —— Z Vvar X. = — . n g = —
2 1 2 n .
n n .

Thus x can be treated as a single observation drawn randomly from

2
a distribution with mean p and variance ?4: .

Clearly, if the sample size n is large, the variance 3; .
is small and the distribution of X is closely clustered about U .
The probability of getting a value of x differing appreciably from

u  is therefore small. In this sense (which is called consistency),

X is a usable estimator of U . Because Fx = p , the estimator X
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of p 1is said to be unbiased. The sample average has other
desirable and important properties, as an estimator of u ,

which will not be discussed here.

These facts, together with the central limit theorem, provide

an important, powerful, statistical instrument, based on the fact

that §E%ﬁ% is approximately ©N(0,1) . If the population itself

is normal, it follows that the distribution of x is normal and the

approximation becomes an exact statement.

An example. A population has mean p {(whose value is not known)
and variance 02 (known}) . On the basis of a sample, Ry XQ""xn
we wish to check whether the mean could reasonably be taken to

be Mo {(given}.

X - u . :
We know that /e 1s N(0,1}) . OQur question can Eherefore
X = U,
be framed : if we put u = uo r is the resulting number T

the sort of number that could reasonably come randemly from ©N(0,l) ?
?c-uo
If it is. not, that is, if SV differs from zero by so much as

to be highly improbable, we conclude that u # By o We therefore
:Tc—-uo
ask the guestion : 1is SIVE significantly different from zero?

Reference to the normal table yields the value of P on which to

base our answer.
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We can also approach the question, as before, by choosing the

level of significance, that is, that value of P such that any

smaller value will lead to the pronouncement significant. If, for

example, we choose o = .05 , the normal table yields the statement

P[lﬁm::ﬁl > 1.96) = .05 , or, equivalently, the probability is
o/vVn .
.95 that >=—H 1lies between -1.96 and 1.96 . Hence, when u 1is

o/vn

X - ¥
o/vVn

would be

replaced by Mg # if this inequality is violated,
judged significantly different from zero.

This inequality may be arranged in another form.

X - 1.96 — < p <X+ 1.96 9/ /= :

vn
So arranged, we get -an intefval within which any wvalue My would be
judged not significantly different from Xx . Hence, in this sense, it
is a not unreasonable possible value of u . This interval is
called a 95% confidence interval for uw . It could be called an interval

estimate of u , but it need not be and will not be here.

The stipulation of known variance, which is crucial to the
arguments used in this example, would usually not be satisfied in
practice. We must therefore ask how to proceed in this example if the
population variance is not known. One possible approach seems
obvious : use the sample to estimate the population variance

and investigate how to use it. in place of the actual population
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variance., If we call the estimator 52 (however it may be
calculated), we might think of replacing o by s in %ﬁ%ﬁ%
This raises what appears to be a question of extraordinary difficulty.

The ratio et will no longer behave according to N{0,1)
s /70

How, then, does it behave?

I¢ is a remarkable stroke of luck that this guestion can be
answered simply (in a mathematical sense) and that the answer is
simple.

Estimation of the variance of the population.

It will be supposed here that the population is N (yu, 02) ,

¢ and o0 not known. Randomly chosen samples of size n will

be designated xi; x2,...xn . .

Two simple remarks.

1. Any computation we may make with the values of a sample

may be spoken of as a transformation.

2. Each observation on N(u, 02) » X; say, may be given a

structure xi =y + ei , where the ei (which may reasonably

be called errcrs) come randomly from N({O, 02} . 4 and

the e's cannot be known, but the x's, after the sample is

taken, are known numbers.



Think first of samples of 2 observations, X b4 . Let us
transform them by writing

y, = X + X

1 2
Y, = % T %
Then, writing X, = M + ei y

y1=2u+e + &

Yy T ®1 7 &y
The effect of the transformation is to put everything in the
observations concerning 1 into Yy o leaving ¥, to deal with
error only. We can see that Y4 and y, are both normal, both

with variance 202 and Ey1 = 2u , Ey2 = 0 .

H

It may appear simpler to change the transformation slightly,

X1+X2

5 {i.e. X) = |y + error, but in fact a

so that Yq =
change of a different kind makes for greater simplicity. This
change is one that gives ¥, and Yo the same variances as the

original observations. Thus, we will have

1 1
Y =¥ T %

Y, =73 ¥ T 7

There will be many occasions for writing such transformations and
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it is expedient to adopt a stripped-down way of writing them. For

example,
fi EZ ii fZ divisor
vy, — L y, 1 1 T
/2. Y2
or, better still,
y _l_ - L y
2 ’/'2—- /“2—" 2 3 -1 i/2_

Degrees of freedom.

It may be said that a sample of 2 observations has 2 degrees

of freedom, meaning by this that the sample values, x X, say,

1" 72

could pe plotted as a point with respect to a pair of axes and
that this point may lie anywhere in some portion of the space {(i.e.
it is not constrainea to lie on any curve). In the saﬁe sense,

the transformed sample has 2 degrees of freedom. One of these
degrees of freedom has been assigned to the task of gathering up
everything the sample has to say about the value of the population

mean U ; the other degree of freedom then displays the contribution

of error only.

The orthogonal linear transformation.

The reason why the transformation that was used succeeds
in dividing the degrees of freedom into two sets with quite

different properties rests on a special feature of the transformation
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‘called orthogonality. If any linear transformation of the x's into
the y's is written:

v, = px, + gx
1 1 2 p, 4, ¥, S numbers,

Y2 rX1 + SX2 P

then, if pr + gs = 0 , the transformation is said to be orthogonal.
| 2

We also imposed another éondition, to arrange that Var ¥y, = Var Y, =0

that p2 + q2 =1 , r2 + s° = 1 . Henceforth, when we speak of an

orthogonal transférmation, we shall mean a linear transformation
satisfying both kinds of conditions, i.e. sum of products = 0 ,

sum of squares = 1 ,

In puttéggﬂthe orthogonal transformation tq use, vy was
especially designated to exhibit the contribution of u , which amounts
to arranging that y, r is a multiple of ¥ . This amounts to
choosing p = g . It follows then from orthogonality that r + s =0

and that, in consequence, y, can reflect no contribution from 1y .

It can be verified that when p, g, r, s are chosen so that

pr +gs =0, p " +g" =1, rr" +s8” =1, it follows that

2

= 1 , and that y§ + yg = xi + X,

fl
()
o]
+
H
f
i.._l
0
+
)

pg + rs

The extension to cope with samples larger than 2 proceeds along



the same lines; the sum of products between each pair of rows = 0

and the sum of squares in each row = 1 .

The reason why orthogonal transformations play an important
role in the discussion of samples from normal populations is found

in a theorem which states that an orthogonal transformation changes

a set of independent normal variables, each with wvariance g2 {the x's}

into a set of independent normal variables, each with variance 62 (the

y's). Only the means are changed.

Returning now to the guestion of estimating a population variance

let x4, Kppee X, represent a sample to be chosen randomly from

N(e, 02). Then, Xy = M +es with e; N(O,cz) . The fcllowing

orthogonal transformation will separate the error contributions from

that of u

X, Xy - - - Xn diwvisor
Y, 1 1 1 /n
Yo

orthogonal
yn

Then, y,, Y,--.y, reflect error only. Thus, only {(n—-1) of



theﬂ n degrees of freedom in the sample can be brought to bear on
the estimation of error. The way in which these y's may be used to

estimate the error variance is probably not obvious, but at least

the following facts are easily perceived. For each y, , 1 = 2...n,
i
Eyi = § , Var Y; = 02 . Hence each yi , 1 =2...n , is a random
. Withy _ 2 2 o2 2 . ,
varlableAEyi = Var y;, = 0" . Therefore, y, +'y; *vy, 1s a random

2 2 2
s
Yo, t ¥, Yn

1 is a random variable

variable with mean (n-—l)d2 and

. . . . 2 .
2 If this guantity is to be used to estimate ¢ , it

with mean ©
will be unbiased. Other important and desirable features of this

estimator will not be discussed here.

-2 2 2 2
Lastly, ¥y +y, te.ot Yo = 'Zl X, " ¥y
1=

The symbol s? will be given to this estimator of 02

2 1 2 1 [Z <2 (1 Xi)2 ]

e AT A

1 2 =2
a—1 [E Xy - nx ‘] .

The divisor, n - 1 , used to make 82 an unbiased estimator

i n

I

of ¢? , is seen to be the number of degrees of freedom in the sample

which can be devoted exclusively to displaying errors.
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The x? distributions

Let 2z z

0t .zP be independent standardized normal variables

1’
(i.e. each z, is N(0,1)) . The sum of their squares,

22 + 22 +...z2 , 1s a random variable denoted x%p) , Chi-sguare

1 2 e

with p degrees of freedom. Its probability distribution is

known and tabulated.

Refer back to the transformation. Yo 1 ¥y re--Y, are

. . . . 2
independent normal variables with mean zero and variance J

Yo Ya Yu . .
Therefore < ' T T are independent standardized normal
. 1 2 2 2y _ .2
variables. It follows that 02 (y2 + Y, taaot yn] = X(n—l) and
m-1)s? Lk - L .
= = X The probability distribution of the
g2 52 (n-1}

1
'

estimator s’ is therefore known in terms of o2 ; the actual

population variance.

Return now to the guestion raised earlier : what happens to

“ Y yhen ¢ is replaced by
o/Yn

the standardized normal varilable

a sample estimate /52 = s ? For convenience let us square this

2
ratio and replace g2 by s , getting

n{x - 1?.

2
s
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“J”ﬁﬁ From the transformation, Y4 is a normal variable, mean vn

Yy, = vonu

and variance 02 . Hence B — is N({0,1) and

2
[Yi - At )
g ] 15 X(l) .

Also, vy, = Yy x , so we have

- 2
n{x - u) ) 2
—_  is ¥
U2 (1)
z-w?_nk-w?’ X(1)
Therefore, sz—mﬁﬁ— = 22X 2“ = 3
s s/ 42 X(n=1) / (n~1)
Furthermore, the transformation tells us that these two XQ'S
are independent. The ratio X~ Y 35 thus seen to be the ratio
s/Yn

of two independent random'variables, the numerator N(0,1} , the

1
'

denominator l X 2 (n-1) ﬁn-— 1)

The t distributions

. . . ' N(0,1)
The ratio of two independent random variables 7F3=====r
X /P
(p)
given the symbol t or tﬁﬂ . Its distribution is known and

tabulated.

It follows that, when we replace ¢ by s in the ratio

is

u

o/¥n

the only change required in our procedure is to refer to the
t - table instead of the normal table, in performing tests of

significance or calculating confidence limits.
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The t - distribution is used to check a hypothetical
mean U, . by substituting My for Y in the expression for t
and asking if the resulting number could reasonably have come
randomly from a t - distribution. Because the t - distribution is
symmetrical, this leads to a symmetrical interval about zero,
within which we would pronounce the &t - valués "reasonable" or, if
we prefer to deal with the complementary "unreasonable" set of

t - values, to two egqual tails of the t - distribution.

a x? test of significance.

The x2 - distribution provides an instrument for checking a

hypothetical variance og . If we substitute cz for 02 in the

Jix, - %7

2
g
)

: 2 . .
expression for Y , we get and ask if this numberx

could reasonably ¢ome randomly from a v’ distribution.

The situation here differs in one respect from that encountered

in testing a hypothetical mean. The x2 distribution is not

symmetrical and neither are the circumstances in which it is used.

In virtually all actual circumstances in which we ask : 1is 62 = Gg
other 5 5

the onlyApossibility that exists is that o7 > o, and

e would differ from ¥ through being too big. The

%

probability P is therefore calculated from the upper tail of the
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iz - distribution. If this probability turns out to be un-

reasonably small, we conclude that 02 > U§ .

) xy - %) 2
Instances arise in which 5 turns out to be
ag
0]

significantly small. It would seldom happen that this finding would

lead to the conclusion 62 < 02 . Usually it would be suspected
that some essential condition had been neglected, for example, a
failure to employ randomness where it was needed. Refer to

exercise 15,

The x2 - and t - distributions both depend on the number of
degrees of freedom used in calculating an estimate of variance. Each
number of degrees of freedom requires its own set of tabulated

values. For this reason, these distributions are tabulated more

coarsely than is the normal distribution.

For large numbers of degrees of freedom (more than 30 or 40),
the t - distribution approaches the normal so closely that it is

sufficient to use the normal table instead of the t - table.

The ¥ distributions

Let x%p) and xi ) be two independent random variables,
S q 2
Xtmy /P
each with a chi-square distribution. The ratio —éEl——— , always
X/

.
1

given the symbol F(p y o has a known and tabulated distribution.
[
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It is called the analysis of variance distribution, for reasons

2
(q)

that will appear subsequently. Observe that F(l Q) = t
¥
This distribution could be put to use in a situation where

we have samples from two populations, from which we calculate

estimates of the two population variances. We calculate

2 . . . .
S from a sample of n observations, estimating Ui and

1 1

. . . 2
S from a sample of n observations, estimating o

2 2 *
2
(n, = 1)s, . 2
Then, — is ¥
1
2 k-1
(n, = Lis, s 32
2 (n, - 1)
9, 2 ’,
si/og
Therefore, is F _ _
53/63 (nl 1, n, 1)

This fact would be useful if we wished to ask (as we occasionally

2 ) ) ‘Si
M i - ? ——et i
do} : 1is oy o5 7 If so, 5 is Fhlfl,IT—l) and we
8 1 2
2 2
]
could ask, then, could this number, —% , reasonably come
S
2

randomly from the F distribution? The details of this test
will be discussed later, when it will be contrasted with another

quite different use of the F - distribution.
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“Further on two-sample problems.

Usually, samples are drawn from two populations to study the
difference between the mean of the populations. Indeed, in most
gituations of this sort, we can be assured on prior grounds that the
variances are equal and the question of equality of variances does

not arise.

Suppose, then, that one sample, x comes

11 ' ®407°*%4n

X s X

randomly from population 1, N(ui, 62) and another x oot on

217

comes from population 2, N(uQ, 02) .

e can writ X
We can e 1

Myt ey

Xoo = Ho F 8oy

where the e's may be thoﬁght of as coming randomly from N (0, 62) .

Set up the following orthogonal transformation.

in 21 22 2n divisor
Yy 1 1 ces L 1 1 ees L Yon
y2 l l «a n l "'l _1 .-o_l V2n
Y3
. orthogonal
Yy

zn
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k)

Then, Yy, = (Ul + u2) + errors

Y, = (ul - uz) + errors

]

Ygr Yyr--+¥,, contain errors only.

2 2 2 22
Therefore, Yo ty, + ... 4 Yoo = 9 X{(2n - 2)
2 1 2 2 2 . : : 2
and s~ = S5 (y3 ty, ..t Y2n) is an unbiased estimator of o
YQ
B 2 .2 12 _
If Wy =¥y o ¥y =0° Xy and <2 F1, 2n-2)
Y, .
and = = t(2n—2) Either of these ratios may be used to test
whether Y, contains more than error, that is, if Y, contains a
non-zero contribution from PR S
Computing rules may be devised in the same way as before. For
. .
convenience, write T, for ) X and G {(grand total) for
a=1
+
T1 T2 . Then,
T, - T
y, = & 'Y, = ~1—::—3 ", from which yf + yg can bhe calculated
Y2n Y2n
directly from the observations.
2 n
2 2 2 ' 2 2 2
Then, y, +y, + ... +y, = | ] xi -yi-y
3 4 2n {21 g=1 1@ I 2
2 2
2 (Ty + T,) ) (T, T,)
=1 1 %i, 2n 2n
2 2
- la n 2a n
2 2
= Ll = X7+ Ly, = Xy
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Another way of calculating yg , and the way in which it
is reached, are useful and instructive. As far as Y, and %

are concerned, the transformation can be written

1 T2 divisor
/ﬁyl 1 1 V2
/ﬁyz 1 -1 V2

2 2. .2 2
Therefore n(yi ty,) =T+ T, and
2
2 L,.2 2 G
Yo = flTy + Ty ~ 37 -

It is convenient to carry out these calculations and record

i

the outcome in an analysis of variance table.

source of variation degrees of freedom sums of sguares

2
2 _ 1,2 2, _ G~
between samples ; 1 Yo = n(T1 + TQ) 5h
within samples - 2n - 2 by subtraction
"total" 2n - 1 2 Lyl yi =137 2 _ g2
Yo * ¥gee¥ Yon 7 *io ~ 2n

One or two other columns may be added if desired.

mean. squares F
2
between Yz/l yg/s2
. . 2 2
within (y +...+ v )/(2n - 2}
3 2n
2

which is s
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The component yf has not been enterad in the table, although
2
its value has been used in the calculations as G /2n (sometimes
called the correction factor, C.F.). It is not entered
because Yy v which displays the contribution of Hy + P is

never the object of inquiry when several samples are taken. The

object of such sampling is always to estimate differences or contrasts.

Among any number m of objects, there are m - 1 algebraically

independent differences and m - 1 degrees ¢of freedom are

regquired to display these differences. Applying this way of
locking at sets of observations to our two-sample problem : we
have 2n observations, hence 2n - 1 d.f. are required to display
the differences aﬁé#é them. This is the “toFgl" d.£. iisted in

the table. These differences are of two kinds, between samples,
which can reflect the value of M7 My and within the individual
samples, which cannot reflect the wvalue of ui = My e There are
two samples, hence 1 d.f. for the difference between them and
within each sample of n observations there are n - 1 d.f.

for differences. There are altogether, then, 2(n -~ 1) d.f.

for within samples differences.

If the two samples are not equal in size, the same approach
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‘{left as an exercise) yvields the analysis of variance table:

source d.ft. S.S.
2 Tf Tg g2
between samples 1 AR
2 n, n, n, + n,
within samples n, + n,-2 by subtraction
2 4 .2 .2 2 - .
A o + = .
total n, + n,-1 Y, T yge.. * yn1+n2 ) X0 " F

Cause and Effect

Problems involving two samples can arise in all sorts of ways.
The most important of these comes from experimental situations,
in which we introduce changes in a "causal" system, hoping to
detect resulting changes in an “"effect" system. An experiment,

then, is carried out-to reach conclusions about cause' and effect.

If a change from 01 to "C2 in a causal system is

accompanied by a change from E, to E, in an effect system, it

seems reasonable to conclude that the change C1 + C2 causes

the change E1 + E2 provided we know that

(1) it happens every time it is tried;

(2) nothing else is responsible for the observed change E, - E_ .

1 2
These eonditions are seen to be impossible to meet. The
second one implies that we must know all the agents which could
bring about the change E1 > E2 ; {an unlikely situation) and

that we have prevented them from doing so (experimental control).
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Further, the presence of error is sure to interfere in both
conditions (1) and (2). Statistics and in particular that portion

of it called Design of Experiments, is concerned with finding

some accommodation between what we would like to do and what we

can do.

These notions may be crystallized somewhat by thinking
about an actual experimental situation. Let us say that we wish
to compare two diets, D0 ;, a "basic¢" diet and D1 , the basic
diet plus some additive, by feeding them to rats and recording the

gains in weight.

I. Several ratg will be assigned to each diet, not just one to each.
This may be thought of as an attempt to meet stipula£ion (1) or, to
say the same thing in another way, by having several rats on the

same diet we are able to perceive, through the differences among them,

the contributions of error.

II. Say we have decided to put n rats on diet D, and n rats on

diet D1 . We must therefore assemble 2n experimental animals. These
animals are sure to differ from one another with respect to the
responses they will furnish when they are given the diets. Usually,
some of the reasons for these differences will be known or suspected

beforehand, {(the most important ones, we hope); others, we may
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““suppose, we cannot even guess.

The planning of an experiment, generally speaking, is made
up of two parts; first, we make use of our knowledge of the
reasons for (possibly large) differences to arrange that these
differences shall not be allowed to enter into the comparisons
we wish to study or into the definition of .error; second, to deal
with sources of differences which we cannot control, usually
because we are not aware of them, we insist that they go randomly
into the experiment, by selecting randomly the animals to go into
each category of the experiment. This random allocation is an
attempt to avoid coming in conflict with stipulation (2), inasmuch
as it avoids bias and has the further consequence that differences
of the sort we are randomizing out are made to behave as 1f they
come randomly from a distribution of errors and hence can be dealt
with by probability theory.
III. Usually "external" controls are needed, In the case
of our rats, we would insist that they all be housed in the same
way, with uniform light and heat, with feeding conditions
suitably control}ed and so on. Controls of this sort depend entirely

on the knowledge of the experimenter. They must be taken for
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e

granted here. In any event, they are dictated by stipulation (2).

Returning to the example, let us pursue the simplest case by
supposing that there are no discernible reasons why one rat should
give a different response from another. We then allocate the 2n
rats randomly into two groups of n ; feed DO to one group,

D, to the other. We then have two samples arising out of the

experiment.

The objective in performing this experiment is, of course,

to study ;1 - §2 , the estimator of u, - u, , to interpret

it in terms of cause and effect and, perhaps, to construct a
confidence interval for this difference, As a rather important

detail in the course of the study, we would seek assurance, through

a test of significance, that the difference lil - §2 could not

reasonably be accounted for on the basis of error only. We do this
simply to avoid devising explanations or reaching conclusions about

a difference P | N which may well be non-existent.

The standard formulae which come out of this discussion are:

{a) The test of significance;
N e w2 — .2 —
3 (%, -%,) o Lixg X7+ [, o))

= 2 1 =
F( = ; where s 5T

1, 2n-2) s?

2

or an equivalent formula

I
5 (x,%,)

t(2n—2) = ] i
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. “tb) confidence limits for My, - H, at level 1 - a are given

by

% = oz
xi xz ® Ra/z)s

/g

Extension to three or more samples.

If we think of adding a third diet D2 , made up, let us
say, by starting with the basic diet DO and adding twice as
much of the additive as was used to form Di , the experiment
would yield three samples. The analysis of variance dictated by
the structure of the experiment must be, if n rats are assigned

to each diet:

source | d.f.
among samples ”__;' 2 ’
within samples (error) 3n - 3 |
total 3n - 1

The only new question to arise here concerns the 2 d.f. among
samples. Evidently two cémponents in the transformation must be

assigned to these contrasts. How should they be specified?

There is no single correct answer to this gquestion. It
depends on the nature of the differences introduced into the
causal system and the reasons why they were selected. A particular

instance will be pursued here and discussed later.



Call the observations Xig * i=1,2,3, a=1,2,...n
Then Xig = ui + eia
X1 F42 "0 Fyp Xo1 %9 "'° Xop X317 Xg3p *°* X3p
' 1 1 . 1 1 1 1 1 1 1
Yo -1 -1 ... -1 0 0 ... 0 1 1 ... 1
Y3 -1 -1 ... -1 2 2 ... 2 -1 o R |
Yy
orthogonal
y3n
Then, Y, = Jgkus - “1) + error
Yq = E("“l + 2u2 - u3) + error
Yyr Ygr,,,¥y, = €rror only.
2 2 2 3 n — .2
It should be clear that vy, + Yo Foaee Ry = izl ail (xia - xi)

and that 52 , the estimator of 62 , 1is this s.s. divided by 3(n-1)
We can therefore calculate Yo and Y, and test them against error

to find out if either of them contalins more than errcr. Unless

div.

Yan

Y2n

Yén
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Am%éither of them does so, we would have evidence that the three
diets yield results that are not all the same. The gquestion
still to be settled concerns the specific nature of the differences

produced by the three diets.

If the three means, u

i W, were known, we could in

17 T2
this instance plot them against the amounts of additive used to
make up the diets, i.e. 0, 1, 2 . Any question about differences

among the diets is a question about the nature of the curve

joining the three points of the graph.

The following facts come from simple geometry.
If -u, + 28, - wy =0, the points (0,u,) , (L,u,) . (2,u,)

lie on a straight”%ine and the slope of this line is'proportional
to u, - By v The interpretation of Y, and Y, s£ould now be
clear. If Yy, appears to contain nothing but error, gain in
weight depends linearly on the amount of additivé. If this proves
to be the case, it becomeé necessary to test Y, to find out if
this line has a zero slope (the diets yield the same gains in

weight) or a slope different from zero (the diets yield genuinely

different gains in weight}).

If y5 is significantly different from zero, there is no

occcasion to test vy, . {interpretation?)
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Cf course, the multipliers in ¥ and yq were chosen to facilitate
this study of the curve relating gain in weight with amount of additive.
This particular choice of multipliers depends on the averages X1s Ko, ¥q
being based on the same nunbers of cbhservations and abscissae 0, 1, 2
being equally spaced. When the averages are based on the same numbers of

observations, it will at least be possible to use suitable and meaningful

multipliers. In any truly experimental situation, the cbject of the
exercise will be to perceive certain well defined contrasts which will, in turn
dictate the choice of the multipliers. Often the set of contrasts form a

hierarchy in which the order in which the contrasts are scrutinized is
important.
If several more diets are included in the experiment, more components

are needed to describe the curve and the choice of .the proper multipliers

to use would be dependent on the structure of the diets.

Orthogonal Experiments

An experiment which can be analysed by means of an orthogonal

transformation is said to be an orthogonal experiment. "Analysis" in

this context, means the extraction fram the cbservations of those contrasts

which the experiment was designed to study.

As an examplé of non-orthogonality, if an experiment of the sort we

have been discussing were carried out using different numbers of rats on
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the variocus diets, it would in general prove to be impossible to study

meaningful contrasts among diets by means of an orthogonal transformation.
Orthogonality in the design, then, requires egual samples. There are a
few special instances in which this condition is not essential to the use

of an orthogonal transformaticn, but even sc, equal sample sizes are important

and should always be planned for.

To sum up the computations for several samples, for the case of 3

samples:
source d.f. S.8.
3 2
2 2 _ 1 2 _G
among sanples 2 Yo t ¥y = o~ lzl Ti =
within samples 3(n ~ 1) yz + ... F ygn (computed by subtraction)
2 - & |

total 3n~1 ; E e T3m

This preliminary table should always be calculated, even though it does
not exhibit everything we want. It does not require that choices of multipliers

have been made, because the among samples sum of squares is the same for all
choices. We would, however, proceed to separate the among samples s.s. into

y% and yg using the transformation.
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If the samples are of different sizes, Ny, Ny, Doy, the among samples

s.g. is given by

=

2
2
2

2 2
R G
L

+

T
n

It

J
=]
+
W

and the total s.s. by

2

2 G
E E Xia T+

1 2-{-1'1

3

Cbserve that when the calculations in an analysis of variance table are
carried out in the patterns shown, only one kind of computation is used;
certain mmbers are squared and divided by something, the divisor is
always the mumber of cbservations added to produce the muwber that is

squared.

The experimental arrangements that have been discussed so far are

H

called completely randomized designs.

Note. The use of gain in weight, i.e. the difference between the final

and the initial weight of the animal, may not be the best combinaticn of

these mumbers to use; this question will ke raised later.

The details of F - tests.

ILooking back at one of the examples, we find

/T G - -
y2—2p3 ul-re:cror

Yqr Yg¢ - Y3, display error only.
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Fin,

That is, Yyr ¥g +++ Yy, are independent normal variables, each
with mean 0 and variance 02 . Hence y2 + yu cas t ¥ = 02X2

’ L 5 3n (3n—-3)
Now, if u - W, =0, y, is N(0,0°) and, since it is

independent of all the other y's,

o
¥a

=F, - .
2 2 2 - (1, 3n-=3)
ce. (3n-3 ' ]
Yy + YS + ¥3nJ/ )

Now there is only one way in which this ratio can fail to be
an F . If Uy = Uy #0 , yg is to be expected to be too big
and the ratio will be too big to be an F . If the ratio, when it
is calculated, turns out to be less than 1 , there is nothing to

test; but if it proves to be greater than 1 , we must ask : 1is

H

the ratio too large to come randomly from an F - distribution? The

test is one - tailed and the F - tables are made up for this test.

whether
When the F - test is used to decide , two population variances

. o 2
are equal, using sample estimates si and s, ¢ we use the fact
2

)

that w% = F when the variances are equal. In this case, there
s
2

are no prior grounds for asserting that the mean of si is either

greater or less than the mean of sg and the gquestion we must ask

is 1 1s our calculated ratio too different from 1 to be an F -~ value?

The test is two - tailed.
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To use the F - table, which was made up for the one - tailed
test, put the larger of si and sg in the numerator, the other

in the Qenominator. Then look up this number in the F - table and

get the probability P . Lastly, double the value of P .

Further on the structure of experiments.

Return to the exéerimént in which diets D; and D1 are to be
tested on rats and add to what was assumed earlier the knowledge or
belief that males and females may respond rather differently to the
diets. If this is so, to ignore the sexes of the animals in allocating
them to the diets amounts to allowing a source of (possibly large)
systepéﬁic variation to run through the comparisons the experiment
is intended to diééléy, inflating the errxor sum of squares and
distorting the comparison between the diets.hlA better plan would
take account of the possibility of a systematic difference between
males and females and arrange to display the difference between the
diets within each of the sexes in an orthogonal manner. This can
be accomplished by assigning randomly the same number n of males

and females to each of the diets.

In one respect, we have nothing new here. We have a completely

randomized experiment with 4 samples, each of n observations. If



5, R

3 T tc.
we label the samples Dosi, Disi' DOSQ' D182 and D g etc

represent the totals of the samples, we have an analysis of variance

table
source d.f. S5.5.
1,2 _ G°
among samples 3 o Z TDS - n
within samples 4 (n-1) by subtraction
2 _ G
total 4 n-1 1 x° - 4=

The aspect of the experiment that is new is the way in which
we must study the 3 d.f. among the samples. This is dictated by the
manner in which the samples were caused to be different. We envisaged
two sources of wvariation, which-Will be calléd factors, each of
which was introduced at two levels, each level ofrone factor tested
in combination with each levgl of the other factor. Arrangements of this
sort are called factorial arrangements and the experiment may be

called a factorial experiment.

Analysis of the 3 d.f. among samples amounts to sorting out the
variation caused by changing each of the factors and, first of all,

checking whether it is possible to do so.
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Consider the portion of an orthogonal transformation that has

to do with the 3 d.f. among samples. It can be laid out as follows.

T T T T - div.
DOS:L D‘J.Sl DOSE DTLSQ
Y, 1 1 -1 -1 vdn
Y3 3— -l l ""l . ¥ 41‘1
Yy 1 -1 -1 1 vdn
Yo displays the difference between S; and 52 averaged over

the diets; Y4 displays the difference between the diets, averaged
over the sexes. This averaging is entirely proper, provided the
differences being averaged are estimates of the same population-
difference. We ngegxaésurance, for example, that the difference
caused by changing the diet is the same for ‘males as for females

pefore we combine them in an average.

The component Y, is seen to exhibit the difference between
these differences we wish to average. If Yy is not significantly
different from zero, we can proceed with the averaging and the
components Y, and Y; are proper and meaningful and may be tested
if we wish. On the other hand, if Yy is significantly different
from zero, ¥, and Y, represent averages that should not be

calculated and certainly should not be tested. If Y, is significantly
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e

different from zero, it will be said that sexes and diets interact

and, in any event, Y, is called an interaction component. Note

that the coefficients of Yy in the transformation can be formed
by multiplying the corresponding coefficients of Y, and Vaq .
For this reason, the interaction of sexes and diets is symbolized
sex x diet.

Cur procedure, then, 1s to calculate yg, yg, yi and record
their values in the analysis of variance table. They may be
calculated from the transformation, but it is simpler +to calculate

them according to the following scheme.

1 2
D T T T ,
o] Dosl DOS2 DO
D T T T
1 Dls1 Dls2 D1
T T G
81 82
source d.f. S.S.
sexes 1 L |r? e 5
n|"s, T s, T In
1 2
2
diets 1 im- T2 + T2 -G
2n D D an
0 1
sexes x diets 1 by subtraction
" . 1 [.2 2 2 2 G2
Total” 3 -[T- + T + T + - =
“D.&8 a
n DOSJ_ DOSZ Dlsl lez 3l
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First, test the sex x diet interaction for significance; if not significant,
proceed to study sex and diet differences; if significant, there is no

cccasion to test sex and diet differences (which are often called main effects).

Note that, when we have demonstrated that a real sex x diet exists (i.e.
Y4 is significantly different from zerc), we have at the same time confirmed
that the sexes do respond differently and the diets @o yield different gains
in weight. ' |

The notion of interaction has been encountersed for the first time in
this example. It is a centrally important concept in virtually all

experimentation.

The definition and estimation of error

It may appear, from the examples discussed so far, that there is only
one way of displaying error, Dby arranging that several individuals are
assigned to each sample (i.e. treated alike in all.respects) sg that
differences among them must reflect error only. However, this is not the
only way of providing for the display of exror: indeed it is not usually
the most effective way.

To perceive the point of view at issue here, think again of an experiment
involving experimental animals, in which two or more treatments of a sort

that can be applied to the skin of the animal are to be campared.

We could, of course, divide the animals into groups, each
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group to receive one of the treatments. This would be a com-
pletely randomized experiment and differences between animals, in

their responses to the treatments,would contribute to error.

Another possibility may exist here. If the several treatments
can be applied to different parts of the same animal, the diffe:ences
we want to study are perceived within animals and differences
between animals do not affect them. Neither ﬁill they affect the

error, properly defined.

Suppose only two treatments, ti and t2 , are to be

compared by selecting 2 sites on each of n animals, and on

*to one of the sites and t2 to the

each assign randomly t1

other. There will be 2n observations, with a total of 2n - 1 d.f.
to study. We may, to start with, think first of separating these

d.£. as follows:

d.£.
among animals n-1
within animals n
total 2n - 1

Now within animals, we have 1 d.f. to display the difference between
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the two treatments. The remaining n - 1 d.f. can then presumably

reflect error only.

The final analysis of variance table will then be

d.f.
among animals n -1
between treatments 1
error n-1
total 2n - 1

The computation of these sums c¢f sguares should be obvious.

It may be useful to write ar ortheogonal transfeormation for this

arrangement. Use 1 = 4 and call the animals AL AQJ, Ay, A,
A, A, A, A, div.
vt b, t, kot t, ot
Y, 1 1 11 1 1 101 /8
Y, 1 1 1 1 -1 -1 -1 -1 V8
Y, 11 -1 -1 11 -1 -1 /8
Y, 1 1 -1 -1 -1 -1 1 1 V8
Ve 1 -1 1 -1 1 -1 1 -1 V8
Ve -1 1 -1 -1 1 -1 1 /8
. 1 -1 -1 1 1 -1 -1 1 VB



Théﬁ, Yo ¢ Yg v Y, are the 3 d.f. for animals, y5 is the 1 d.f.

for treatment and Yo o \% yg display error only. These facts

7 !
may be checked by letting Xij stand for the observation on

animal Ai and treatment tj and noting that

Even though there has been no repetition of cobservations to

furrish an estimate of the error variance, something has been repeated,

nawely, the difference we are investigating. It has been exhibited
within each animal; the extent to which these differences differ among
themselves is a measure of the error with which the treatment difference
is estimated. Inspection of the error components verifies that they

are made up of differences among the treatment differences.

Since each animal furnishes.a complete display of the difference

under inquiry (or, more generally, of all the contrasts under inguiry),

it is customary to say that each animal furnishes a replication. It
is also said that each animal constitutes a block (the word comes

from agriculture). Blocking or stratificaticn implies an attempt to

group experimental material into sets that are more uniform than is
the material as a whole, within which contrasts may be studied,

exposed to smaller errors than would otherwise be possible. Replication
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implies blocking. (The term replication is best used only in this sense. It is

best not to use the word to describe the repetitions in a carpletely randamized
experiment) .

Reference to the transformation shows that the error components
have the structure of an interaction between replications and treatments.
There may be some temptation here to speak of replications as a
factor ané to regard this experimental arrangement as an instance of
a factorial experiment. It is best not to do so. The "factor"
replications is, by definition, one whicﬁ cannot interact with treatments.
Tt is the responsibility of the experimenter to see to it that this

condition is satisfied.

Experimental arrangements of this kind are called randomized block

arrangements. It has_beén implied that each block shall be "big"
enough to contain all the contrasts under study and the "treatments" are
allocated randomly to the experimental units of each block. If there

are t +treatments and b blocks, the analysis of variance table 1is:

d.£.
blocks ({(or replications) b -1
treatments t -1
blocks x treatments (error) b - 1L){(t - 1)
total bt - 1

We would, of course, inguire in more detail into the t - 1 d.£f. for

treatments.



Paired comparisons.

The particular instance of a randomized block experiment in
which there are only two treatments can be approached in what seems

to be a different manner. From each block we can calculate the

difference di = }ﬁi - Xy and treat these numbers as a sample from
a single population. d = §1 - §2 evidently estimates wu,- u, . If
we wish to test whether My~ U, = ¢ , or to calculate confidence
limits for u, - we would calculate 52 = 1 Z {(d. - 3)2

1 2 ! n - 1 i

d - (0, - u,)
and t(n—l) = 1 2 .

s/vn

It is important to perceive the distinction between the paired
comparison experiment and the completely randomized two sample

H

experiment.

More on factorial experiments.

The term factorial arrangement will be construéd as applying only

to the structure of the treatment differeﬁces put into the causal
system by introducing one factor at p levels, another at g levels,
another at r levels, and so on. The set of different treatment
combinations formed by combining each level of each factor with each

level of every other factor will be called a p x g x r ... factorial
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ar¥angement. The number of different treatments generated in this

way 1s p x g X Ir ... .

Usually, the levels of some of the factors can be specified
numerically and the results of the experiment can be plotted as a
set of graphs. BAnalysis of the results then becomes a comparison of
a number of curves to find out in what ways they are alike and in
what ways they differ, with a view to deciding how much reduction

or simplification is warranted.

As an example, think of a 4 x 2 factorial experiment, carried
out in a randomized block pattern with r replications. A preliminary

analysis of variance table reads:

d.£t. .
replications r -1
treatments 7
error T{r - 1)

Qur concern is with the interpretation of the 7 d.f. for treatments.

Let A be one of the factors, with levels ag s a, s 8, ; a5 o
which can properly be plotted as 0 , 1 , 2 , 3 . Let B be the
other factor, with levels bo ' b1 . We might, for example, be

making up 8 different fertilizers by starting with some basic fertilizer,
adding nitrogen to it in amounts 0 , 1 , 2 , 3 uniits and adding

phosphorcus in amounts 0 , 1 units. There will be 3 d4d.£f. for



_93_

cdﬁparing the 4 levels of A , 1 d.f.

B and 3 x 1 =3 d.f. for A x B

corresponding to this separation of d

the following table.

interactions.

for comparing the 2 levels of

.f. may be carried out from

25 2 2 2y
b T T T T T
Y dobo aibo a2bo asbo bo
b T T T T T
1 aob1 alb1 azb1 a3b1 by
T T T T G
25 2y a, 43

Ta b is the sum of the r . observations on treatment aib. .
%3 , ;b3
d.£f. 8.8,
2
1 2 G
A 3 w1l Ta, T E
i
2
1 2 G
B 1 :l“szb.wé—;
J
A x B 3 by subtraction
1 .2 G2
total treatments 7 =) T -
r aibj 8r

At this point, we may still not

results of the experiment, but if it

The computations

should happen that the

be in a position to interpret the

A x B
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interaction s.s. is significantly large , we could reasonably be
assured of the existence of a genuine interaction between the A
and B factors. In this event, any attempt to interpret the A

and B s.s. is unwarranted.

If the A = B 4interaction s.s., with its 3 d.f. is not
significantly large, this fact'by itself does not give adequate

assurance that there is no genuine A x B interaction and we are

obliged to look more closely into the interaction s.s. This is best

carried out by means of a suitable orthogonal transformation.

Ta o TalbO Tazb0 Ta3bo Taobl Talb1 Tazb1 Taabl
A lin -3 -1 1 3 -3 -1 1 3
A guad -1 1 1 -1 -1 <1 i -1
A cub -1 3 -3 1 -1 3 -3 1
B -1 -1 -1 -1 1 1 1 1
B x Az 3 1 -1 -3 -3 -1 1 3
B x A 1 -1 -1 1 -1 1 1 -1
q
B x A, 1 -3 3 -1 -1 3 -3 1
The multipliers in A2 ' Aq ‘ Ac come from a table of

orthogonal polynomial values.



If one or more of the components B x Ag , B x Aq r B = AC P
are significantly different from zero, we would be obliged to concludé
that a genuine A x B interaction exists and the first four
components in the transformation would not be useful. On the other
hand, if each of the interaction components is not significant,
the average A and B curves become meaningfﬁl. In particular,
the components AR ; Aq R Ac are useful in deciding what kind of

curve is adequate.

Further on interactions.

In the factorial examples we have been discussing, absence of
interaction is reflected in parallelism of a number of eurves. This
is the usual case, but there is one situation in which:a rather
different meaning should be attadhed to the notion of interaction.
To make an example, suppose we wish to compare two different supplements
to a basic diet, both intended to produce the same response and in the
same way. To be specific, let us say that they are to be compared by
feeding diets made up by adding to the basic diet one unit and two

units of each of the additives.

If the additives are in fact equivalent, they should produce the

same response curves. If one of them is more concentrated than the
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oﬁhef, they should produce the same response at the zero level
(whether this is actually tested or not), a differsnce should show

up at level 1 and twice this difference should be found at level 2.

Clearly the response curves here cannot be expected to be parallel;
they are lines radiating from a point. If two different lines are
produced, we would conclude that the additives are not equally
concentrated (or potent). If we find that (difference at level 2) - 2
(difference at level 1) reflects nothing but error, we would conclude
that the additives differ only in potency, but if this difference of
differences looms large, we could not account for the difference
between additives solely-on the grounds of potency and would be obliged

to conclude that there is a gqualitative difference as well.

If we call the additiwves Al and A2 and the lewvels 21 = 1

and 22 = 2 , an orthogonal transformation which displays a suitable

interaction for this situation is

Ai A2
b4 Ly A
levels -1 L -1 1
additives -1 =2 1 2
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A thorough discussion of experiments of this kind, in which we
encounter the interaction of gquantity and quality, requires rather

elaborate methods. Mostly they are encountered in biological assay.

In some instances, particularly those in which we are not
working too close to the zero level of application, an excellent
way of circumventing the difficulty we have been discussing is to

plot response against log (level). This transformation has the effect

curves

AN

of changing a set of radiating from the same point at zero level
into a set of parallel curves, when there are no interactions. The

notion of interaction then reverts to its usual meaning, lack of

parallelism.

If we intend tﬁkémploy this approach, we should think of the
possibility of choosing levels in geometric pfégression {e.g. 1, 2, 4...
units) in order that their logarithms are in arithmetic progression.
Analysis of the results is thereby simplified because orthogonal

polynomials may be used to study the shape of the response curves.

Confounding - incomplete blocks.

The randomized block experimental arrangement is a sort of
reference plan against which all others may be assessed. Probably other

arrangements would be used only rarely, except for the fact that
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.iEﬁYSical conditions frequently impose limitations which stand in
the way of making full use of this.plan. One limitation often
encountered arises because useful and sensible blocks are not big
enough to contain a complete replication. "This situation may be
encountered for all sorts of reasons. The factorial experiment is
often the culprit, because it becomes very large very fast, as we

add factors and levels.

We are sometimes obliged, then, to use several blocks for each
replication. The blocks are then said to be incomplete. All that
will be attempted here is to pursue the consequence of the incomplete

block in a special diminutive  example.

Think of a 2 x 2 x 2 (or 23) factorial arrangement which is to
be tested in r replications.

Call the factors A4 , at levels a and a ’

1 2
B , at levels b1 and b2 ;
C , at levels =N and c, -

There are then 8 treatment combinations, which may be symbolized

aibjck ry 1,3, k=1, 2.,
The preliminary. analysis of varlance table would read
dlf.
reps r - 1
treatments 7

error 7{r -~1)
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" The 7 treatments d.f. would be separated into components
corresponding to the main effects and interactions as displayed in the
following transformation. Let the symbol (aibjck) stand for the

total of the observations on the treatment aib.c

i’k
(a;b,e ) (abie,) (agbyeg) (agb,ey) lasbiel) (ayb,c,) (azbye ) (ayh,c,)
A -1 -1 -1 -1 1 L1 1 1
B -1 -1 1 1 -1 -1 1 1
c -1 1 -1 1 -1 1 -1 1
AB 1 1 -1 -1 -1 -1 1 1
BC 1 -1 -1 1 1 -1 -1 1
@ 1 -1 1 -1 -1 1 -1 1
JABC -1 1 o | -1 1 -1 -1 1

Suppose now that suitable blocks are available of a size that
will accommodate only 4 treatments. It therefore becomes necessary
to use 2 blocks in each replication and we have to decide which

treatments to put in each block.

The consequences wof any particular decision are easily perceived
by referring to the transformation. Suppose, for example, that the

first four treatments listed in the transformation are put into one
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bioc; and thg others into the other block and that the same allocation
to blocks is used in each replication. It is clear, then, that the
main effect A gathers up also, in each replication, the difference
between the two blocks in that replication and that this component
exhibits, in addition to whatever main effect A there may be, the
difference between one set of r blocks and thé-other set of r
blocks. In this circumstance, it is said that the main effect A 1is

confounded with blocks (or block differences).

Inspection of the other components in the transformation shows
that they are not confounded with blocks, inasmuch as their coefficients

add to zero within each block.

Evidently we can choose an allocation into blocks that will con-
found any one of the components with blocks and leave the others free
from block differences. It seems cbvious also that an injudicious

allocation may confound several components with blocks.

Turning now to the analysis and interpretation of a confounded
experiment, let us pursue the instance in which the component A is

confounded.

There are two possibilities to be considered. If block differences

are thought to be not too large and may be thought of as simply con-
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A

Ha,

triguting another source of error in the A comparison, we may think

of part of the analysis in the form

d.f
reps r -1
A 1

reps x A r - 1 (error term for the 2 comparison)

The rest of the analysis would take the form

d.f.
treatments 6
B 1
c 1
‘A B 1
B C 1 |
C A 1
A BC 1

reps x treatments 6(r - 1) {error term for this portion of the

analysisj).
If, as is often the case, block differences are guite large and
we are content to sacrifice a component which is confounded with them,

we need only calculate

d.f.
blocks 2r - 1
treatments 6

error 6§(r - 1)
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The arithmetic is best carried out in a succession of Steps

which correspond to the following analysis of variance tables.

d.f. S.S.
2
among blocks 2r - 1 % ! (block totals)? - %f
within blocks 6r by subtraction
G e 2
total 8r - 1 J {observations)? - %E

The sums of squares corresponding to the factorial components
may be calculated from the transformation, but it may be more con-

venient to obtain them from a set of two - way tables : like the

following.

T T T

a, by _N__a.lb2 a, ,
T T T

a2b1 a2b2 a,

! T

T G

b1 b2

Analysis of variance calculations on this table yield

d.f. S.S.
A 1 Lip2 4 p2) - &
Ir‘-a a 8t
1 2

B 1 Lip? 4 g2 ) - 62
Iri*p b, 8

A x B 1 by subtraction

2

n it _}'___T 2 G
total 3 55 L Ta‘b - Bz
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e

?hé?two other similar tables yield the s.s. for A (which need not

be calculated again), C and A x C and B s C and B x C .

The s.s. for 2, B, C ,AxB ,BxC, CxA ¢ together with
the s,s. for A x B x C , make up the "treatment" s.s. with 7 d.f.,

which is calculated from

l Z T2 - gi
r a.b,c 8r ‘
i737k

We can get the A B C s.s. by calculating this s.s. and subtracting

all the other s.s. from it.

The computations may now be organized and finished off according

to the following pattern.

d.fes o d.f.

SISI "
1y 2 _ @2
among blocks 2r - 1 reps r - 1 3 } (rep. totals)” - =
A 1 already calculated
error r = 1 by subtraction
within blocks 6r B 1
C 1
A B 1 already calculated
B C 1
C A 1
ABC 1

error 6{(r - 1) by subtraction



- 104 -

Wy,

The split plot arrangement.

It may happen, in a factorial experiment, that one factor
is necessarily confounded with a certain source of error, but the
other factor need not be. For example, a factor A might be
several levels of a drug administered to rats. Comparisons among
levels of the drug inevitably involve differenceé among rats. An
experiment to study these comparisons might be arranged in a completely
randomized, randomized block or other pattern. Let us say, now, that
the response to be studied is the threshold at which the animal reacts
to an electrical stimulus and that several types of stimulus are to
be used. Types of electrical stimulus, then, constitute several levels
of a factor B , gégﬂ”of which may be applied to the EEEE rat. Comparisons
among the lewels of B , then, need not be exéésed to differences

among rats.

Let us say, to have something definite to discuss, that factor A
has 3 levels of drug, each of which is administered to n rats in a
completely randomized design and that factor B consists of 4 types
of electrical stimulus, each of which is applied o each rat. The

experiment will then furnish 12 n observations.
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jmﬁThe natural separation of degrees of freedom, to start with, is

among and within rats.

d.f.
among rats 3n - 1
within rats 9n
total i2n - 1

Indeed, the sums of squares'corfesponding to this separation ought

to be computed.

The s.s. among rats is then separated into two parts : among
levels of A , with 2 d.f. and within levels of A , with 3n - 3 d.f.,

which is the error s.s. for testing A

The s.s. within rats separates into three parts : among levels

of B, with 3 d.f.; A x B with 6 d.f.; error with 9(n - 1) d.f.,

which is the error s.s. for testing A x B and B .

No doubt, in an actual experiment, we would want to ingquire

further into the A x B , B and A sums of sqguares.

Experiments with this kind of structure are called split plot,

after an agricultural prototype. The structure of the split plot
experiment is seen to be identical with that of the incomplete block

experiment discussed earlier. In the split-plot situation, though, it is
inevitable that a main effect shall be confounded with the additiocnal

source of error.
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.Regression Analysis

Regression theory is concerned with relationships
among variables, some or all of which are statistical wvariables
in the sense that they have frequency distributions. This is, of
course, the kind of question we have been discussing in connection
with experiments. Indeed, the most important ﬁges of regression
theory are in the analysis of experiments in which orthogonality is lacking.
It is used in other contexts as well, with appropriate reservations and .

precautions.

Presumably it would be generally agreed that weights of
men are; in some sense( related to their heights, that tall men
tend to be heaviefwfﬁan short men, even though we may ﬁnow a short
man, S , who is heavier than a'iall man, T.; whom we know. It is
not at all clear, though, how such a qualitative statement can be
made gquantitative because some or even all the members of the
population will not satisfy any relation we might specify. We are
here in a different position from the physicist who says that the
distance a spring stretches depends on the force applied to it and
writes D = kF . He means by this that .D and F are strictly

related by this equation; that every time a forece Fo is applied,
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gtﬁg stretch DO and no other, always results. He may grant,

though, that this relation may appear not to hold exactly, because

of the intervention of errcrs of measurement.

In our situation, we know that several men, all the same
height, are likely to show a considerable variety of weights. Let
us restate the question : given a group of méh of given height,
what can we say about their weights? We can then envisage a
population of men, all . the same height, of which our group of
weights constitutes a sample, presumably randomly chosen. We can
then think of such a population of weights corresponding to every
height. - If these populations change from one height to another,

this reflects a dependence of some sort of weight on height.

It is to be emphasized - that the question, as posed here,

is a conditional one : given height, what can we say about weight?

Height, here, is not a statistical variable. It need not come
randomly from a frequency distribution, that is, there is no error
connected with it. If the sampling is such that heights do come
randomly from a population of heights, this fact is irrelevant to the
guestion being asked. Weight, on the other hand, is a statistical

variable.
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Questions of this sort are usually put in a much more definite
and restricted form. If we use x to denote height and y weight,
we might ask : how does the mean of y , for given x (i.e. E(y/x)]
vary with x ? In particular, does it vary linearly with x and,
if so, how do we estimate this linear relation from a set of
observations? We will start with the second guestion, assuming

an affirmative answer to the first and later take up the first question.

We assume, then, that E(y/x) = 80 + 81 % Bo ; 81 unknown.
It follows that, for any recorded height X, and the corresponding
observed weight Yo

Yy © Bo + le + e (€, an error.

'

We will suppose that.tge efrors we encounter ip.a samplé come
randomly from a single error distribution with variance a2 (unknown) .
This is a strong assumption. It says that the error variance is the
same for all values of x . It is the same assumption as was made

in the discussion of experiments, where it can usually be supported,

but in other circumstances it can easily be viclated.

The sample.

From what has been said, we could in principle settle on

several heights (x-values) and then sample one or more weights
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1E§?%alues) corresponding to these heights. This might be trouble-
some to carry out in this instance, but in some others it would be
the simplest and most natural way of getting the sample. An
alternative plan is to choose randomly a sample of men and record
the height and weight of each. Under either scheme, we come up

with a number {(say n ) of pairs of numbers X1 Yy

It is customary to speak of x as the independent variable,
the fixed (i.e. non-statistical) variable or the selector variable

and of y as the dependent or statistical variable.

Estimation

Having a suitably chosen sample and assuming that

E{y/x) = Bt B, x, we proceed to estimate the values of £ , 8, and a? .

Let bO and b1 represent numbers to be calculated from the

sample to estimate BO and 81 and write
Y=Db + b, x
0 1
Then evidently Y is an estimator of E(y/x) for any given x .

Whatever values may be given to bO and b1 , & value Y
may be calculated corresponding to each Xy in the sample

Ya = b0 + b1 X, - Obviously we want the Yu values to be as
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Tl

close to the Y values as possible. One way of accomplishing this

n 2
is +#0 choose the b's , i.e. the Y's , so that ) (Yu - Y)
a=1

is made as small as possible. This is the "principle of least squares".
It is demonstrable that this principle, in terms of the results it

vields, is "best" in terms of more basic principles of estimation.

The choice of b~ and b, to minimize Z(ya - Yu)2 leads to

two conditions to be satisfied by them.

Z(Yu -y =0
Z(Ya - Ya)xa =0

Substituting for the Y, in these equations,

n bo + bj_—‘.Z:...xu, = z YU,

b ]} x +b X x2 =] x, v, -

0 o 1 o o Tdo
These equations are called normal equations (no connection with the
normal distribution). The first of these equations may be written
bo + b1 X =9

which asserts that the regression line must pass through the average
point (X, ¥) and that its equation may be written

Y=Y +b (x-x) .

1

Indeed, with this knowledge, if we had set out to fit the line in
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the form Y = bé + bi(x - X} , the normal equations would

read
nb! +b Jlx,-% =]y,
bl Tlx, - %) + ) Llxy - %2 =7 y,(x, - %) .
Since Z(xa - x) = 0 , the equations virtually solve themselves.

bi E(xa - E)z = Z y (x = x)

_ Iy, (x, - %)

1 Z(Xu_§)2

bémi{, b

There are alternate formulae that can be useful when calculating b;.

(7 x) (L )

) Ya(xu -X) =7 Yy ¥o " — .

(7 XOL)2

C n.

Note also that

Ly, (x, - X) = Z(yu-ﬂ(xa—;) .

o

The estimation of 02

It seems obvious that if, in fact, El(ly/x) = Bo + le '

E(yOi - Ya)2 reflects error only and therefore can be made the
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basis for estimating the error variance. This and other facts

come easily out of an appropriate orthogonal transformation.

Yy Ypre ¥y
2, 1 1. 1
z, X, - X X, - X. X
%3
2y

.orthogonal

z
n

However the components
orthegonality with 2, and

zero. If, at this point, we

are normally distributed, we

2 1,2 . 2
and that s° = n-2(23 t oz,
Note also that 1z, = /ﬂ'bé =

Writing Y, = BO + 8

[

o

div.
Ve
- X Tlx, = %) 2

yt tce 2, may be chosen,

ensures that their means must be

introduce the condition that the errors

2 2 2 _ 2 2
see that 2, toozZ, ...+ 2z, =0 X (n-2)

+ zi) estimates o
/5 y and z, = VZ(XQ - x)° b,

+ e, in the expression for Z, o
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e 1 Y(x ~%) (B +B,x, + e )
2, = = o o "1i%n o
2 Nix, - 5°
6]
= 1 — B, 7 X&(Xa - X) + error
¢?(x - x)
o
= BlJE(xa - x)° + error .
Hence, E z_=V)(x - X)°" Eb, = /E(x - %% 8 and
! 2 o. 1 o ' 1
E b1 = B1 , that is, b_l is an unbiased estimator of B
Also, Var z, = Z(Xa -~ XY Var b, = 02 and
02
Var b, =

It follows that, if the errors are normally distributed,

is N(0,1) and

°//fy (x, - %) <

) is t
S/‘/_E(Xa _ E)Z (n-2)

The obvious computation of the error s.s. is

N
+
o
+
+
N

i

2 2 2 2 2 2
n= LYy -2 -z

—2

I

I y2-nb % b Jix, -

> (Zy) [Zy(x-x)]

=7 vy -

Of,_x)
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This s.s. can be identified with Z(ya - Y,

, as 1s to be
expected. This will be done shortly. First, however, there is a

fundamental identity of regression analysis, which asserts that

Ty - D7 = Jly, - ¥?+ [y, -7
This can be checked by writing
Iy, ~ D= [y, -y, +v, -
= My, ~ Y%+ [ -7+ 2]ty - Y)Y, - F)
Now, [y, = Y ) (¥, - y) = Jly, - Y)Y -Y Ly, =¥

Z(ya - Y ) (b, + bx) - v Z(ya - Y)

it

b lly, - Y,) + b, Dy, = ¥ )x, - ¥ Z(yg.' ¥y -

Fach of these sums has value zero, in virtue of the normal

equations.
2 2 2 _ =22 =
Now the error s.s., z; + 2z, + ... z_ = E(yu y) - b} Z(xa ¥)
and, since Y -y = b (x_ - X) Ty - §)2 = b2 T(x - %) 2
! o 17 ! a 1 o !

the error s.s. is Z(ya -y - Z(Ya - ;)2 = E(Ya - Y,)

It is useful to record the results of the computations in an
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analysis of variance table.

d.f. s.s
2 2 2 2
attributable to regression 1 z: = bl J(x -x)" = |} yv_(x -X)
2 1 o OLcc/ )
Z(xa—x)
deviations from regression n-2 zg + zi + ...+ zi , by subtraction
2
(2 v,
2 2 ‘ 2 2 o
total _ . n-1 z, + 24+ .v. 4z = ) Y, —

. . 2 . . .
We can, 1f we wish, test 2, to see if it contains more than

$.S. reqression/:L

error (i.e. 81 # 0) by asking if TS T deviations is F(l, n-2) °
/ (n-2)

This ratio is seen to be the square of the t(n—2) reached

earlier, with B, =0 .

Adequacy of the assumption Ef{y/x) = 8_ + B X

0 i

The estimation of error from deviations from the fitted
regression and the test of significance depend heavily on the
adequacy of a linear model. ff, in fact, some other function ought
to be fitted, the s.s. Z(ya - Yu)2 will contain, in addition to
error, systematic departures of the assumed line from the correct
function and will therefore be too large compared with error. This

can be checked if we can get an estimate of error which does not
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depend on any fitting. The possibility of accomplishing this
rests on the taking of the sample in a special way. If we settle
on a number of different values of x and sample each of the
populations sc selected several times, differences within these
samples will reflect error only. Indeed, we are now in the
situation described earlier as a completelnyandomized experiment;

with an analysis of variance that reads:

d.f.
among samples k-1
within samples (error) n-k.

Now, if we £it a regression Y = bo + bix , one of the k-1 d.f.

is used up for the slope of the line, with s.s. bf Z(xOL - §)2 and

the residual s.s.”with k-2 d.f. follows by a subtraction. The

computation may be summed up as follows.
d.f£. S.S.

e e <::l regression S.8.R
among k=1 8.8.A k-2 deviations S.8.D
by subtraction
within (error) n-k _8.8.E.

by subtraction

total n-1

5.5.D
Then, /{k=2) = F

S.8-E, 1y

(k-2, n=-k) if S5.8.D contains only error.
r
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The correlation coefficient

When a linear regression Y = b0 + bix is found to fit the
observations adeguately, the coefficient b1 displays the
dependence, of y on X . The numerical value of b1 , in
itself, carries no conviction of dependence, because this value
depends, among other things, on the units in which x and v are

measured. A test of significance is regquired.

The dependence of b1 on the units of measurement is easily
_ =2
VZ(xa %)

removed by multiplying it by meet——— ,
Iy, - 2

bearing on the guestion of dependence of y on x . The resulting

a guantity that has no

is called the coefficient
coefficientAPf correlation of x and vy , symbolized always by r .

i

Thus:
- Lix, - %) _ LY, - V) (x, - %)
[y - 9 Ly, - 9 ) x, - %)

Clearly this coefficient is not needed, in this context, at 1east. It
rests on the same assumptions as does the linear regression and can
accomplish no more than the coefficient b1 does. Nevertheless it is
often calculated and used, indeed, it is often misused through

neglecting to check the linearity of the relation and the constancy
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ofatﬁg variance. Used along with a regression analysis, it has a

useful property. From the definition of r , we have

2 2 - 2

2 _ .2 =2 _ _
=by Jlx, -%" =1 [y, -7

Py, - §)

Iy, -¥)? = -rHlty, - 9

It is seen that r2 is the fraction of the total wariation, measured

2

by Z(ya - y)° , that is accounted for by the regression. These relations

also display the fact that r2 £ 1 , a property thought by some to

be important.

If r is to be used instead of b1 to detect dependence of

one variable on another, it is important that a test of significance

- 2
Ty, - ¥)
be used. The test for.,,__b1 ; based on the ratio e —
_ Z(Ya - Yy /(n—2)
2
. r- (n-2) . , . .
becomes in terms of r , — which is F(l 5 if R, =0 .
1-r r n=2) 1

rvyn-2

JI:;§ is t{an) .

Alternatively

Precision of the estimate of El{y/x).

Sometimes the purpose in fitting a regression of y on x

is to estimate E(y/x) for various values of x ., " -1'3 . L
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To judge the precision of such an estimate, we require the

variance of Y .

When the regression equation is in the form Y = y + bl(x - x) ,

2
we know that y and b1 are independent, with Var y = %? ’
62
Var b1 = — - Therefore,
Z(xa - X)
Var ¥ = Var v + (x - x)° Var b

2
5%7 Z(ya - Ym) )

02 is estimated by s

It follows that e ;

Y - E(y/x) =t
s/é + (x - i) (n=2)
n z(xa _ x)2

We can, i1f we wish, use this to calculate confidence limits for

E(y/x) . They are given by

Y ot L 1 (X - X)
(2/2) S/n' MZ(X _ 39

Regression with two or more independent variables.

The ideas and the approach used in the discussion of linear regression

extend without change to the situation in which several independent
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variables are required. If these independent variables are

denoted x X xp ;, the regression egquation is

1’ 2; LRI

Ely/%, s X,0 -on xp) = 50 + le +Bx, b ... F B X .

1 2 TP

The estimating relation is

Y = bO + b_lx1 + b2x2 + <o + bpxp '

where the b's are chosen to minimize Z(ya - Ya)z. The b's are

obtained by scolving the set of normal equations

nb, +b 7 X, * b, ) Xpy T ooee * bp ) Koo = ) '

5 -
bo ¥ Xig T b, ¥ %ot o, ? Ry Fog ¥ oeee 7 bP Y x

10 Xpa - Z 10 Yo

2 —
boz oo * blz Xpa 1o T b2 ) Xpa Kog * ov0 bp ) xpa =1 xpa Yo

Each bi is an unbiased estimator of Bi , normally distributed with

variance GQCii , where thes cii are numbers calculated £rom the
2 z(ya - Yu‘
T n-p-1

2

¥ - observations. The value of 02 is estimated by s

and the numerator of s2 can be calculated from the formula

2 _ 2 _ _ _
Myg = %) = ) Yo T By Ly, - by L ®ig¥q = - By L *o0 Yo
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As a special case, we can take X, to be xf, X, to be xi

so on. This theory, therefore, includes the fitting of curved

2 + B x3 + see .

regressions of the sort E(y/x) = BO + Bix + 82x 3

The analysis of covariance.

In some of the examples used to illustrate some of the ideas
in the planning and conduct of experiments, wé spoke of comparing
diets by feeding them to animals, taking for granted the existence of
some sensible measurement that would reflect differences among the

diets.

If all the animals entered the experiment at the same weight
(initial weight), no doubt- their weights at the end of the experiment
(final weights) Qéﬁid be a suitable measure. The aqéality of the
initial weights would be next.to impossible to arrange,; of course,

to do so.
and in any event it is not particularly desirable We can and should

A
keep the initial weights within some reasonable range and let us
say that we record the initial weight of each animal. Call it x .

Then, at the conclusion of the experiment, we measure its final

weight, vy .

One might be tempted to analyse the differences, y - x , in the
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%beiief that by so doing, variation in the final weights attributable
to variation in initial weights would be removed; or perhaps, use
y/% . The use of either of these devices rests on an assumption
which is rather un;ikely to be satisfied. In any event, why make
assumptions when the observations can supply information about the
manner in which y wvaries with x ? We havelﬁhly to plot y
against x , separately for each diet. Each diet, then, yields its
own graph. These graphs ought to be sensibly straight lines, at
least if initial weights have been prevented from varying too
[Question: What conclusion if the lines turn out +to be not parallel]
widely, and these lines ocught to be parallel. 4, If they are, differences

between lines indicate differences between diets and deviations of

observations from.their individual lines reflect error.

Clearly we have here a special use of regression theory. It is
called the analysis of covariance. The arithmetical aspects of this
analysis are not entirely obvious, but they are easily mastered

when they are needed.

Observations made by counting.

Methods of analysis discussed up to this point (apart from
the discussion of samples from binomial populations) require that

the observations be measurements. When they arise in the form of
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'{céﬁnts, these methods, while not strictly correct, may still be
useful in view of the central limit theorem, in the same way that the
normal distribution is useful in calculating binomial probabilities.

Some special difficulties can arise, though.

As an example, think of an experiment to compare several methods
of planting seedlings. In each plot are plaﬁﬁed the same number of
seedlings, say n , and the observation made on each plot will be
the number, say x , of seedlings that survive and grow or,

equivalently, the proportion p = of survivors.

n R i

Each plot may be considered to provide a sample of n observations
from a binomial population with some unknown proporticon T of
survivors. If the methods of planting do differ, the value of
will vary over the experiment. The proportiéns p are estimates

of the corresponding values of 1w .

It is entirely reasonable to treat the observed proportions p
as 1f they are continuous variables and to employ analysis of variance

procedures, apart from the fact that the condition of uniform error

. . . . m(l - =«
variance is not met. The wvariance of p is —L—H———) . Even

so, if only values of mT not too far from Yo, say between .3
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"and .7 occur in the experiment, the error variance will not

change enough to do serious damage to the analysis.

When wvalues of T «close to 0 or 1 do occur, it is a fact that
analysing sin — Yp instead of p greatly extends the range of

values of 7 over which there is reasconable uniformity in the

error wvariance.

Qther transformations are availabie to deal with some other

situations in which the error variance is not constant.

Goodness—of-fit.

Sometimes the observations take the form of counts of

individuals within categories. The records of a hospital might

show, for example:qéhat of 10,000 infants bg;n there,!5200 ware
females and 4800 were males. 'Pursuing this example a 1little farther,
suppose we ask if this sample really indicates that female births

are more freguent than males. This calls for a.test of significance,

really a binomial test but with the normal approximation to the

binomial, we would calculate 5200 - 5300 T = 4)1 which is
/10,000 x 5 x 3

much too large to have come randomly from the standard normal

distribution.

We could frame the guestion in another way. Let us enter our
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PRI

:observations in a table,

observed tahle

M 4800
¥ 5200
10,000

and construct another table showing the numbers we would "expect"

when a sample of 10,000 is drawn from a binomial population whose

proportion is Y .

expected table

M 5000 f
F 5000
10,000

We may now seek some measure to display the overall discrepancy
between these two tables. The measure used for this purpose,
using O to denote an observed count and E the corresponding

. (0-E) 2 .
expected value, is Z —r ¢ added over all the cells. In this

example, using this measure we would calculate
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3

P

(4800 - 5000) 2 , (5200 - 5000)2
5000 5000

which yields 16, the square of

of the number obtained in the earlier test. Recalling that the
square of a standard normal variable is X%i) r We see that we

2

could check the 16 against x( as an alterpnative to checking the 4

1)
against N(0,1) . In either case, the test is approximate because

the normal distribution is an approximation to the binomial

distribution.

The computation used to arrive at the X%l) can always be
carried out to compare a set of observed counts with a corresponding
set of expected values, reached on the basis of some prior guestion
or speculation. The resulting number can be checked agéinst
a x2 - distribution; The one guestion that.needs scrutiny is the

number of degrees of freedom of the xz

One might ask, for example, why the x2 in the foregoing example
does not have 2 d.f., becausé two pairs of cells are being contrasted.
The answer lies in the fact that one of these contrasts adds nothing
to the other and is, indeed, predictable from it. This Stems from
the fact that the expected table was forced to have the same total

as the observed table.

The categories ‘or cells in which we record our counts may themselves
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;Eg@classified or patterned, corresponding to the objectives in
making the observations and the guestions we ask may force the
expected table to agree with the observed table in several respects.

Consider an example.

Suppose that some individuals in a population have been
inoculated against some infection and some have not. At some
suitable point in time, a sample of individuals is taken and each
individual 1is classified as having been inoculated or not (I or I) and
also as having contracted the disease or not (C or C). There are
then four categories. The numbers of individuals in these categories

would reasonably be assembled in a 2 x 2 table.

I. I
C a b a+ b.
C c d c + d
a+c b+d N .

Presumably the reason for tﬁis exercise would be to find out if.

the proportions of individuals contracting the disease are appreciably
different for the inoculated and not-inoculated groups. We proceed,
then, to set up the expected table, under the supposition that the
true proportions are the same for the two groups, and test the

discrepancy between the observed and the expected tables.

. . . a b
The proportions we are discussing are —— and ¢—= .

a+c b+d If they
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are, in fact, equal, there is nothing to test and the observed table

is the same as the expected table. This gives a clue to the con-

. a _ b D
struction of the expected table., If a5 = BIg ¢ each ratio is
a+b _ atb . .
equal to Py s il < The eniries in the table, a and b ,

must satisfy the relations

(a+b) (b+d)

_ (a+b) {a+c) _
a = g b = N
and it follows that
c {a+c) (c+d) 4 = (b+d) (c+d)
- N ' . N

These numbers, then, will be the entries in the expected table and

the cobserved and éxﬁécted table will agree in all four marginal

totals. We need calculate conly one expected value and the rest can
2

be found by subtraction from the marginal totals. The ¥ will

therefore have 1 4.f.

Z (O—E)2

If this procedure is carried out algebraically, =

simplifies into N(ad—bc)2 providing a simpler
{a+b) (c+d) (a+¢) (b+d)

calculation for the 2 x 2 +able. Tables of this sort are called

contingency tables, and the test we have just carried out is some-

times called a test of independence of the rows and columns of the
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" table. Presumably this means that, in the expected table, we see
the same proportion, or contrast, in one column as we do in the other.
This is, of course, precisely the notion of interaction (or lack of

it) coming up in this context.

We can encounter contingency tables with any number of rows
and columns, r and ¢ say. To test the ihdependence of rews and.
columns, the expected table is calculated according to the same rules

as in the 2 x 2 table and x2 has {(r-1) (e-1) d.f.
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. Shimpling Theory

Often populations are sampled to make absolute estimates of
quantities, rather than to make comparisons, as is done in experiments.
These gquantities may be total amounts of something, averages or
proportions. Sometimes the intention is to make predictions.
Examples:

1. Wheat (and other) farms are sampled every summer to supply a basis
for predicting the total crop.

2. The labor force is sampled periodically to estimate the number

and proportion of unemploved.

3. Populations of people are forever being sampled to find out their
intentions in a coming election, their preferences among television
programs, what kind.of soap they use and so on. These samplings are
called public opinion polls and market surveys.

4. Stands of timber are sampled to estimate the total stand and
bodies of water are sampled to estimate the number of fish in them.

These uses raise some special problems which are not generally

discussgsed in standard texts.

Such uses of sampling are usually discussed under the heading Theory of
Sampling, even though the whole of statistics is, of course, concerned

with sampling. Sampling in these circumstances is, on the whole,
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éQggtly more difficult than performing experiments, for a considerable
number cof reasons.

1. The population may be difficult or impossible *to specify, in the
sense that we can always be sure that a given observation does, in
fact, belong to it.

2. The population may be changing during.thelcourse of the sampling.
3. The possibility of bias in the sampling assumes overwhelming
importance, in contrast with experimental situations, where we can
"design out" sources of bias and make comparisons within them.

4, Often it is necessary to use routinely gathered records and
observations, which are notoriously untrustworthy.

5. Randomness can_b@ difficult or impossible to arrange. This raises
a large number of serious reservations about the extent to which any

conclusions are warranted, but commonly they are ignored or glossed over.

All of these difficulties become especially acute in the sampling
of populations of people, but no sampling study can be undertaken
lightly. Approached properly, they are sure to be demanding and

expensive.

The taking of the sample

Assuming that we are dealing with a well-defined population, the

simplest kind of sample 1s one chosen entirely randomly. (At least, it
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;hﬁg'the simplest sample to talk about.) Indeed, in this context, this
kind of sampling is called simple random sampling. With this kind of
sampling, methods already studied are sufficient to estimate the
mean and the variance, to calculate confidence limits for whatever we

are estimating, and sc on.

Simple random sampling is rarely practised, because always we -
know a good deal about the structure of the population and can put this
xnowledge to use to improve the coverage of the sample, to diminish
the error of our estimates and to make the mechanical job of
getting the sample easier to manage. (Simple random sampling can be
very hard indeed to carry out.) In particular, this knowledge can be
used to divide t@eupopdlation into strata, within which the
variation (which makes for error) is smallex than over the population
as a whole. The object here is the same as in the blocking that is
practised in designing experiments. Another purpose may also be

served, because it may be desirable to sample the various strata at

different intensities. In any event, having settled on the

stratification to be used, we either sample each stratum randomly
or we make a selection of strata (randomly) and sample each of these

strata randomly.

We have now not one sample but several. We can combine the
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" ffhdinggfrom the individual samples to form our estimates for the

whole population and their standard errors. Details of the procedures

for carrying this out are given in books on sampling theory.

An example

As part of an elaborate study of the pheasant population of
Pelee Island, an estimate of the number of ﬁééting pheasants was
required. It was known from earlier experience that the number of
nests to be expected on a given area varied widely from place to
place on the island, so that some kind of stratification was needed.
Using knowledge gained from previous study, maps and some field work,
the investigators were able to list all the regions of the island into
types, ranging from-highly preferred to impossible. ! Each observation
consisted of a count of the number of nesté.on one acre., The list of

types then read as follows,.

Type A, containing a acres, preference 1
Bf b r 2
E : e ’ impossible.

Presumably, then, the variation within types would be considerably less
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than variation between types and the types furnish a sensible basis

for stratification.

Now, it seems obvious that type & ought to be sampled most
heavily, type B somewhat less, ... type E not at all. The following
considerations bear on the choice of the samp¢1ng rates. Let us
say that we will choose randomly n, of the a sampling units in

type A, n, of the b units in type B, and so on and let us

the total counts in type A, type B, etc. (X is

call =x 1

X

1’ 2' LR

the sum of n, counts, etc.} The estimate of the total number of

nests on the island will be

a
T=X"""_+X —"",+---
1 n, ‘w2mp2 | ,
= ax, + bx2 + ... .

We would, let us say, like the variance of T to be as small as

possible, for a given total number (N) of acres sampled. If

Gi, cg, ... represent the varlances within types we have
Var T = a° Var Ei + b® Var §2 +oa..
2 2
o o}
=a2£—1~+b2n~—-2~+ .
1 2

This expression we require to be as small as possible, subject to
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the condition that n, + n, + ... = N . Thus, we write
azoi bzdg
P o= -+ + ... + A{n, + n, 4+ ...-N)
1 2
2
2 2
i R
Il_l
2 2
aw b g, _
-t = - + A =0,
an 2
2 5
etc.

Therefore, each n; is to be chosen proportional to the product
cf the number of units (acres) within the type and the standard
deviatién within the type. Of course, the standard deviations
would not be knowgliﬁhey can be estimated after the sémpling is
completed), but experience with this sort of thirg suggests that
they are likely to be roughly proportional to the average counts

within the types which, in turn, might be guessed with fair accuracy

on the basis of prior experience.

Even though there is some uncertainty about the best sampling
rates to use, there is every reason to expect a stratified random
sampling of this sort to be vastly superior to simple random

sampling. The effort is concentrated where it will do the most
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-%ggbd and the error the estimate is exposed to (the within stratum
error) is likely to be much smaller than that reflecting variation

over all the strata.

This example is simpler than most. The population is well
defined and, for most part, easily accessible (there was some
difficulty with brambles). Much dependable pfior knowledge is
available. There are, it seems, none of the sources of bias

one fears in many sampling studies.

Some non-parametric tests of significance.

The sign test.

Oﬁe way of approaching the paired comparison type of experiment
is to list the di%f;;ences between pairs and treat thé% as observations
from a single population. The test of significance for the difference

between two samples becomes a test for significant departure from

zero of the average difference.

If, instead of the numerical values of the differences, we list
simply their signs, the supposition that the two samples come from
identical populations implies that positive and negative differences
are equally probable and that the set of signs could be considered

to come from a binomial population with p = %% . (Strictly speaking,
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( -;Eﬁis argument holds only for continuous variables.) This remark

forms the basis of a test based on the binomial distribution.

Because measurements are always discrete, it may happen that
some of the differences have value zero (the problem of ties.)
Such differences may be dropped and the sample size reduced

accordingly.

It seems obvious that the sign test is less discerning
(powerful) than the t - test, because it ignores the numerical values
of the differences. On the other hand, it requires little calculation
and may, on occasion, be all that is required. Also, there are
situations in which, for one reason or another, the numbers needed

to calculate a t - test are not available. See exercise 31.

The Mann-Whitney Test.

When the observations are obtained in a completely randomized
fashion, the sign test cannot be used. Suppose we have two samples,
pls

X X, and Yor Yor o0 Yo v taken in circumstances which

’ LI
2 1 2

1’
admit that the populations may be different, in particular, that

they have different locations. We require a test of the supposition

that the populations are identical.
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We would presumably have little doubt that the populations
are different if, for example, each x 1is less than every vy ,
because this outcome is highly improbable if the populations are
identical. In less extreme cases, we require some measure to

display the preponderance of cases in which x < y .

One way of defining such a measure is to §£der each sample in
increasing order of magnitude, getting say [xl}, [x2}, e {xni]
. and [yl], [y2], ces [ynz] ;, then pool the samples and order the
whole set in increasing order, The pooled and ordered samples

might then be, for example,

[x

k1 Iy, b Ixgd o Ikl Ixg] [y, ... Ty, ]

2

i

Now, calculate numbers as follows:

u, = number of x's less than [Yi] (for the @ﬁm@l&lh.= 2)
u, = number of x's less than [y2] “ﬁ = 5]
w, = number of x's less than [yn 1 hﬁ1 = nl)
2 2 2
B
U = £ .
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One extreme case, when each x 1is less than every vy .

yields u, =u, = ... = un2 = n, and U = n, n, . The other

extreme, in which each x 1is greater than every vy , evidently

yields U = 0 . Other arrangements yield wvalues between these two.

Under the supposition that the two samples came randomly from
identical populations, all orders of the n1‘¥ n, observations afe
equally probable and the probability of obtaining each possible
value of U can be calculated by direct combinatorial methods.

We can then select those values so extreme as to be highly improbable,
if the samples did in fact come from identical populations and

therefore, if one of them is obtained, it can reasonably be concluded

that the samples must have come from different populations.

For small values of n, and n, . the probability distribution

cf U is tabulated. For large n, or n

1 or U is approximately
n,n n .n2(n1 + n

+ 1)
and variance - 1 2 .
2 12

normal, with mean
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Aggendix

" Orthogonal Transformations

A linear transformation which changes a set of values or

variables, Xi' X w0 X , to another set yi, y2, cen Yy o0 may

2f n
be written in the form
y, = ax +ax + ... + a x

1 11 2 2 nn

= + + ... +
Yy biyz bzx bnx

. and so on.

Yo ©
The symbols ai, bi ..+ stand for numerical constants. If these
constants satisfy relations like af + ag + e ai = 1 ,

2 w2 ' 2 _ =
b1 + b2 + ... F bn =1, _aibi + a2b2 t oa.. anbn 0 , for everxry
pair of y's, the-transformation is said to be orthogonal and
normalized (orthonormal) . It will be called henceforth simply

orthogonal.

Orthogonal transformations are useful in statistigs for
extracting, from a set of observations, what they have to say about
the various sources of variation which gave rise to them. 1In 6rder
that this shall be possible, the observations must be made in certain

patterns which are themselves said to be orthogonal.

The reason why orthogonal transformations are used, rather than

some others, lies in some facts which can be established
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5athematically.

(1) If the x's can be regarded as independent, normal variables

with variance o2 , the y's may also be so regarded.
2 2 2 .2 2 2
(2) Y, ty, ot ... Yo = % toXD R ... X

The writing of orthogonal transformations.

When numbers are used instead of symbols to construct a specific
transformation, of necessity the numbers are fractions or square roots
of fractions. It 1s convenient, to aveid an inordinate amount of
writing, to use integers, chosen to satisfy the condition that the
sums of products must be zero and determine the divisors sc that the
squares of the coefficients add to one. To illustrate the construction

of any orthogonal transformation, take n = 3 . To write

= +
Yg = 8%y T 8%y T oagx,

H

we may choose any three numbers, 1, 2 and 3 , say, and divide them

by the sgquare root of the sum of their squares. Then,

v1d ¥y14 Y14

To write Yy, = b, x, + bzx

1%y +'b3x3 , orthogonal to y, , we must choose

2

ot b3 so that

b1 + 2b2 + 3b:3 =0

Any set of b's satisfying this equation will serve. It is simplest

-7 b, = 2 b. =1 Then

1 ! 2 ! 3 '

|

to choose integers, e.g. b

7 kv 2 x4+ - x

y:
2 »ps7 Y y3p? 7l
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Tog%btain Yo = C X, T C,X, + CuXg oy orthogonal to Y4 and Yo

values of ¢, , ¢ c must be found such that

1

c, + 2¢c .+ 3c3 = 0 ,

1 P
—701 + 202 tc, = 0 .
Integers satisfying both equations are ¢, = 2, c, = i1, cy = -8 .
Yq = 2 x, + 11 X, - 8« .

/I * /igg 2 yisg °

In writing Y, s there is a free choice of two numbers, the third
being determined by the fact that the sum of their squares must be unity.
In writing Y, r only one choice may be made and in writing Yg ot

there is no choice whatever.

The transformation can be exhibited most simply in the form

. El fz fﬁ divisor
¥, 1 2 3 Y14
Yo =7 2 1 v54
ys 2 11 -8 /189

In statistical applications, an orthogonal transformation ié con-
structed to exhibit the contributions of all the sources of variation
provided for in obtaining the observations. The first component, ¥y, .
in the applications studied here, is given a set of equal coefficients,
ie8. @, = 8. = sea =T a, - This choice decrees that Yo ¢ ¥gq 1 cee ¥

1 2
must have coefficients that sum to zero. For this reason, they are

n

called contrasts or comparisons or differences.

Experiments are wholly &oncerned with contrasts, with changes
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brought about in a response variable by changing causal variables. The
way in which the transformation is constructed is dictated by the

nature of the changes introduced with the causal system.

The orthogonal transformation is used as an instrument for under-
standing and exhibiting the structure of an experiment and the contrasts
it is intended to study. Ordinarily the trapsformation is not set up
as a device for making calculations, but good\calculating rules are L
derived from it. Usuwally it 1s sufficient to write the transformation

for a diminutive example of an actual experiment.

In complicated experiments, the transformation is useful in
displaying, for each component, which sources of variation are included
in it and which ones are excluded. When the coefficients of a com-
ponent sum to zero within each level of a source of wvariation,
variation arising from that source is excluded from the component; when
the coefficients do not sum to zero within each level, the source of
variation does contribﬁte to the value of the component. When the
coefficients of a component sum to zero within each level of every
source of systematic variation provided in the arrangement of the
experiment, the component gathers up only variation of the sort

attributed to error.

Crossed Classifications.

When cbservations are classified according to two or more

criteria where each level of each criterion occurs in combination
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said to be crossed. This occurs, for example, in factorial
experiments and randomized blocks. In these circumstances, the
possibility exists of perceiving the effects of interactions. This
discussion has to do with the writing of interaction components in the

orthogonal transformation.

To discuss an example, think of a 3 x 3 factorial arrangement,.

with one factor A at levels a, 1 &8, 5 a, and another factor B

at levels b1 P b2 ' b3 . Let xij stand for an observation, or

better, the average of several observations, arising out of an

orthogonal experiment, on the combination aibj . Then, apart from
errors, we can think of the structure of xij as
%5 3 =y o+ o, + Bj + Tij , which says simply that our observations may

be expected to vary systematically from one level of A to another,

from one level of B to another and, in addition, in a way which
cannot be accounted for in either of these ways (this is the inter-
action). It is convenient, in this model, to make Eui =0 ,

ZBj =0 , i Tij = 0 for all 3j and § Tij = 0 for all i . This

convention is not needed here, however.

If we start writing a transformation of the Xij to display.,

first, main effects, we may choose three numbers, ¢ c c

17 2 ! 3 4
such that cg tc, teo, = 0 , and use them to display an A main

effect as shown.
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11 12 13 21 22 23 31 32 33
Ya €4 4 4 Sy " P 3 3 3
Yy 4, 45 d, d4 4, dq dy d, d,
Y %Yy ¢4y ¢ 4, cydy  cd;  eydy cdy cpd cpdy cgdy

similarly, a B main effect may be displayed by .choosing any three

mimbers d1 d2 d3 with d1 + 62 + d3 =0 . Now, it is asserted that

an interaction component, corresponding to Y, and Yy, ¢ can be formed

simply by multiplying ceocefficients, column by column, of Y, and Yy, -
The component labelled Yy X Yp can be written out as

b =3I L e, d, x..=5L5%L ¢, 4. + o, + G I
Y Yy D5 %1% g Ph e 3(“ ] BJ lj) ’

which can be expanded and rearranged to read

HIcy
1

d. + L c; Oy 4. +35d. B. Z c, + 2 L e, d. T.. ;
Joi j S IR ij

)
3

c. d, T,, , because I ¢, =L d, = 0§ .

which reduces to L L .
15 i 3 ij 1 J

Calculations of the same kind yield:

Y, = Lk C, X;. 7 rz cl(al +oT, )
i J i J
Vv, =L L d, x,. =Y L d,(B. + T,..)
b i 3 x3 i J 1]
From these expressions we see that contributions from the 71.. are

13
perceived in the component Yo % ¥y and that, if they turn out to be

different from zero, their wvalues distort the main effect components

Y4 and Yy ¢ rendering them useless.
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i

N.B. It has not been asserted that interaction components can be
constructed only by the column by column multiplication rule. There

are, in fact, other ways, leading to different sets of interaction

components.
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“FExercises

1. The weight of coating, in hundredths of an ounce per square

foot, is measured for 60 sheets.

147 160 158
162 160 132
152 138 158
177 173 162
185 170 147
153 160 142
138 160 145
137 151 134
164 153 144
146 159 158
153 150 148
154 160 148 :
153 154 155
134 159 164
160 149 157
137 155 ' 162
146 158 148
166 148 175
132 160 150

165 148 172

(a) Make a grouped frequency distribution, using about 10 classes.

(k) Plot the histogram of the distribution.
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(?TﬁgPlot the cumulative frequeﬁcy distribution.
(@) Obtain the median of the distribution.
‘(e) Calculate the average of the frequency distribution.

(£) Calculate the second moment about the average of the freguency

distribution.

(g) Compare the numbers in (e) and (f) with the averaqé and
second moment about the average, calculated direbtly from the
sample. The sum and sum of squares of the sample values are,

dropping the first digit, 3223 and 179797.

2. 2n urn contains three red, four white and five blue balls.
Three balls are to be drawn randomly without replacement. Let R
stand for the event: at least one red ball will be drawn; r - exactly

H

one red ball will bhe drawn, with similar definitions for W, w, B, b .

(a) Calculate the probabilities of the events r, R, b, B, w, W,

rW, WBR, R + W, RW.

(b} cCalculate P{(B/RW) and P(x/W) -.

3. A aeck of six cards,three 7's and three 8's,is to be dealt to

three players, A, B and C . List the variou$ different distributions
of hands among the three players (£here are seven of them}. Under

the assumption that the cards are to be distributed randomly to the
players, calculate the probability of each of the possible distributions.

Now calculate the probabilities of the following events.

(a} A gets a pair.
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ﬂ;%b% One of the players getsg a pair.

(c) Exactly one of the players gets a pair.
(1) B gets an 8 , given that A gets an 8 .
() B gets an 8 , given that A gets two 8's .

(£} B gets an 8 , given that 2 gets exadtly one 8 .

4, A lottery in which N tickets are sold provides K prizes
to be awarded by selecting randomly K of the N tickets. A
gambler buys two tickets. Calculate in two ways the probability

that he will be a winner.

5. An urn contains a white balls and b black balls. One ball is
to be selected randomly and removed. A second ball is then to be

drawn.
(a) Calculate the proﬁébility that the second ball will be white.

(b) If the second ball proves to be white, what is the probability

that the first one was white?.

6. A coin is to be thrown until head has turned up twice. ¥Find the

probability distribution of the number of throws.

7. Two defective light bulbs have been mixed with two good cones. A
bulb is to be selected~randomly from the four bulbs and tested. If
it proves to be defective it will be destroyed and the process of

selecting and testing will be continued. Let x represent the
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Q#%*number of bulbs that will be tested until a good one is found.

Determine the probability distribution of x . Calculate the

mean and varliance of this distribution.

8. An infinite population is specified by the following frequency

distribution.
= Px
1 v
2 s
3 Y

(a) Calculate the mean and the variance of this distribution.

(b) List all possible samples of 2 observations that can be drawn

from this population.

(c) calculate the probability of each sample, under the supposition

that it is drawn randomly.

(d) Calculate the average of each sample and form the probability

distribution of these averages.
{e) Calculate the mean and the variance of the distribution in (d4).

{£) How can the mean and the variance found in (e) be calculated

without forming the distribution in (d)?

(g) Same as above, using samples of 3 observations.

9. Large consignments are accepted or rejected on the basis of a
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,.Fgmﬁxandomly chosen sample of 20 items. TIf the sample contains 3 or

more defective items, the consignment is rejected. What is the
H

probability that it will be rejected if it contains (a) 1% ; (b) 10%

(c) 30% defective items?

10. On a true-false test, a candidate answered correctly

(a) 7‘out of a total of 10 guestions;

(b) 70 out of a total of 100 guestions.
In each instance, decide whether one can reasonably maintain that all

the answers were simply guesses.

1ll. An unbiased coin is to be tossed 15 times. Calculate the
probablllty that

(a) the number of heads will be outside the range 4 to 10;

(b) neither the number of heads nor the number of tails

will be outside the range-4 to 10.

12. Let x be a binomial variable with n = 25 and p = 0.30
Calculate P(5 < x = 13) using binomial tables and using the
normal approximation to the binomial distribution, both with and

without the correction for continuity.

13. A sample of 25 observatlons has been drawn from a populatlon

asserted to be normal with mean 6 and variance 4,
gsxerted

(a) The average of the sample is 8. Show that this result is in serious

conflict with +the assertion.
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oy

(b} The sum of the squares of the observations is 3136. Calculate

test functions that bear on the following questions.
(i) Is the specified variance incorrect?
(ii) Is the specified mean incorrect?

(¢} Calculate 95% confidence limits for the mean of the population.

14. A sample of 25 observaﬁions, drawn randomly from a normal

population, yields an average 43.7 feet.

(a) Calculate 99% confidence limits for the mean of the population,

given that the variance of the population is 9 sguare feet.

(b} If the variance of the population is not known, but is estimated
from the sample by calculating 82 = 10.4 , how is the procedure for
setting confidence limits modified from that used in part (a)?

Calculate 99% cdﬁfidence limits in this instance.

(c) BHow are confidence limits, like those calculated in (a) and

{b), to be interpreted?

15. An established method for determining the specific graviity of
metals is known, througﬁ extensive use, to have normally distributed
errors with standard deviation ¢ = 0.10 . Two students, A and B ,
use the method to measure the specific gravity of a given piece of

metal, with the following results,
A : 10.20, 10.10, 10.30, 10.50, 10.40, 10.10, 10.50
B : 10.30, 10.28. 10.32, 10.29, 10.31 .

Do you think that either A or B 'is using the method properiy?

N
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””%@6_ Two methods of teaching reading are compared by dividing a

group of 10 children randomly into two groups, one taught by method A
the other by method B . At the end of the trial, each child is
required to read the samelpassage. The numbers of mistakes are

recorded below.

method A method B
39 32
47 41
51 30
32 37
43 34

Do these results furnish acceptableievidence of a genuine difference

between the methods?

If you had the responsibility of designing an experiment to
compare two methods of teaching reading, w1th the intention of
selecting one of them to be used throughout Ontario, what would

you recommend?

17. Two types of coating, A and B , intended to retard corfosion
of iron pipes, are compared by putting A on one half of each of
a number of specimens of pipe and B on thé'other half. They are
then buried in soil for a year, removed and the deéths of pits caused
by corrosion are measured. The depths of the deepest pits are given

in the following table.
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specimen no. coating A coating B untreated
1 : 21 73 81
2 .41 43 52
3 43 47 | 55
4 41 53 . 63
5 47 58 65
6 32 47 50
7 24 53 62
8 . 43 38 48
9 53 61 T sg
10 52 - 56 59

Decide, on the basis of a test of significance, whether these
results indicate a difference between the coatings. Carry out
the arithmetiq@ldpalculations in two ways, the analysis of variance

and the paired-comparison.

Suppose now that the experiment had been carried out somewhat

N

differently, to provide information on whether the coatings are

any use at all. To this end, each specimen is marked off in

three equal segments, one to receive A , one B and the third

left uncoated. Presumebly the allocation of treatments to segments

would be made randomly for each specimen.

Calculate the analysis of variance table for this experiment and

make such tests of significance as you think are needed.
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“”%3}8. Construct a set of 2 x 2 tables in the following way.

(a) Choose any number and enter it in each cell of the table.

(b} Choose any two numbers which add to zero, add one of them to

each number in row 1 and the other to each number in row 2.

(c) Choose any two numbers which add to zero, add one of them to
each number in column 1 of table (b) and the other to each

number in column 2.

(d) Choose any four numbers which have the property that, when
arranged in a sguare, the sum in each row and each.column is zero.
Assign these numbers to the cells of table (c) and add them to the

numbers already there.

Calculate an analysis of variance table for each of the four
tables you have constructed, separating the variation into that

attributable to rows, columns and rows x columns. ,

~Question
If the numbers added to the rows in step {b) do not add to

zero, where, in your analysis, would this fact show up?

19. The effects of three drugs on level of performance and
learning (as displayed by changes in performance over successive
trials) are compared using 15 subjects, 5 allocated randomly to

each drug.
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drugs subjects trials
U ¥
B, 2 4 7
B, 2 6 10
D, B, 3 7 10
B, 7 g 11
B, 6 9 12
By 5 6 10
B, 4 5 10
°2 By 7 8 11
By 8 9 11
Byg 11 12 13
By, 3 4 : 7
Y3 Big 3 6 9
Bia 4 7 ?
B, 8 8 10
B, 7 10 10

{a) Plot such graphs as you think may be useful.
(b) What kind of experimental plan is.this?

(c) Calculate the analysis of variance and make any tests of
significance you require to reach conclusions about the effects of
the drugs. Do these conclusions agree with what you perceive -in

the graphs.. ' n



20. A 32 factorial experiment, carried out in a randomized block:

design with two replications, yields the observations given below.
Calculate an appropriate analysis of variance and make the tests of
significance that are required. (Assume that the levels of both

a and b are equally spaced.) Plot the graphs indicated by the

analysis.
Rep. 1 ' ‘ . Rep. 2
a2 a3 ] 8s. 33
b1 19.86 26.37 29.72 b1 20.88 24.38 29.64
b2 15.35 22.82 27.12 b2 15.86 20.98 24.27
bS 4.01 10.34 15.64 ‘ b3 4,48 9.38 14.03

The "preliminaryv" analysis of variance table is
< Y Yy

d.f. s.s. .
replications 1 2.9850 !
treatments 8 1077.2496
error 8 7.2699
total 17' ’ 1087.5045

21. Think of a chemical process whose yield of a certain chemical
is measured at five equally-spaced temperatures, which may as

well be labelled 0, 1, 2, 3, 4 . Suppose the measured vields are,
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in appropriate units:

(a) 1.1 1.1 - 1.1 1.1 1.1
(b) 1.1 1.2 1.3~ 1.4 1.5
(c) 1.1 1.3 1.6 2.0 2.5
(@) 1.1 1.4 2.0 3.0 4.5
C(e) 1.1 1.5 2.5 4.5 7.0

Plot the curve of yield against temperature for each of the

sets (a), (b), (c), (d), le) .

Apply to each of the sets the transformation whose coefficients

are listed below.

average 1 1 1 1 1
linear -2 .=l 0 1 | 2_ ;
quadratic 2 -1 -2 .ul 2
cubic -1 2. 0 -2 1
quartic 1 -4 6 -4 1

How would you use this transformation, in an actual experimental
situation, to decide on the nature of the curve reqﬁired to
describe the relation between yield and temperature? Suppose thé
yield is determined three times at each temperature, that the
error s.s. , with 10 4.f. , is 11.3 and that the average yields are
found to be

1, .2, 9, 28, 64.

Plot the graph and carry out an analysis to ascertain the

degree of the polynomial that fits the points adequately.
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22. A factorial experiment, in which two levels of a factor A

are tested in all combinations with two levels of a factor B

" leads to an analysis of variance table

{a) (b) (c)
d.f. S.S. S.S. 5.8.-
.\ 1 96 7 96
B 1 7 5 96
AxB 1 5° 96 96
error 8 48 . 48 - 48
Carry out, in each of the situations {a), (b), (¢), the tests of

significance you think are required and state the conclusions

they.indicate.

23, Two kinds of sole leather, A and B , are torbe compared
by issuing'boots made with each kind of leather to a squad of
soldiers who are going on a foute march. At the conclusion of the
march, the amount of wear of each boot will be measured in some

suitable way.

Two plans for carrying out the test have been put forward.

Plan 1. The squad will be divided into two equal groups, each
with n soldiers in it. Boots made with leather A will be
issued to one group and boots made with leather B +to the other.

group.
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Plan 2. Each of the 2n soldiers will be issued a pair of boots,

one made with leather A , the other with leather B

Compare and contrast the two plans. Where, in each of them,
is randomness needed? Set up an analysis of variance table for
each plan and indicate the proper error term for testing the
A vs. B comparison. Which of the two plans would you expect

to furnish the more precise comparison?

24, A trial, carried out according to Plan 2, yields the following

measurements of wear.

individual leather A leather B
1 5- ’ 7
2 3 4
3 3 ;2
4 4 5
5 -2 4
6 2 3
7 5 6
8 3 6
3 4 -3

10 : 6 7

Carry out an analysis of these results, leading to a test of

significance of the average difference between A and B

25. Let vy stand for the height in inches of a man and x for

the height of his father. Fit .a regression equation Y = y + b, {x - x)

i
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y 66 65 67 68 . 69 69 71 69

X 60 62 64 66 68 70 72 74

(a) Calculate the s.s. attributable to regression and the s.s.

of residuals. Enter them in an analysis of variance table.

{(b) 1Is b1 significantly different from zero?

(¢) 1Is b1 significantly different from one?

(d) Use the regression equation to estimate thenaverage height of

sons whose fathers are 76 incheS‘tall.
(e) Plot the equation Y =y + b, (x - X) on a graph.

(£) Calculate 95% confidence limits for E{y/xX) at several
selected values of x . Plot these points on the graph and use

them to sketch in the boundaries of the confidence band.

. 26. Go back to the observations listed in exercise 21, relating

vield with temperature. Fit-a'regréssion  Y‘=,§7+ bl(x - X) to

these observations (y representing yield, x temperature). Calculate
the s.s. attributable to regression and the s.s. of residuals.- Test
the s.s. of residuals against error to decide if the regression
equation fits well enough. (Of course,; the answer to this guestion

is known from 21.)

27. An experiment is carried out to study the dependence of the
stiffness, vy ., of fabric¢ on three factors . D ' the diameter

of the weft yarn, T , the amount of twist in the weft yarn and x ,



- 164 -

T
.,
T

the number of weft yarns to the inch.

For obvious reasons, the factor x could not be introduced,
over a sufficiently wide range, orthogonally with the factors D
and T . The layout of the experiment and the measurement of

stiffness are given in the following table.

D, = 2.1 D, = 3.0
Y % y X
T, =2 84 83 104 95
75 82 94 88
61 74 ' 88 84
71 95 78 95
T, = 8 66 92 72 92
54 84 56 82 !

{a) How would you describe the structure of this experiment?

(b) Plot accurately on the same gfaph the -(%,y) points for

each of the sets’ DiTi’ DiTQ, D2T1, D2T2

By inspection of these graphs, answer the following guestions.

(c) How would you describe the dependence of y on the factor x ?

How might you specify it numerically?

(d) Does the factor x interaét with one or both of the factors

D and T'?

(e} - Do the factors D and T interact?
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‘x“%ﬂﬁ) Read, from the four lines of the graph, the y-values

corresponding to x = 88 , which is approximately the average of
all the x-values in the experiment. Use these four y-values

to calculate the change in stiffness brought about by changing

b from D1 “to D2 and by changing T from T1 to 'I‘2 . These
changes may be said to be adjusted, inasmuch as they do not depend

on X

The numerical accompaniment to this graphical analysis is

called the analysis of covariance.

28.{(a) A count of the number of thunderstorms occuring over a

large area in one year yields the following list.

June 60
July 100
August 80 :

.Are these cbservations inconsistent with the supposition that

thunderstorms are distributed egually among the three months?

(b) A similar count made the following year yields the list

June " 80
July 1060
August 60

Do the two lists indicate a genuingé difference, between one

year and another, in the distribution of thunderstorms over months?
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23. An angler recorded his catch for a season in the following form.

morning midday -evening
bass 60 | 20 40
pike 70 50 30
perch 90 100 - 60

Do these records indicate differences, between one kind of

fish and another, in the pattern of success throughout the day?

30. Go back to exercise 17 and carry out a non*paraﬁetric test of

the difference between the two coatings.

3l. A department of education carried out a trial in 12 schools,
to comﬁare two methods of teaching reading. It reported that, in
every school, method A scored better than method B ; but that
the overall difference between the methods was not significant.

Can you accept this statement?
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A water diviner advertised that he had been consistently
successful in locating water in 90% of his attempts. The
following year he made 100 attempts and located water in 70

of them.

Do you think his skill had diminished? What suppositions do you

make in reaching your conclusion.

The experience of airlines shows that 10% of ticket holders do

not show up for their flights. If an airline overbooks by 5%,

what is the probability that a flight, so overbooked, that

can accommodate 100 passengers, will not be able to accommodate
all the passengers who will arrive for it?

Write an exact expression for this probability and approximate

it as well as you can.

A process produces ball bearings with mean welght 1 ounce and
standard deviation .00l ocunce. The ball bearings are packaged
in boxeg of 100.

(a) Calculate the mean and the standard deviation of the weights
of the boxes. (Ignore the weights of the containers.)

(b) Nine boxes of ball kearings are purxchased. Their weights prove to be,

in ounces.
99.70 , 99.71 , 99.72 , 99.69 , 99.68 , 99.70Q
99,692 , 99.71 , 99,70 .

Do you think that these 9 boxes can be regarded as a randomly
chosen sample from the population described in (a) ?

Grade 1 wheat has mean weight 65.0 pounds per bushel, with
standard deviation 0.2 pounds, 5 bushels of wheat are chosen

randomly from a large consignment not known to be Grade 1. Their
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weights prove to be, in pounds,
€4.4 , 65.3 , 64.6 , 65.9 , 64.8 .
(a} Is the consignment more variable than Grade 1 wheat?

(b) Calculate 95% confidence limits for the mean weight per
bushel of the consignment.

Three specimens of each of five different metals were immersed
in a corrosive solution and the rate of corrosion of each

specimen was determined

Metal Corrosion Rate
Aluminum 0.5 ’ 0.4 ’ 0.6 .
Stainless steel 0.6 r 0.7 ’ 0.6
Carbon steel 6.5 ' 7.0 ’ 7.3 .
Enamel-coated steel 0.8 ' 0.6 P 0.8 .
Nickel alloy 4.1 ' 3.5 p 3.0

(a) What type of experimental arrangement is this?

{b) Calculate an analysis of wariance and assemble the results

in an analysis of variance table.

(c) Can you reascnably account for the differences among the

metals on the basis of error only?

{(d) Estimate the difference between the corrosion rates of stain-
less steel and carbon steel and determine a 90% confidence

interval for this difference.

Three brands of detergent A, B, C, are compared by washing
uniformly sciled specimens of cloth in them at two different
temperatures, T1 and T2 . B8ix identical washing machines are
used, so that the six combinations of detergents and temperatures
may be tested simultaneously. Two replications of the test are

carried out on two successive days.
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After the specimens are washed and ironed, measurements of
brightness are made on them. The following tables record the
averages of the brightness determinations obtained under the
various sets of conditions.

Day 1 Day 2
A B C A B Cc
T, 10.6 11.5 12.2 T, il.e6 12.4 13.6
T, 11.7 10.8 10.1 T, 12.4 11.9 11.2

Carry out an analysis of variance on these results and use it
to reach a conclusion about the differences among the detergents.

Make a table of such averages as vou think are warranted.

The yield of a chemical process is measured, on two occasions,
at each of three temperatures, 125° ' 150° ' 175° . The vields,

in tons, are given in the following table.

125° 150° 175°
173.6 192.5 181.7
182.4. 198.3 175.2 ;

Analyse these records with a view to studying the dependence of
yield on temperature.

Two strains of virus are to be compared by applying them to
leaves of plants and counting the number of lesions produced.

8 young plants, each bearing two leaves, are to be used, one
strain to be applied to one leaf of each plant, the other strain
to the other leaf.

(a) What kind of experimental arrangement is this?
{b) Where is randomness required?

(c) Which of the terms in the following list can properly be
used in describing this experimental arrangement?

replication, block, factorial, split-plot, confounded, paired.
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The counts yielded by the trial are given below. Carry out a test

of significance on the average difference between strains.

Plant No. Strain A Strain B
1 4 &
2 7 8
3 3 2
4 6 9
5 6 7
6 8 10
7 5 6
8 2 3
40, Appetites of rats, as measured by weight of food consumed, are to be

compared under the influence of a drug, to be administered at three

levels, 0.1 , 0.3 , 0.5 mg. per gram of body weight, and at two

different durations of starvation, 5 and 9 hours. To start with,

§ix rats are assigned randomly to the six treatment combinations.

The following day, six more rats are similarly tested, providing a

second replication.”  The results, expressed in grams of 'food consumed,

are given in the following tables:

rep. 1 - rep. 2
level of drug level of drug
0.1 0.3 0.5 0.1 0.3 0.5
duration 5 hr. 9.16 11.57 5.22 5 hr. 11.82 11.53 9.21
9 hr. 16.08 10.30 9.27 9 hr. 14.65 14.46 6.10

How would you describe the structure of this experiment?

Draw up a suitable analysis of variance table (or a sequence of
them) , listing sources of variation and the degrees of freedom
associated with them, to correspond to this structure.

Calculate the requisite sums of squares and use them to decide

how much reduction of the observations is warranted.

Discuss the nature of the graphs that may be plotted to display

your conclusions.
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”21. A firm ig introducing a new product. It wishes to study the
effect on sales of using two different counter displays, Ai
and A2 , and two different prices, 31(54) , and Bz($8) .

12 stores are available for the trial, 3 assigned by random alloca-
tion to each of the four display-price combinations. The unit

sales recorded for the trial period are as follows.

AiBl A1B2 AEBl AQB2
64 72 60 88
84 70 54 84
56 74 60 86

What conclusions can you reach from these records?

42, Rates of wear of tires made with two kinds of rubber , A and B ,
are to be compared by mounting two of each kind on a single
automobile. It is known that rates of wear may differ appreciably
between front and rear wheels and that no difference is to be

expected between the left wheels and the right wheels.
(a) How should the fires be allocated to the four wheels?
(b} What kind of experimental arrangement is this?

(c) After the rates of wear have been measured, how would one

form an estimate of the experimental error variance?

43, If, inexercise 42, there is no assurance that left wheels and
right wheels produce the same rates of wear, is it possible

to make a proper comparison of tires using only one automobile?
Can you suggest a better test using two automobiles and four of
each kind of tire? What assumption would you have to make to

ensure the validity of your comparison of the tires?

44, The effect of the rate of cooling on the hardness of steel can
be investigated by selecting several samples from a batch of
steel and cooling them at different rates. The effect of
composition (e.g. percent carbon), on the other hand, requires

whole batches made up for each composition.
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An experiment to study both effects is carried out by making

four batches, two of composition <, and two of composition

C2 . From each batch, three samples are selected, one to be
cooled at each of three rates by plunging them into water
at temperatures 100° ’ 150° P 200° . After the specimens have

cooled completely, the hardness of each is measured twice.

c, c, c, c,
5000  ll.1 10.8 15.2 15.1
10.9 10.5 - 15.1 14.4.
1500 13.1 12.0 17.7 16.1
12,9 11.1 17.6 17.3
100®  15-2 14.7 20.9 18.5
15.2 14,5 20.8 19.4

Use analysis of variance calculations to sort out the various
sources of variation in this experiment and offer whatever

conclusions you perceive.



