Regression theory may be approached in a number of ways. COne
of them, to derive it as the statistical behavour of one variable,
conditional upon all the others, in a multivariate normal distributiom,
seems unnecessarily restricted. Another, as a direct application of
the theory of least squares, is the least restricted and often the
simplest to carry out, but ome naturally prefers an approach that
depends on more primitive principles of estimation.

Two approaches will be used here; first, the least squares
derivation, second, one requiring that the estimators of the regression
coefficients be best, linear, unbiased. The equivalence of the two

derivations establishes the Gauss-Markoff theorem.

Notation

xo, xl, ey mp will denote the independent wvariables of the
system, called independent variables, fixed variables, predictors,
selectors.

¥ will denote the dependent or statistical wvariable.

Observations on these wvariablés will be called
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The regression question

Any question of the sort : given values of the z's, what
can be said about the statistical behavior of y? might be said to be
a regression question. The essential feature, of course, being that
it is a conditional question. The x's, here, are numerical, but have
no other restrictions. They may be continuous or discontinuous, and
need not come from, or be msgociated with, frequency distributions. They

serve simply as selectors which, once assigned, select a y - population,



which will then be sampled one or more times.
The dependent variable, y, will be treated here as continuous,
but the usual devices used to bring discontinuous variables within the

scope of these procedures are available here also.

The usual restricted regression question

The gquestion usually posed concerns the conditional mean of

(ylmo, Lys wees mp) in the form

E(y|m0, Lys e xp) = f{mo, Lys oees xp),

where the function f is specified up to an set of parameters, whose
values are to be estimated from the observations. The only form of
f to be discussed here is one linear in the parameters.
E(ylmo, Lys wens xp) = Boxo + lel + ...+ Bpmp = .i Bimi
1=0
This assumption about the form of f imposes severe restrictions, to be
sure, but they are not as severe as may appear at first giance. Nothing

stands in the way of the x's being functions of one another (apart from
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Le = wlxz, etc., in which case we are fitting a curved regression surface.

linear functions). We could, for example, choose x, = 1, x

In most regression guestions, it is appropriate to put Zy = 1, i.e.

to provide a constant term in the regression model. Most of the results

that we will be reaching do not require this supposition. Those that do will

be pointed out.

Another assumption will be made about the nature of the Y - distributions.

Var(ylmo, Lys sens ) = o2,

p

i.e. the variance of y does not vary from one population to another.

Practically speaking, the y - distributions are identical, apart from

.
i



location. This is a strong assumption, never to be taken lightly.
Since all our distributions are conditional, we may, to save

writing, use By instead of E(ylmo, x e xp) and Var y instead of

1’

Var(yixo, x vens wp) and so on.

1’

Assumptions about the sample.

We envisage a sample obtained in the following way: a set of

x~values is chosen, in any way we deem suitable, mOa’ mlu’ vy mpa'

These x-values select a y—pépulation, which we proceed to sample
randomly, obtaining Yo+

Sometimes, this is the most natural and convenient way of carrying
out the sampling. On occasion, though, the 2's and y all pertain to
the same individual, and it is easier to select a sample of
individuals and measure the x's and ¥ on each of them. In this case,
the x's as well as y may be considered to come randomly from frequency
distributions, but this is irrelevant to the regression guestion we
have proposed.

The assumptions made this far permit the following statements
Ey =18 Ey, =) 8; % s

Y

0 = ) By ©0 T ga,-where g, Tepresents an "error', coming

randomly from some distribution of errors with



Estimation of the regression coefficient and E(y).

We shall write bi as an estimator of Bi and ¥ as an estimator of E(y).
Then,
Y=} b, and ¥ =] b, .

The principle of least squares,

This principle asserts that the estimation be carried out by choosing

the bi so as to minimize the sum of squares of residuals, i.e.
E = S(ya - Y&) is to be minimized.

Thus, for each bj’ we write
aF o
2 =2 - — = -2 8 - , =

abj S(ya Yﬁ) abj 2 (yu Yu) xga 0.

We get, then, a set of p + 1 equations,

SG, = ¥) @, =0, §=0,1, ..., p.

These are the so-called normal equations. Writing them explicitly in terms

of the b's,
S Yo Tia é;§ Yo %ja or ;
) b@ Tio Tig T S Yo Biq OF

) by Sz, w, =Sy x ,J=0,1, ..., p.

The numbers calculated from the sample, S x.

x, and Sy x. , will be
AV T o “ga

given the symbols aji = aij

Hence, we have the set of normal equations

and ¢..
gJ

.y = 0, 1, .u.y P
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It will be convenient to exhibit these equations in solved forms by

introducing the elements of the matrix (Gij)’ inverse to (aij)’ i.e. the

solutions of the equations

i a’!:j cjk = Gik i,k =0,1, ..., p.
J=0
Then the solutions of the normal equations are

i

bi = Z cij 52 z=0,1, ..., p.



Best Linear Unbiased Estimates.

Let us seek values of the £'s which have the following
properties.

1. bi is to be a linear function of the y's,

le
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where the w's will, presumably, be functions of the a's

2. Ebi=87:

3. Var bi to be as small as possible,

To set up this question as a purely mathematical exercise, we note:

B.

i

E bi = 8 W By, = S Wl ; Bj T

) Bj S w,

&, , identically in the B's.
4 ion go

Hence equating coefficients of the B8's,

S wi&<mja = 6ij’ T, d =0, 1, ..., P, ‘

2 2
also, Var b, = Sw, Vary =2 Suw, .
i Lo o Za

. e 2 .
Hence, we wish, for each %, to minimize S wia’ subject to the
restraints S wiu xja = 6ij' We therefore introduce, for each 7, p + 1

Lagrange multipliers Aij and seek the unrestricted minimum of

1 2
Uy =7 S Wiy T ; hps S wpy @ay = 8,00

The rest is simply formal mathematics.

Y .
1 .
(1) =w, =) Az, =0,a=1,2 ..., ¥
awia 1Q i g Jo
oy, _
(2) 33 =Sww-aij=o, i=0,1, ..., p.



These § + p + 1 equations are to be solved for the ¥ wiu's and the
p+1 Aij's. We may proceed as follows. Multiply equations (1)

by Ll and sum.

Sw O:

ta Tka T ; Aij S Tia “ko T
whence, in virtue of (2) and noting that S xja mka = ajk’
) Mg G = S k=20,1, ...,

Thus the A's are, in fact, the elements of the inverse matrix to (aij)’

i.e. A,., = ¢, ..
1 1J

Then

i
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_ 2
the solutions obtained before by minimizing S(ya - Y&) . The least
squares solution thus provides BLUE estimates of the B's. This is

'

the Gauss-Markoff theorem.

Variances and covariances of the b's.

Cov(bi,bj) = E(bi - Bi)(bj - Bj)' If, for the moment, we write
6C ) for () - E(C),

Cov b. b, =FE &b, &b. .
i g T g

Starting from bi = ; o1 I

$ bi =) ¢ S g and

8 bi 6bj = % ; ik %51 6gk 8g4



Now, g; = S %, Yo» Whence

(=]
w0
=
Il

S T, S Yy = S Ly Sy and

8 g3 8g; = SS Ty %1g %, G+ Thus

a B

= 2
ESgy 9 563%3’15“ Sug

=g2 S

ko aiu
= 02 qkl . Hence

E&b.6h, =c2 o o2
T J

IZ2¢G., C.,a, = L e., 6., =0%¢c,.

% 7 ik Tdl Tkl 7 gl il Ji

Thus, it emerges that the values of the elements of the inverse matrixz
will be needed to specify the varilances and covariances of the b'’s,

even though we might not want them for calculating the »P’s. (I think

there are better ways to get the b's.)

1

Estimation of the error variance. '

It seems obvious that the residual sum of'squares, S(ya - Y&)z,
will reflect error only if the assumed functional form of the regressiomn
is correct. This will be checked later. In any event, it seems likely
that we will require its wvalue. Computation from the definition is
tedious, unless one is using a high-speed calculator. An alternative

is provided by the following identity.

S(ya - Yﬁ)z - S(ya - Yu) Yo ~ S(ym - Yﬁ) s
=3 yi - S Yy Ty S, - 1) Zb’i Lia
=5 yz -5 Yo * bi Lo 0 ({(normal equations)
=8 yi —igo bi g; -



Another identity, for the cases where XO = 1, may be checked in the

same way,

Sy, - D> = Sty - y&)z + S - P

Tests of significance.

If we are to develop exact tests of significance, we need the
assumption, not hitherto required, that the errors are N{O, g%). Tt
follows, from this assumption, that bi is N(Bi;dz cii) and, indeed,
that all the 2's are distributed in a multivariate normal

distribution, with covariance matrix Uz(cij)' Hence the quadratic

p 2
form Z E a..8 b, § b, is a o2 X distributed independently of
dgzg Tt P

S v )2, which is o2 X° Furth bset of th
(yu - Oi) , which is ¢ (-p-1)" urthermore, any subset of the

b's, say, b Ceay bp, will also be multivariate normal with the

g+1’

20,0ty = q+l, +++s P and the quadratic form

same covariance o ig

. ,
7 7 ah,8b.6b.is 02 X2 ., where (a'.) = (¢.)" £ i=qtl,..., p
fydmqrl Yt ~(p-q) J J ’ e
Any tests of significance we may require follow from these statements.

The truth of such of these results as we need will be checked out as

we go along.



The "straight' regression line.

Putting Ty = 1, ml = x, p =1, we discuss the fitting of a
regression ¥ = bo + bl x to the sample (md’ yu), a =1, ..., N.
This yields some useful formulae and some hints for the development
of distribution theory and other things.

The normal equations are

i bO + bl Sz = Sy

bO Sx + bl Sx? = Sxy.
These equations may be solved algebraically to provide formulae, but
instead, observe that the first of the equations asserts that
¥y = bO +- bl *, i.e., the average point lies on the regression line.
Hence we might, with profit, think of fitting the regression in the
form ¥ = bé + blﬁrmﬁj, where bo = bé - blﬁz The normal equations
for this fitting are

Wby + by S@-®) =Sy,

by S@-) + by S-2)? =S yle-m.

Since S(x-x) = 0, the equations reduce to

Nbl=Sy bl =y
b, SGD? = S y(od b, = SAED
1o Yz 17 S(e-%)

1

We can read off, too: o0 " %" e11” Sx-p)?2 ° Sp1 = 0.

The s.s. residuals = Sy - Sy -~ bl Sy (x-%)

o ISyte=x)]?
SW- S
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Furthermore, since Y& - §_= bl(ma~53 , we see that

[S y, (@ -]
S - xye

N2 = 3¢ a2
S -2 = be Sz~ B

Tt is convenient and customary to assemble these computations in an

analysis of variance table.

d.f. S.8.
attributable to regression 1 S(Ya-§)2
deviations from regression -2 S(Zd’m—l"m)'Z
total -1 S(yu—§32

If the d.f. are not obvious, they may be made so by embedding the

whole computation in an oxthogonal transformation.

91 Yy Y
_ T
A 1 1 1 Vi g, = /ﬁbo
- - _ ) 2 = /S(x 72
) & T Ty S(E,BYE By = VS(EE)2 By
2
3 '
. orthogonal
" al aa aN
If any Zy s 7 > 2 is orthogonal with 2 and Ry, SAY &, = b} a, Yoo
we must have L a_ =0, £ a_ (% ~x) = O,whence S ¢« = 0. Then
o o o o o

. =La Yy =1L a, (BO + Bl x, + gd) = I @y, €y i.e., depends only

on the errcrs therefore K 2y = 0.



i1

Therefore, Bys Bys +ees By aTrE independent, normal variables,

2 2 2 2 = 2 y2 . .
each N{0, ¢<), hence Ry + 2y, + ... + By 5O X (=2 and is independent
: 2 - SN2 L2y L2 2 _ _v 32
of By and 2 Evidently, &5 S(Y& Y) 73 + zy + ..k 2y S(yu Yu) .
S(y,-¥)?
It should be clear, too, that BT R §2 (say) estimates a2,
bi-8y
Thus is ¢ and can be used to test any hypothesized B..
Jo (N-2) 1
sveqq _
ST, -)2/1
Bl = 0 may equivalently be tested by S(ya—Y&)2/N—2 » which is
F = 0.
(1,5-2) ¥hen By = O

Testing the assumption ¥ y = BO + Bl L.

Clearly, everything we have done depends entirely on the
correctness of the assumed functional form of the regression function.
In particular, the sum of squares of residuals reflects, not only
érror, but also any systematic departures of the assumed function
from the correct one. Here we see a way of checking on the question
of correctness of the assumed ‘function, provided we make provision
in our sampling for an estimate of error that does not depend on the
correctness of the fitted function. If, in our sampling, having
chosen an x-value, we sample the selected y-population not once,
but several times, differences among these ¥ - observations will
reflect error without any assumption about the regression to be fitted.

The formulae for calculating the regression require no changes.

No asgumption was made in developing them that the x's need be all
different. However, it may be useful to change the notation to
recognize that each « population is sampled several times. Let the
different x's be labelled x

ceey & cees Ty and the y - observations

1’ ?:!
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corresponding to T, be

k
: Poaw
Yiq» Ygoo +o yini . ¥ now is .El
z Y T E: :
@ Yyge e ylnl T Y1 . Y
.'B?: y,z"l: LI yini Ti y,i 271 )
T Ygpr v Uiy T ¥ "
k 2y %y,

The normal equations, written in this notation, are

N bo + bl z n.x, = Sy = LT, = In.y,

Z

2m = = o
bo Enimi + blznixi Sy v, T X I

From those equations, we see that a regression fitted to the points
(xi, ?%), taken ni times is the same as the regression fitted to the

original observations. The s.s. residuals is, of course, different,

, -2
being & ny Yy - b b The

- i 2 _ -
- by 9, instead of Sy bO 99 b

191 1 91
difference between the two s.s. is Sy2 - Znégi, that is, the within
samples s5.8.

We are, in fact, in the pattern called a completely randomized

experiment, with a preliminary analysis of wvariance that reads:

d.£f. S.8.
T T4 2 regression on « 1
' 1 @
among samples (x's) k-1 il
i residuals k-2
within samples (errox) -k by subtraction
GZ
Total N-1 Sy?2 - -

i
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—_ 2
[z I, (z;-2)]
The (linear) regression on x has s.s. =— and the
z ni(miwﬁﬂ

residuals may be obtained by subtraction. The residuals s.s. may be
tested against error, because if it contains nothing but error, the

<S'(2:Sfez;i‘;§j‘)(mfgz) is F(k-2, N-k). Of course, if N is at

ratio

all large, this could be a very weak test and we might want to enquire
more closely into the residuals.
An orthogonal transformation, corresponding to this partitioning

of the total s.s., follows

divisor
Y11 Y12 ylﬁ:l v i Yio Yin, i ¥ Yo yknk
g 1 1 1 1 1 1 1 1 1 42
3 X L. —T L, - —L XL L. & % -% X, =% VI H.(X.-2)2
9 Ly~ ml e wl € ) £ mt x x@ X mk x xk & mk & X nﬁ(wz x)
2
3
. e orthogonal ,
= ..
% ag aj ay ai ai ai ak ak ay,
Z
Kkl ay a, unl o 0 o o o o’
. orthogonal
zk+ﬂ -1 Bl BZ Bn o o o] o e} 0
1 1
ZN O o] [a] o] Q o) Y}. Y2 Ynk

LDa,=fa, =LB ...=Ly, =0,

7 o
g5, =/ly
b T.(x.-E}
= T = VY 7 Az 2
2 ) ni(mi ) bl

2 S e oD
T ni(xi-x)
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F- SN Zk are deviations of the sample averages £from the fitted regressiom.

_ 3
Bk+1 oae Zn are within-sample deviations. The analysis of variance
table is
d.£. -
2
1 attr. to x F<S
2
among samples k-1 ” ”
k-2 residuals 2.+ ..+ g8
3 k
; 2 2
within samples  N-k 4 + ... + ZN .

R+l

Distribution of the sum of squares of resgiduals Transformation
of the independent variables Orthogonal Functions.

The device used to derive the distribution of the s.s. residuals

about the fitting ¥ = bO + bl % will now be extended to the general case.

Suppose we envisage a regression ¥ = § bi 3 and define a set
=0

of linear functions of =z,

Pi = Pi (mbgml, ey mp), =0, 1, «o., P- '

Then, the regression equation may be re-written in the form

Y=1zx Bi Pi’ where the B's are linear functions of the b's.

If we think of fitting this regression directly to the data, we

would have a set of normal equations L Aij ?j = Gi’ where

i
A..= ) P. P, =SSP, P, ,G, =8P, y,
g g1 e Jo 0 o 1 T Yo

where P%a = E% (wOa’ Lig? 02 xpa).

A rather special set of linear funetions will be used, not
because it is essential to this argument (they are sufficient for

our purposes, though), but because they will be useful later.
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Define 0= PO (mo) = AOO %0

n
>

Py =By (mgs @) 10 %ot A1 %1

Il
p
&
-+
-

Py = Py (@gs Bys wevs @) = Ay By F Ay &y et Ay, &y

The A's are constants, to be chosen according to our needs.

Il

Then, Y bo x,. + bl g +.. .+ bp—l mp—l +“?p x?

0

- P
By Po+ By Py +e¥B B 4B D

i

BO (100 mo) + B1 (Klo o + lll xl) -+

( +2

Ap—l,O x0+..._ p-1,p-1 mp"l

Equating coefficients of the x's,

B +
p-1 ) E?(A LS S )

p0 F0" oy

o " e B

Pp-1 = Mp-1,p-1 Bp-1 * Ppp1 Bp

by =gy Byt Ay g By et "pi :
By = hog By * Agp By *Feeet hyg Bp..

Now, let us think of choosing the A's so that

ii = SPT;OL Pﬁu =0, 1 #J .
With such choice of A's, the functions P will be said to be
orthogonal over the set of observations on the x's.
It is easy to check that such a choice of A's can be made and

to see how to determine them. For example,

S Py Py =S kg By (hyg Ty F Aqg By)

- 2
Yoo [h10 S %0e ¥ 211 S o F1o!

= X la

00 g0 *10 * 3oy 2111 = O -



Indeed, we have a free choice of one A - wvalue in each function and

the rest can be obtained by solving a set of equations much like the
normal equations. Our concern here, though, is simply with the
existence of these orthogonal linear functions.

The normal equations for fitting the regression to these
functions are

s = 2 —
ApiBy = G Ayy = S By Gy =S Py, -

The fitting can be embedded in an orthogonal transformation as

follows.
yl ya yN divisor
; Vv 2 w o=y 2
1 o Po Fow S o ap = VS Fg By
v 2 = 7
By Ppg Pla Py S P, 29 = VS PiB;
& P v 2 = V]
p+l pl E%a EEN S Pbm zp+2 3 P%aB?
gp+2 al i aO‘. aN 'x
orthogonal.
2
Ky
Now, it is easy to check that zp+2, sees By reflect error only,

hence each has expectation zero.

Any component, I aa yu, orthogonal to Rys Bos eevs oo must

p

satisfy the conditions I aa P%a =0,7=0,1, ..., p. Hence

T Ay Tz = 0, 2=0,1, veur, P .

Then, ) a, Y, = ) a, (2 B: %sg +'€u) =1 % Eo
o oo 7
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Now, from the properties of the transformation, we read the
following facts, granted the normality of the error system.
1. Each of the B's is normally distributed
independently of one another.

2 2 4o 52 y2
2. The sum of squares Zp+2 + ...t 2y 1s © X(Nﬁp—l)

and is independent of the B's.

The sum of squares 22

2 + ...k z; =5 y2 - 2

2
1~ 32_... _..gp+1

v

S y* - § B, SE, =Sy° - § B, G,
=0 =0

1

2
S (ya - Yu) by our general rule for s.s. residuals.

2
Sy -Y.) b, - B,
It follows that s? =~ —=—0— estimates o’, that : = - - ® (W-p-1)
2

and so on.

The determination of ortheogonal functions to facilitate a fitting
is not usually employed in practice, because more arithmetic is involved
than in solving the original normal equations. However, some of the
virtues of such an approach should be recognized. Of course, the

normal equationsg solve themselves, but, more important, the decision

1
to exclude some sets of the x's, such as wp, mp and xp—l’ mp, mp“l, enes
T amounts to excluding P , P and P P, P P 4 in virtue
p-q 57 p-1 Fp2 Fpopr voor Bpg

of the triangular form to this transformation), and the remaining

coefficients BO’ Bl’ BZ are unchanged,

We may, in passing, observe two things, the effect of including an
2 variable that is not needed (its B = 0) and the effect of leaving

out an x - variable that is needed (its B # 0).
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It will be sufficient to ask these questions about mp. We have

E bi = lii E Bi + Ai+l,i E Bi+l + ... Api E Bp and
Eb_ =x_EB_ .
P pp p

Now, if F bp = 0, then F Bp = 0 and if mp is, in fact, included in
the regression, it simply adds a zero term to E bi and bi is still
on unbiased estimator of Bi'
On the other hand, if Bp # 0, then F Bp #VO, and if mp is
omitted from the regression, a non-zero term is‘omitted from F bi’
(the other B's are the same, whether mp is included or not) and bi
is now seen to be biased.
While these facts seem to be obvious, they are sometimes presented

as a theorem and indeed without them the utility of regression theory

would be seriously diminished.

The f£itting of polynomial regression. Orthogonal polynomials.

i

Regressiﬁnléheory ineludes, as a particular case, the fitting of
polynomial functions in one or more independent variables. The normal
equations have coefficientswhich can be very large indeed, inasmuch
as they are sums of powers of the recorded x's. In the case of one

independent wvariable, weAmay put mo =1, ml =z, X, = mz, x3 = x3,

- . -

T
and so on. Then Gri = Szx7Y, g; = Sy .

If the degree of the polynomial is at all large, the normal
equations can be very nasty indeed. Furthermore, more often than
not we do not know beforehand the degree of the polynomial we wish to
fit and we must proceed by adding powers until an adequate fit is
attained. Each time as a higher power is added, a whole new set of

normal equations must be solved. In this sort of situation, the
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use of orthogonal functions takes on an added importance.

When the x - observations are equally spaced which often happens
or can be arranged, they may, perhaps by a change of origin and such
be made to read 0, 1, 2, ..., N-1. The coefficientsof the orthogonal
polynomials and the values taken by the polymomials then are functions
of # only. It then is feasible to determine these polynomials, one
set for each sample size, and to list the values taken by them.

If we write the polynomials in the form

Po = %00

Pl = AlO + All x

= 2
P2 AZO + A21 xr + A22 frd

and choose the A's so that S Piu EEG = 0, 4 # §, the normal equations

are ST ,

SP2 B, =G, =S8P. y . 1L=0,1,2, ...

%a i 7 “ia Yo
and if the wvalues of the Piu are tabulated, we need only compute
3 Pku Yo

We note that in each P, one coefficient is available for
arbitrary disposal. R.A. Fisher, who was an early advocate of the
use of these polynomials, imcluded in his Statistical Methods for
Research Workers an elegant finite difference procedure for carrying
out the fitting without having the Pia values. For his purposes, it
was convenient to assign each lii the value unity. The resulting

polynomials he called EO, El’ 52 and so on.

Later on, when the Fisher and Yates tables were assembled, wvalues
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of the Pia were inecluded, on Yates's insistence and against Fisher's
wishes. For this purpose, the £ - polynomals are not suitable,
since their values are mostly fractions. Another disposal of the
arbitrary constants is required, one that will yield integers values
with no common factor. Hence we get Eé = x(Z,I) Ei’ with A{(Z, W)
chosen to produce integer values in their lowest terms. TFlsher and
Yates, and all other tabulations, list values of the £', S £'?, and

the A(Z, M).

Extension to two (or more) dimensions.

If we have two independent variables, u and » we may wish te fit
a polynomial
= 2 2
¥ bOO + blO u + bOl v+ bll u v+ bZO us + b02 v% + etec.

This may be re-written in the form

Y = 00 (u) &g (») + BlO £ () £ '(w) + B El’(u) Fjl'(”) + etc.

If the observations on u are equally spaced and also those on v, i.e.
the observations are on a réctangular grid, the normal equations take

the form

S Eéz(u) g;Z(v) Bij =Sy gl aj(v) .

Details may be found in the tables Values and Integrals of the

Orthogonal Polynomials up to N = 26 (D.B. DeLury (1950)).
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The fundamental distribution Theorem.

The theorem is concerned with testing a specified subset of
regression coefficients to see whether their inclusion results in
a significantly better fit, i.e. whether their corresponding B's are
not all zero.

Without loss of generality, this may be set up as follows.
Suppose we have fitted a regression

Y = bO x, + bl I bq %, + bq+l mé41 +o.t bp .

0 i

We ask whether this regression fits appreciably better than

The question will be explored by examining the differences between
t&imosa.r%ﬂhﬂs,swdﬁzmﬁ S@dﬂﬂ.

The following statements will be proved.
1. S(y-¥")? - S(y-1)?

- 2
S(y-yy - S¥'-y) when =, = 1

2. = 0

3. = S(y-r")?

by, = i’jiq+1 ajj bi bj where j=§+1 a;j cjk = 6tk 1, kK = gqtl, s P
5. = i=g+1 bi gz where j=§+1 zj bJ =g, 1= gt+l, s P

2
Each of these s.s. is distributed independently of S(y-Y) and is
o X%P“q) if Bq+1 T oease ® Bp = (0, This sum of squares may be called

"the s.s. associated with bq+l’ bq+2 cen bp" or "the s.s. attributable

to wq+1’ mq+2’ SETI A
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The passage from (1) to (2) is immediate, in view of the
identities S(y-&)z = S(y-1)?% + S(Y—Q}Z and

S(y-y)? = S(y-¥")2 + SQ'-y? .

The passage from (1) to (3) could no doubt be checked by an appeal
to the normal equations. It will be deduced in another way shortly.
The passage from (1) to (4) is the crucial element in this list. The
equivalence of (4), (5) and (6) is immediate.

Obviously, these statements should becomé‘rather obvious if we

go over to the orthogonal functions we introduced earlier. The

two equations become Y BO P +...+E P + B oot B E%

0 q " q g+l Pq+1 + P

Yt=p5, P +...+ B P

0°0 q°q°
Then, S(y-¥)2 = 8§ y2 -

o9

B2 § p?
T o

_vnye - 2 _ 2 2
S(y-¥H2 = Sy B2 8 P2

O 10

_wry2 _vy2 o 2 2
Sy-¥"? - Sy-Y) A B2 S P2

also, Y-Y' = § B, P., (¥-Y"?% = § B, B, P, P, .
g+1 ’ 1,d=q+1 Jovd

-¥1)2 = - = 2 2
S(¥-r")? = ] B, B:S P, P 1 B:S P,

which establishes the equality of (1) and (3).

2

. . ) . s .
Now, Bi is normal, variance S pZ digtributed independently of
T

all other B's and of the s.s. residuals. If F bi =0, 7 =gtl, vvuy P,

then, from the relations connecting the b's and the B's, so also

EB,=0,%=g+l, ... p then, B, vS P2 is N(0,0%) and § B2 8 P
1 1 7 C['l"l T 7
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is o Xz(p—q)’ independent of S(y—Y)Z, which is o? Xz(N—p—l)' It

remains only to establish the equivalence of (1) and (4). 1In the

fitting based on the orthogonal functions,

2 2
B, , wvhere 4.. =8 P, .
7 i1 i

% a*. b.b. becomes ﬁ ..
i T1 T4 i1

Ty d=q+l 7=q+1
In this system, then, (1) and (4) are identical. The proof is

complete, then, if we establish that the quadratic form

§ a¥. b. b. is invariant under the transformation used to pass
tyg=qrr W
>

from the original fitting to that based on the orthogonal functions.
This is a purely mathematical exercise and could well be

omitted, but is included here for completness. It would be tedious

without the devices of linear algebra, hence the following summary

in matrix notation. Let .x. stand for the matrix

( )
o1 *11 a1 Tgl %1
02 F12 g2 Fgr )
.’I_,‘p = - .,
Lo Ty T Tt o
Zoy “1y qu $q+1 N xpNJ

Let ¥ be the column vector

~

o
3
“ro

Then, the matrix of the coefficients of the normal equation is

I
a. = x x and that of the right sides is = g'y. If b 1is the
p - "p %p 8 o= 7Y r

column vector of the b's, the normal equations are
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. N -1
The inverse matrix is cp =g

P

The matrix a® is defined by partitioning the inverse matrixz as

follows.
Cyq wresmrers clq cl(q+l) ....... elp
c‘ c. c. e cq r
Cg1 e a4 | glgtly T ap
c(q+1)l """ c(q+1)q c(q+l)(q+1) Tt c(q—i—l)p r’! cp—q
\cpl .......... g cp(q+l) ....... op

where r is a matrix which need not be specified for this discussiomn.

b
Then, a” = c_l . Similarly, partitioning b_ into ~q ", the
p-q ~p H o
P
quadratic form § a¥*, b, b, may be expiessed as b’ c_l b .
i ,d=a+1 T "t d ~P=q p-q ~p-q
s =4

Any linear transformation of the independent variables specified

p

by a matrix A_, Ikp] # 0, transforms the matrix of observations into

4

Eé = Ap X?. The transformed normal equations will be written
A B =G where A _=X_a M and G_ =\ g .
po~p P P pp P ~p pRp
Then b = A’ B . The inverse matrix ¢ = (K')ul e k_l .
~p P ~p P p p P
Kq 0
For the transformation we are using, kp = » although
S X
P-q

this is not essential to the proof. Then,

(say)



Y yoog? c. EB A
q q q qd
e = =A"'C A=
p »' e P PP g ' R' ¢ 5
r-q r—q p-q
(0 @
= . Thus we have
x a! ¢ A
L r-q p-q p-q

= 3! c A
“o-q¢ = “p-q “p-q “p-q

In the same way, we get

b A B .  Hence,
~p=q p-q ~p~q

-1
= A
O )t ( )

B dy(x’ c X r B
q ~p-4 “p-q p-q9 p-q p-q ~p~q

-1
- o
Br-q p-q Bp-q

This demonstrates the invariance of the quadratic form Z a;. bi bj

and completes the proof.

The solution of normal equations.

The pattern of solution recommended here is not the most
efficient, in a numerical sense but it has considerable merit, in

some circumstances. It is called Chio's rule, the method of

25 .

pivotal condensation and the method of sweep—out, with the additional

feature that each pivot is used to reduce to zero the entries in the

rows above the pivot as well as those in the rows below it. Also,
augmenting the matrix with the additional last row produces sums of
squares of residuals.

The example shows the fitting ¥ = bO % + bl & + bz z,

On the way to the solution, other fittings are provided.

+b3

:c3.
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i. @ béo) Ty cég), S(y-Y(O))2
2. Yu)=bg)x0+bf)xr %?,CS?,SWJJD)%
3. Y(Z) = béz) x + biz) zy + b(g) Ty céé) etc., S(y-Y(z))2 .

The procedure starts with the element in the upper left corner
as pivot, reduces it to 1 by a division, then, with the requisite

multiplications and subtractions, reduces all the elements in its column

Aem Qps a.
to zero. We get, then, a,, . = a.. - 20 07 s G o =g, - _39_9
1d .0 17 a4 7.0 T Qyg 0

Uik, (k=1) %ki. (k-1)
k. (k=1)

More generally, Uik T % k-1 T

Lik. (k-1)
k. (k-1)

i = 95, (k-1) %, (k-1)
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%0 %1 %2 %3 Yo Lo 00 i Tt
416 %1 P a3 g1 0 1 0 0 Eaij + 94 +1
drg P9y Gyo Goq g, 0 0 1 0 zazj + gs + 1
Aqq Ga7 Aqy Qqq g4 0 0 0 1 Za3j +gyF 1
9 91 95 9y S Ig; + Sy?

1 % % ¢ béo) cég) 0 0 0 v

0 @110 %2.0 %13.0 91.0 o ‘0 0 Y

O 431.0 %2.0 %3.0 92.0 =0 10 4

0 a31.0 92,0 %3.0 93.0 o0 0 . /

0 910 G0 930 SGIOH? Y

1 o0 x «  piD sV céi) o o0 /

0 1 * % bil) céé) céi) 0 0 Vv
00 gy 931 920 oo 0 /

0 0 agy 9331 931 =0 0l Y

0 0 gy gy S (y-r)2 " v

1 0 0 * béz) cég) eéi) cé? 0 Y

0 1 0 * biz) cié) éii) eig) 0 Y

0 0 1 % béz) cég) céi) 'ég) 0 v

0 0 Y I /

0 0 0 dq 4 s(y-y(z))2 v

1 0 0 0 b, S0 %1 %2 %03 v

0 1 0 0 bl 10 ©11 %12 ©13 v

0 0 1 0 b, Chy G917 oo Cog v

0 0 0 1 by Gy C37 C3p Ca3 v

0 0 0 0 S (y-n? v
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Some comments on this form of solution.

1. The matrix aij is symmetric and this symmetry is maintained
throughout the solution. Likewise, the ¢ matrices are symmetric.
Therefore, several numbers have been calculated twice., One could, of
course, avoid this duplication, but the internal checks are worth
having too, because one can see the effects of round-off mistakes by
comparing duplicates.

2. The Chiorule has a property described as hpreserving the

elements of the inverse matrix". By this is meant the following.

v =L r
21,0 “%12.0  “%13.0 °11 %12 ‘13
921.0  %2.0 %23.0] T |%21 C22 a3
?31.0  “%32.0  %33.0 “31 %32 %33
[#4 a 17t (
22.1 23.1 ) ©23
932.1  “%33.1 °32 33 ,
a B -
{ 33.2) 33}

It is sufficient to check this for the first cycle

§ %20
Ao s Cag — —— Ane G
jo0 ¢ Jk 00 420 Of “dk

ﬁéku~ ¢ for ¢, k=1, 2, ..., p.
This feature has useful consequences. The matrices (aij k) and

(Qi k) satisfy the conditions of the (azj) and (g*) of the fundamental
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theorem. If, for example, we ask for the s.s. attributable to L, and L5

we could express it in several convenilent ways.

(1))2 - S(y“Y)Z. This is the most convenient way.

(a) S(y-¥

® b +by95

2 2
() @y, Byt 2ayy y by bgtags g by

2 92.1

2 2
(d)  egy gy 1t 263959 93,1 % %3393,

If one should ask for the s.s. attributable‘to a
-1
11 ‘13

probably be simplest to compute to get the ah's and
“31  “33

1 and %3 it would .

(&4

proceed as in (c).
3. Occasionally we may want to use calculations of this kind when
the solution has been reached algebraically, perhaps without following
ﬁormally the Chio rule. We can check the results to see if they are
those yielded by the Chio rule, because under this rule, the coefficients
of the g's wi£ﬁwfhe largest subscripts are equal to uniﬁy.
4. In the usual case, when Ly = 1, the coef%icients after the first
cyele, aij.O’ are sums of squares and products of deviations from the
averages.

U0 =S @y —rwy) wp - wg)

This fact will be used in the analysis of covariance.



30

The fitting of a pair of parallel straight lines.

A number of situations call for the fitting of two or more lines,
constrained to be parallel.

(1) An experiment with animals, the response being final weight,
with initial weight recorded. In such instances, the object
is chiefly to remove from error that part attributable to
variation in initial weight.

(2) One may wish to study the regression of bne variable on another,
in circumstances in which one has to use several samples. For
example a study of the dependence of reading ability on IQ may
use several classes and even several schools.

The numerial procedures developed for such use are called the
analysis of eovariance. As we shall see, the analysis of
covariance is simply regression theory, adapted to take
advantage of whatever orthogonality is present by making part
of the“édﬁﬁutations with the simple procedures of:the analysis
of variance.

(3) The fitting of parallel limes occurs also in biocassay.

Let (yia’ mia)’ =1, 2, a=1, 2, ..., ”i, be two samples, to
each of which we wish to -fit a linear regression, with the constraint
that the lines must be parallel. We could, of course, write the
equations

(1)

_ (1)
¥ = bo + b1 x

(2) (2)
Y .bo + bl x

_ (D42

and minimize the s.s. T (yla + Z (y2u - Y(Z))Z. Preferably,

we can reduce the fitting to the fitting of a single regression by the
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elegant device (first used, as far as I know, by Wilks, Métron, 1938)
of introducing an indicator variable Giu =0 =1

=1 =2
and fitting ¥ = bO + blﬁ + b2 & to both samples, regarded as a single

sample (yia’ mia’ aia).

The normal equations may be written down at once

no+n, Ss S Sy

Ss S8 S Ssy

Sg 38z Sa? Sxy

ni +'n2 o Eml + Zmz Zyl + Zy2 (go)
72 "2 5%y 2Yy (gy)

Lz, + I, L, Zmi + Zm; Ty, +IeoY, (g,)

We may note, in passing, that the second of these equations may

1

be written bO + bl + b2 &y = Y, and, subtracting the second from the

first, bo + b2 Ei = gi . Thus, the two lines pass through (ml,yl)
and (52;?2).

The object, here, is to solve these equations algebraically to

obtain formulae for bo, b bz and alsc for the elements of the inverse

1’
matrix. This will be carried out by replacing the right sides by
symbols, 90’ gl, ggs solving, then replacing the g's by the proper
values, obtain bO’ bl, b2 and by replacing the g's by proper

selections of 1's and 0's obtain the inverse matrix.
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The solution turns out to be

gl = gz gl
LEE N 1 . _ -
Wow "0 = 95 1T, M
gl QO - gl — _—
LLIy 2% | Qe - — It -
bl " - by (2, :cl)
90 - g]_ —
LLI S TR LounLn
bo = b2 z,
where W =%T{x, - E‘)z + 2 (x - 5-)2 the within-samples sum of
b la 1 2o 277

squares. Substituting for the g's

La, LY LE ALY
¥ b = Iz 1 71 ""2v2

wzx ©2 1Yy i

Y
292 ny o

@y = @)y~ ) + 2, - ) Wy - )

W&y s
the within-samples sum of products of deviations

— —_— 1

by =Yy ~ ¥y ~ by (@ - &)
by =¥y = by my
Putting g2 =1, gl = gd = 0 in "bz" yvields
- L
S22 T W
£

Putting g; = 1, g, = g, = 0 in "bl” yields

(x, — x,)
=t e __gﬁ““gkm"
1 2 X0

The other elements of the inverse matrix may be found in the same way,

if they should be needed.
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The residual s.s. is

Sy? = (yy=by%) Sy +2y,) = [,y =P, (x,mw) ] - bylie,y +iayy,]

. Gyp?  CGyp®

) Zml Zyl . Emz zy2}
2 n

1 " J

il

2 .
Eyl + Ry - bz [Emiyl + Loy, -

1 )

Dy I, - by [z(xl—Ei)(yl—Qi) + E(mymy) (7 —Qé)]

=K - b. W
vy 2 Txy
(W 32
-..:W _m%ﬁ._
vy W¥m
This is the error s.s., with n, + n, - 3 d.f.

1 2

It is called the reduced error, inasmuch as the variation attributable

to variation in x has been removed from it.
bl =Yy T Yy bz (mz - xl) is called the adjusted difference of

sample means, that is, any difference between Qi and gé resulting from
a difference in the « averages has been adjusted. :

If there were no 2's to be concerned about the analysis of

variance table, corresponding to the arrangement, would be

d.f. S.8. 2
— o Ty
between samples 1 Byy = Eni(yiuy) = z Py
T 12
s B - YR Y :
within samples ny + n, 2 W ZE(yia yi) by subtraction
o2 72 (y)
Total "y tn, - 1 Tyy = oYy T ﬂl+n2

The formulae reached above dictate that we make the same computation
for & and, no doubt, for the xy products as well. It is easy to check

that the same rules apply. The "total' sum of products is
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TY 421 a=1

"y?:'l'y?:'y)

Nl
1
1

—
33
1

o
-
&

|

8
L
)
«

YL Cwp, - w) (g - ¥ F ,,Z, A (@ - @) Uy ~¥) o,
=} + B .
xy Ty
B is easily seen to be equal to
Ty
L@ T g 7y

#., 7
1 nl+"2

We therefore calculate the table

d.f. () (zy) (yy)

between samples 1 B B B
&L Ty Yy
within samples nl + My = 2 W&m h}y Wéy
Total nl + nz -1 Tmm Tmy Tyy

1

The numbers in the within-samples row would be obtained by subtraction.

The numbers we require from this are

iy
slope bz = B

W
£ 2 2
. bz w&
s.s. attributable to regression on x, P E?E" 14d.£.
22 xe
Wz
s.s. deviations (error) W _ - _EE_’ n, *n, — 3 d.f.
yy me 1 2

Tests of significance

Sometimes there is a need to test E b2 = 0, If it is,

wi -
5 - F(l ne *n 3)
- 2 - ] -
@%y %W/%thH}nzs )
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Sometimes we may want to test F bl = 0. If it is,

b 2

—L . t where g2 = 1 W w&g
g , — - *

sfor; (ny +ny-3) nytry=3 | wy 7

Another, less obvious, approach is now convenient. It stems from
another of the rules for finding the s.s. attributable to set of
independent variables -~ fit with them included, fit with them
excluded and calculate the difference between the residuals. Here,
we are asking for the s.s. attributable to 8. Fitting without &

amounts to fitting both samples with a single line, the results being,

obviously,
attributable to x T2 /T 14d.f.
xy’ T aw
T2
deviations " S ST (S O
yy Txx 1 2

The required s.s., attributable to §, is then

T W2
5.,—35@ W - W—W with 1 d.f.
W2 72

L op e m my

This is called the adjusted between-samples s.s..

These computationsg are usually carried out in the following

pattern.
attributable to & deviations from regression
d.f. g.8. d.f. S.5.
.WZ
2 - . A
arror 1 w&y/w&x nl+n2 3 Wéy Wim E
T2
Xy _
error + between samples 1 Tiy/Txm nl+n2—2 Tyy - Téx = (7

i

adjusted between samples 1 G-E.
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The adjusted s.s. may be compared with s° in an F-test.

In (1), we would want to test bl’ not bz.

In (2), we would want to test b2’ not bl'

Occasionally, we may wish to test both bl and bz.

If we wish to present adjusted means,
Y =Yy - by @; - @),

There are many occasions in which we should check whether parallel-
lines are warranted, before embarking on analysis of the sort just
discussed. The approach to this check should be obvious: fit lines
to the individual samples, allowing each its own slope, then fit with

the lines constrained to the parallel, then compare the s.s. residuals.

d.f. (zx) (zy) (yy)
sample 4 ny o= 1 A A A
} &£x xy vy
sample C My = 1 c c c
xe xy vy
within samples ny + Ny = 2 W&x me Wéy :
attributable to = deviations
d.f. S.8. d.f. S.5,
2 - ~A2 =
sample A 1 éxy/Axx 7y 2 Ayy Axy/Amm El
2 _ 02 =
sample C i Cmy/cxm ny = 2 ny ny/me E,
feq s 2 - —p2 =
within samples 1 w&y/w&y nq + ny 3 Wéy @ny/w¢x

The F - (El + Ez), with 1 d.f., reflects the improvement in fit
when the lines are permitted their individual slopes. One would expect

E - (El + Ez) to be comparable with (El + EZ)/(nl + g = 4} in an F-test.
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To check on this, we may represent the fitting of separate lines
by a single regression by writing

¥y x)

bo + bl z + s(ao + ay

BO + Bl § + B2 x + B3 § x,

)

which differs from that used to f£it parallel lines in the term in éz.
To test whether this gives a better fit than that using parallel lines

is to test F B3 = 0.

The normal equations for fitting this regression are

Q =
(n, +7,) By + Blsé + B,Sz  + BSéx Sy
B,SS + B S6% + B,Séx + 83862m = Séy
2 2 -
BySw + B,88x + B,Sx° + B,Sox Sy
B Séa + B S8%x + B,ySsx? + B3862m2 = S8y
7 " NS
1t "2 Se ) Y
., ﬁz Exz g Exz Ey2
S " iz, Se? 1&2 Sy
2 2
Exz Zmz Emz sz Exzyz

From these, we see that the normal equations separate into two sets:

nl BO + B2 Zml = Zyl nz (BO + Bl) + (B2 + 33) Zmz = Zyz

2
BOZml + B2 Zml Zmlyl

1]

2:
(By + BTz, + (B, + By) Bz} = zy,

One set represents the fitting of a line to sample 1, with

residual s.s. Eyi - BO Zyl - B2 z Yy = Elg the other is the fitting

of a line to sample 2, with residual s.s. Eyg - (BO + Bl) Ey2 -



(B2 + B3) LYy = By The resi@ual about the entire regression is

Sy* - BgSy = Byly, - B,Swy - By Lzyy,

[

2 2 _
Zyy + Y, - Bylyy - By LaqYq - (BO + Bl) Ly, (B, + BB) L&Y

E1 + Ez, with nl +-n2 - 4 d.£,

The s.s. attributable to &¢ is, by one of our rules, F - (El + EZ)’
with 1 d.f. distributed independently of El + EZ' This confirms

.

the test for parallelism.

Extension of the use of indicator variables

The indicator variable used in the discussion shows how it

could be used to bring a qualitative difference (between samples)

38

within the scope of regression theory. If we suppress the x—variable

in the discussion, i.e. fit ¥ = bO + bl 8§, we see that we obtain the

standard analysis for this pattern, the completely randqmized

experiment. We might use indicator variables in other ways, too.

For example, we might have used two, 61 and 62, with alia = 0 in
sample 1 and 1 in sample 2, 62ia = 1 in sample 1, 0 in sample 2.
Then, fit the regression ¥ = ¢, 6, + ¢, & Note that we cannot

171 2 72

include a constant in this regression, because it would imply a

linear relation among the independent variables, 61 + 62 =1= Ly

This way of using indicator variables extends at once to any
number of samples. If the observations are Yia? = 1,2,...,k,

- . - . 2
o = l,2,...,ni, we may postulate Yo = Y T 8sys 80 N(0,0%).
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To get formal identifications with regression theory, we

5., with

introduce indicator functionsg 51, o3 ers Oy

(o]
1l

1 in sample 7

)

0 4n all others.

The regression equation is then

¥ = el 61 P ci 6i F o ck ék.

The normal equations are
) .
¢y S 6] + 2, S 8y 8y + wunu

P S 61 6k =S 6, ¥

and so on.

These reduce to

which is the withim sample s,é.
This ig perhaps the simplest way of bringing regression

theory into the picture, but it suffers from the fact that none

of the contrasts we may wish to study appears directly and the

s.s. attributable to regression on the &'s has no usefulness.
Occasionally, it may be worth while to transform the &'s

in order that the regression coefficients will exhibit contrasts

we want to see. As an example, only, we might transform 61, cens 6k

into Ugs +res Mgy by the linear transformation
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U 1 = 61 + 62 + 63 S 6k—1 - (k-1) ak '

= 61 + 35, +...+ & + 8, =1

“0 2 k-1 °k

The regression Y = bO + blul +...F bkml u;,_, has normal equations

Nbo + (nl—nz)bl + (nl+n2~2n3)b2 +...4 (n1+n2+...—(k~1)nk)bk_l = Sy
and so on.
1f most of the n's are equal, most of the coefficients will be zero
and the normal equations will be easy to solve. Thus this device may
be useful in situations in which the pattern is only slightly non-
orthogonal. Tt is seldom used, however. See DelLury, the analysis
of latin squares when some observations are missing, J.A.S.A. 1%946.
On thé-whole, it is simpler not tobpress the régression
pattern too hard, but rather to invoke the principle of least squares
directly, in this case, by minimizing the s.s. S(yiu-Yi)2' This
leads at once to the same normal equations.

Another formulation of the same question, which corresponds

more closely with our objectives in the analysis, is

Ypo = M + Y + &, Zy. = 0 .

70 T
Now, the s.s. attributable to the y's is the among-samples s.s. and the
s.s. residuals in the within-samples s.s. We introduce a Lagrange

multiplier A and write

- 1 2
o= 2 S(yia"U"'Y?:) + AEY?:-



The unrestricted minimum of ¢, treating A as a variable yields the

2
minimum of S(yiu_u~Y£) with ZYi = Q.

-%ﬂm vt ] | — =

Ju S(yia M Yi) 0
v,

¥ _ _ v ) -

¥ S(yia H Yi) 3Y . +r=0
J

W -

o = vy =0

Introducing latin letters to denote estimators

1 Nm + Enici = Sy = 90

n.
Zg 1,2 k
2 nm+n.a, + A= . =g, jo e

4 J g 0ot yJa gJ J >Ly H]
e, = 0
7

Write Jo» Gq» +++» gy 38 the right side of these equations and solve.

i

m + aj + A/%j = gj/%j adding, J =1, ..., k

km+ A2 1/m. =2 g./n.
J' Jd ng/J

also, adding equations 2 and subtracting from 1

We have, then,

S U |
{1299 1 S Y A —_
n k z n., k z P
J J
R T gi_" l.z gi._ 3 A l.z.;L
g n k™ nm, n, kK own.
d T J T
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.
L

1

- 1 o
c. =Yy, -z ; Y

Now, putting gj = 1, all other g's = 0, we get

o

1 1 1
e,, = — (1 - )+——2'E~'—
Jd nj k ny
and putting gZ = 1, all others zeroc, we get

1 1 1 1
as T a| YRS

1
C., = - =
gt k 5 ny i

We get, then,

Var(cj CZ) o] (cjj+-cZZ ZCjZ) o

which we know to be correct because cjmcZ = y.-gi.
The residual s.s. is

2 _ _ . = Sy? -
Sy mSy z e, Ty Sy mSy - I

(y .—m)
J J J

L y.
o de
i
=842 - £ n,y. , the within-samples s.s.
P L
d
None of this is needed, of course, since we can manage the completely

randomized pattern quite nicely without regression.

The two-way classification

Suppose we have a set of observations that may be classified,
through the manner in which they were obtained, in two ways, rows and
columns, with varying numbers of observations in each cell. They may

be symbolized
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<
il
el
3]
-
3

Tje’

Q2
It
(=
]

-

crnae s
Td

This could come about, for example, as a » % ¢ factorial arrangement,
in a completely randomized experiment, or as a randomized block
experiment, rows (or columas) representing. replications.

We have, to start with, variation amoﬁg cells and within
cells, the latter reflecting error (perhaps sampling error) only.
Only analysis of wvariance caleculations are needed to get the

corresponding s.s.

2
among cells re -1 T Iwn.,(y,.-
g E iy Y ¥)
— 2
within cells N -re I LI (y.. -Yy..)
iio ido YL

If the nij afé-éil equal, the experiment is wholly orthoéonal and

simple calculations yield independent sums of squares corresponding

to
rows r -1
columns c -1
r % c (r-1)(e-1)

among cells re - 1
with further separation inteo particular contrasts. Presumably,
when the nij are not all equal, we have the same objectives, but in

general, regression methods are needed to attain them.
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The first of these computations corresponds to the fitting

of a regression

E y’a‘:JOL =pn+ (pij’ ZZ(P’E:J' =0

There are rc disposable constants and the fit to the cell averages
is perfect.
The second breakdown corresponds to the assumption

P 'GP ' , = ., =
th pt YJ ﬂ%J, where Zp% 0, ZyJ 0, ; id >
1 Jd
Again there are r¢ constants and the fit to the cell averages is
perfect. The s.s. attributable to regression is precisely the s.s.

among cells,

We can set up the function to be minimized in the form

1 e ¥ r-1 o
v =.§-S(yija_u"pi"Yj_ ') +€Zp Y +le 55 i1 W$J+1zl 7 le i
% _ s E I _ :
i S(yq',ga K=o,y s @g] 0
a = - -— — — n = =
——ﬂapk S(ywa M0y 7,J} 8.0 TE=0, k=1,2, ...,
L e _ _
8y, (yija H=P =Y “ﬁj) 6j2 +mn=0, 1=1,2, ...,¢
o o -
3 S[yzgu H=e; YJ tJJ iu 6jv tg, T, 080 0
Uy
u = ]-3 2: ene Iy UF 1, 2 e O
LU Ip. = 0, etc
o9& "
ij e
Put N = ZZ”—.r:j’ T?:J. = azl Ysgas T = E T, .,

.. =0, all js Zn‘ij=o, alli.



T, ., = z Ti" Using m, Pi etc to denote estimates, the
i=1 Y
normal equations are

(L) Nm + ; ners + ? n.j cj + ZZnij pij =7

(2) Ry 0ty X ok ? nkj ¥ + ? M pkj tE ST,

(3) n,gm+ % Mag Ty ¥ g ey F % ne, byt =T,

4 nom-+n r 4+ +n
(4) i n e

+ o+ - =1
ur u uy v uy puv CU Tu(l ﬁur)

uv

Adding together the equations im (2) and subtracting from (1), we
gsee £ = 0, Similiarly all other Lagrange multipliers are =zero.

Then, set (4) contains all the other equations. Writing them as

m+r +c o+ =2 =y
U v TP TR Yo

and summing over u and v, using Eru = 0 etc,

rem = L I g
uop U
Summing over v,
+ =TIy
em + cr g yuv
_ 1 1 —
uT e 5 Y ~ pe L Yy
Similiarly,
c =Ly y -Lsry .,
v ¥, Tuw re Uy
- 1. 1= -1 —
- - — - — e .
puv yuv' r i yuv e 5 yuv re Lz Yiw

45
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Observe that these estimates are all formed from unweighted averages
of cell averages.
The residual s.s. is, of course, the within - cells s.s. This

is easily checked.

s.s. residual = Sy? - m? - ¥». T. - Ze. 7., -3I%p.., T..
[ J J ] T

If, in the last sum, we put

Peg T¥5 " ¥ TG T ™

the s.s. residuals reduces to Sy? - IZ n,, 5%.
id “ig

In situations where the within-cells s.s. provides an appropriate
estimate of error, the puv components can be tested for significance.
If some of them are significantly different from zero, there would
be no point in testing the r's and ¢'s. On the other hand, if it
turns out that there are no row x column interactions, we would be
concerned with the ri and cj. However, Pi and cj have been estimated

assuming the presence of interactions and if there are none, we should

be forming our estimates under the assumption

@ij = pi + Yj

This leads to a different set of normal equations, which we may get
gimply by deleting the equations of set (4) and dropping the pij in

the rest.
M+ In.»,+n .c,=1T
- T Jd J

nk_m + nk. Pk + I n

e, =T
i ki g

[
3
[y

l
[
w
]
-
Q

m + . .+ e, =
TR T TR %
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These equations do not, in general, yield usable algebraic
solutions, so we are forced inte numerical solutions, Suppose this
is done, so that numerical wvalues of m, ri, cj are at hand. We can
then evaluate the s.s. attributable to regression, i.e. the r's and
¢'s., It will have (r-1) + (e¢-1) = r+e-2 d.f.. This s.s. may be
called the "rows and columns" s.s..

Actually, we can derive a formula for this s.s. which will
require, of course, the numerical values of the regression constants.

Eliminating m from the normal equations by pivotal condensation,

we get
?’27:. nk' n, . nk‘
E”‘k.{%k'm]”'*?[‘k’ N chsz.“Tv“T’
"1 ) i/
z [”iz - “‘ﬁf"} g Ay [@jz "7 ] e;=Ty-w T

Actually;-all we need here are the right sides of: these

equationg, to put in the formula for the s.s. for rows and columms.

nk. &} ?’l-z
Pd%”?ﬂ+zd%‘7ﬂ

r
(rows and columns) s.s. = )
= 1=1

k=1

2

T )
=ml - = + X
T 7 +Zrk Tk- EGZ T-Z

The residual s.s. of this fitting, regarded as fitted to the
cell averages, must be the rows X colums interaction s.s.. Its

. —2 _ _
value is Zznijyij mT Zrk Tk- Zcz T-Z' The sum of these ftwo s.s.
g

T the among-samples s.s. The regression partitions

is I3m. . -
13947

the among-samples into two independent s.s..



d.f. S.5.
rows and columns -2 mT—Tz/N+ZPka.+ZcZ T-Z
rows X columng (r-1) (e-1) by subtraction
1 1 TR, . G = TP/
among samples re nij i7"

Hexre again we could test the » x ¢ interaction 1if that is
appropriate, or, if the r x ¢ is, by definition, an error term
(experimental error), we would want to look more closely into
components of the rows and columns s.s.

If we should want s.s, for rows and for columns, they are
not difficult to get. To get a rows s.s5., we fit with the row
constants included, then fit with them omitted and take the
difference between the residuals or between the s.s. attributable
regression.

Fittiﬁé'ﬁith rows constants omitted leaves us with only one
criterion of classification and it seems obviéus that the

corresponding s.s. must be simply the among-columns s.s. i.e.

This is easily checked. The normal equations are
B+ 2n .c.=1T
*dd
+ = =
ngmtn ey T A i, 2, a

Eliminating m,

48
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The s.s. columns is therefore

"
2
= ZE-Z—-mT zi-!~mT
7 ]
T2
=z el This s.s. will be labeled columns, ignoring rows.
A
Thus we get
d.f. 5.85.
P2 2
columns (ignoring rows) e-1 -1 I
n, N
A
rows (eliminating columns) r-1 by subtraction
TZ
rows and columns rt+e-2 ml - ﬁ“‘+ Zrk Tk- + Ecz I,
In the same way, we can compute
rows (ignoring columns) -1
colums (eliminating rows) eo-1 by subtraction

rows and columns rte=-2
Often, though, these s.s. for rows and for colums will serve no useful
purpose. The whole point of the calculation is to get the error s.s.
and the estimates of the row and column constants.

This discusslon covers the analysis of a randomized block

design. If the~nij are all equal,



i T Y. Y
¢GTY.g Y
p‘ij=y?:j—y1,- "y,j"'?:f

Proportional Frequencies

A special case, which is unlikely to occur in practice, but

which is of some interest, occurs when the n,, are all of the form

g T M My

B, = he L, = A, M
2 J 1
M, & W, Z2h., = L, A

The normal equations for rows and columns become

0, Ay Mool
Z M[Bik - N r?} v, + ?["k b =g } ¢4

= Tk- - T T, k=1, r
ML A KA
t _ -
%[7‘#‘1 " Twm J A “zﬂ[ﬁjz N] ¢
KA
=TZ"TT, Z=1, a

We note first that the matrix of these equations is of the form

A4 0
0 B

]. It follows that the r's and ¢'s are uncorrelated.
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The formula for the rows and columns s.s. is

Zrk{Tk-" -17\75 TJ + EGZ{T-Z - % T]
and, in view of the independence of the »'s and the ¢'s, the first
term yields the rows s.s. and the second the columns s.s.

This, in itself, offers only modest simplification, but we
shall show that it is not necessary to solve for the »'s and ¢'s to
use this formula and, indeed, we can get simple algebraic solutions
for the »'s and e's.

The normal equations, specialized to this case, are
+ R o 0. =
MM MZ}\"LI:’L AZLLJGJ T

Mkkm + Mlkrk + kapjcj =

Ap,zm + pzz}\ir?: + Ap‘lcl = T-Z 7 =1,2....c.

i
3

ke k=1,2....p.

Write the equations of the second set in the form
T

1 K-

+r 4+ = Fue. =

(1) m rk I ZHUGJ Mkk

adding these equations yields

T
r - 1 Tk
(2) rm + 3 Z‘.L{,jcj ME " or
T
1 I ke
(3) m + 7 Zujcj o Z )‘k

Subtracting (3) from (1)

Tk T

®T oy T TR

%
Similarly
) T-Z 1 T, .
°1= En, T en?
H’Z G PLJ'
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The columns s.s. now becomes

Ze, (T - Ez-T) = 2o T -~ 212
A M (AR TRl A
=3 T'Z - ;L'Z T'j] Irg - T EFELE — ;L‘Z E;i.u
ZAMZ cﬂj p,j -7 M ZAP"Z cAJ. ""j A
2
= 3 T'Z _ EE
Auz AM

Hence we have a formula for s.s. celumns and, indeed, it is
the same formula we have always used. A similar formula provides the
rows 8.8., the rows x columns s.s. comes by a subtraction. The rows,
columns and r» x¢ s.s. are independent of each other. The row constants

are, in general, correlated as are the column censtants.

The analysis of covariance

The one instance of covariance encountered this far is rather
special in that it arose in a completely randomized pattern, that each
sample provided a number of points, which could be studied for straight-
ness and parallelism. The extension to three or more samples is
immediate and obﬁious and need not concern us here. What must concern
us is the fact that in many, perhaps most, experiments, there is only
one (xy) pair in each sample, and the direct approach to checking
straightness and parallelism is not available. More on this later,

Tt will be sufficient to discuss a particular example, say a

randomized block pattern, yielding responses yij’ which would be



embedded in regression theory with the model

yij

=u+o,£+YJ-+8--,Zo-=ZY-=

Td

and yielding estimates

m =

Y Pi = yi' =Y cj =

7

y_j -

J

Y.
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If, now, we have a concomitant variable xij’ we can put it

into the model, assuming a linear dependence of y on & (i.e.

straightness and parallelism), by adding a term Bmij' We have,

then,

yij

= + + + PBxe.. + g,
LIRS B, ;

2

We can now minimize the s.s. residuals.

> ZP.

7

J

0.

This is much simplified by

introducing the following linear transformation of the independent

variables and hence the regression coefficients.

metrics, Vol. 12, no. 1, 1956)

We observe

L. X . .
J g . g

u + &E

p’f: 7+ B(Ei' - E)

Il

Yy + B(m.j - @)

(Cochran, Bio-

that %xijr=0, all 7, ;xij =0, all %, Epi

T J

=0, Zyﬁ

We therefore set up the functiom to be minimized,

\l{:

L4

1 2
2S(y.. - W - of - vh - Bzl + ATt + £3y%
7 S(y,{,/J K o) v B:cw) Ak EZYJ

T

1 , , N2 )
5SWy; - v -0 - YT - RSy,

J

~Sy . .x%. + BSzi2 = 0.

i 1 )

Thus,

i

J

1
TP

2

,2
Sxij + A2

= 0.
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The estimate of b is recognized as the regression calculated from
sums of squares and products taken from the error row of the analysis

of wvariance and covariance table, Exy and‘E&x, say. Note that

Sy . =S(y7;j _g

ijmij i " y.j + y)(xij - X,

- x .+ 2. The rest of
A 'J

the normal equations are the usual ones
rem’ =T

am’ + cré =T

i
m” + rvel =T .,
J )
E b=E
xx xY
m’ = §¥ Pé = Q;, - Y, 63 = Qlj - y, and the residual s.s. is
02_ » _ rd - ’ -
Sy m’T ZriTi— chT_j bE&y
2 2 2
7. T 2 E
_ 72 ['L- _TE} {g ,@j__] zy
=S -y - - W 7 2 - W - ..

E_ -EZ2%IE .

This is the reduced error s.s., with (r-1){(c-1) - 1 d.f.

To get thé s.s. attributable to rows (say), we fit omitting
the row constants, get the s.s. residuals, from which we subtract the
s.s. residuals when the row constants are included.

The analysis of wvariance table, with rows omitted, reads

d.f.
columns c-1
residuals e{r-1)

total re-1
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and the entries in the residual row must be rows + error, which we

may call Sxm’ Smy’ oy

to a residual s.s.

S
vy

¥y’

- 8% /5 with e(r-1) - 1 d.f.
.‘J:y x5

The same computation as before then leads

The s.s. for rows (eliminating columns) is then

2 2
(Syy Sxy/Sm) (Eyy xy/Em)
B2 5.2
= - F o+ E oyich e(r-1) -1 - [(@-1)(e-1) - 1] =
Yy E S
xo X0
This is the adjusted rows s.s., with »-1 d.f.
d.f. () (xy) (yy)
TOWS r-1 R R R
TX Xy Yy
columns a1 c c
T XYy vy
erroYr (r-1) (e~1) - Eﬁy Eéy
rows + error a(r-1) S s g
&LX LY Yy
attributable to deviations from
regression on & regression on
d.f. S.8. d.f. s.8.

2 _ 1y - -5 2 =
error 1 Emy/E&x (r-1)(e-1) -1 Eyy E&y/E&m
rows + error 1 5 2/g e(r=-1) -1 s -8 2/S =

zy’ o 3y xy' T xx
adjusted row s.s. r-1 G-F

Returning to the estimates of the original parameters

m=7 -t v, =5, -y - b,

-%), ¢. =

RS be.j - x).

If we want to exhibit adjusted row and column averages, we simply drop

y from the . and cj.

r-1d.f.
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The procedure for obtaining the adjusted rows s.,s. is
obviously applicable to any component. If u = Zaijyij’ v = Zaijxij’
the entries in the analysis of variance and covariance table are
2 wv w2, The adjusted value of 4% is obtained by calculating

S =F +v%, 8 =E +u, 8 =E +u°,
wx Vo xy  ay vy Y

and the adjusted value of the component is

2 2. .
(Séy - Smy/S&m) - (Eyy - Exy/Exx) with 1 d.f.

These procedures evidently apply whatever the design of the
experiment, except that we have still to discuss the gplit-plot kind
of experiment, where we have more than one error term.

The assumptions of straightness and parallelism, implicit in
this development, may occasionally be called into question. When the
concomitant variable is carried largely to control error, entering
the experiment randomly, we usually have enough control of the experi-
mental material to keep its range small so that any lack of straightness
or of parallelism has little chance of affecting the results. On the
other hand, when the treatments may affect the concomitant variable,
its range may bé.large and may vary from treatment to treatment.
Adjustment of the treatment averages may reflect an extrapolation into
a range that may, in extreme cases, be non-existent, and in any event,
the assumed straightness and parallelism plays a large role and could,

if unwarranted, lead to gross mistakes., Caution is required here.



A check for constancy of the regression coefficient

27

If the regression coefficient is to vary over an experiment,

it would presumably do so because it varies with the treatments.

model would then take the form, for a randomized block experiment,

y?’g = g + ) + Yj + B,jx%;} + 57’3

The error term in the analysis of variance, where rows and

columns have been removed, is S(yij - gé.

late this s.s.

yij =y + P; + Yj + Bjmij + €

— 1

. o= . + =581, .

Ys. o+ p7/+0 CZBJQ:'.LJ-{.E

Y .=p+ 0+, +FBx .+ &

Y.j = ¥ Y; BJ$.J

—_ 1 —_

y =“+0+0+Ezﬁjm1:j+5‘

— — —_ — la
- - .+ =8.(ec., ~2x .) +=2
Yoj " ¥g. Yty T Biley mm ) YT

- gl,

2
+y)

AT

- E:k) + &

Our

Let us calcu-

Thus, we want to minimize, by appropriate choice of the B's, the s.s.

e

_ 1 _ )2
S {yij TYp. Yy o L (G - B Ry - m-k)}

J k=1

Differentiating with respect to B?:

J— J— 1 —
S {yij T Yp T U vy By - By - m-k)} By =D @y -

Replacing B's by b's and rearranging:

k

- = - - 1
S(yij T Y. T Yy + y)(xip - m-p)(apj - c)

— — 1

1
EQ

s P

1

1,2,...,¢ .

x_k) = 0



These‘equations may be simplified somewhat.
Yok = 3 @5 - E-k) (m'zlp - E-p)
e ™ 2 (B - RICHIED

= —% s k#p

-1 _ 1 -
=] c,k p

= § —

i
pk e’

Al it =2 Y. - Y.
so, write ng : (sz Y. p

normal equations may be written

&4 e

L
2 h,a.b, = Zg (8 .-=)=4G_ (say) p=
e
We may note that 2 g _. = 0, all p. Hence
j=lpJ
G = gg 8 -1 g
1% =1 ba pa ¢ J pJ
" Ipp
=3 (g, -y. -4 . +y@. —x
7:(y?,p Yg. Y. T - x)
=§ (y’.’:p - Y. _y.j'i'y)m,z"p-

- y‘j +y)($,ip - ).

Put

Then, the

1.2,...,¢ .

Rules for calculating the apk and Gp are easily developed.

Having solved for the p's, the s.s. residuals is

e
E - 2 b Gp’ with {(r-1){(e-1) - ¢ d.f. Call this

. Recall that

58
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is the reduction in s.s. when we go from a single coefficient B to

the coefficients B, Bz,...,ﬁc. IT By =B, = ... = Bc, E - Fis

02X2 independent of F, and

(e-1)°

(7 - m/(c-1) .
F/1(x-1) (c-1) - c] 8

F(c—l, (r-1)(e=1) - e).

If we have assurance that treatments do not affect the
regression, we could, no doubt, raise the question of linearity of
the regression, by assuming a model

2
y.,. = + p. + oy, + x..+F ..+ &..
Yog =W o Ty By T Bayy T ey
and testing the reduction in residual s.s, resulting from the
introduction of the quadratic term. This would require a procedure

for an analysis of covariance with more than one concomitant variable.

Covariance with two or more concomitant variables

Surely no further theoretical development is needed here. The
directions must be the same as in the case of a single covarilate:
Fit a regression using sums of squares and products from the error
TOW. Withzasinglé covariate, this is accomplished by means of formulae
derived by the algebraic solutions of the normal equatiomns, With two
or more covariates, these formulae are complicated and it is better to
set up the normal equations, using sums of squares and products from
the error row and solve them numerically. An example should suffice.
Suppose we have a randomized block experiment, with a response y and

two concomitant wvariables, u and v.
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We first compute the analysis of variance and covariance table

d.f. (uu)  (wo)  (v)  (uy)y  (y)  (yy)
replications r-1 Ruu Ruv Ebv Ruy Rvy Ryy
treatments e-1 Cuu Cuv va Cuy va C?y
arror {r=1) (c-1) Euu Eﬁv Ebv E&y Eby Eéy

We envisage a model

o=+, .+ Bou., L ..+ oE. ..
Ypg =W R G B By ey
The sums of squares and products in the error row involve only bl

and b,, estimates of B, and B,. b, and b, satisfy the normal equations

Euubl + Euvbz = Eﬁy
Euvbz + Eﬁva = Eﬁy

We solve these equations and compute the s.s. residuals,

E - blE - bZE . This is the reduced error s.s. with
vy uy vy

(r-1) (e-1) - 2 4.1,
To get the adjusted s.s. for treatments, we compute

S =(C 4+ F etc. and set up the equations
U Uil uu

Suucl + Suva2 = Sﬁy

Suvcl + vac2 = Sby,

solve for e ¢, and compute 8.s. residuals from

1 "2

8, = C15,, = CaSys With (p-1)(e-1) + (e=1) - 2 d.f. The

difference between these two residuals, with ¢-1 d.£f., is the adjusted

s.5. for treatments. The adjusted treatment means are obviously

Yl =Yy~ biluy, - w) - by, - V).

{
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References for the analysis of covariance

Biometrics, Vol. 13, no. 3, Sept. 1957 is wholly devoted to covariance,
Cochran's expository paper, in this issue, is the best account of

covariance I have seen.

Truett and Smith, Adjustment by Covariance and consequent tests of
significance in Split Plot Experiments, Biometriecs, Vol. 12, no. 1,

1956, is worth reading.

Wilks, The analysis of variance and covariance in non-orthogonal data,

Metron 13, No. 2, 1938.
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Missing Values

When an orthogonal design is rendered non-orthogonal through
the loss of one or more observations, we can, of course, conduct the
analysis by means of regression theory, a vastly more elaborate and
complicated job. We may ask whether regression theory may be adjusted
(as it is in covariance) so that the added computation is not dispre-
portionate to the amount of orthogonality lost, in particular, whether
we can avoid the solving of a large set of normal equations. This is
the "migsing value" problem. It was first raised by Fisher, I think.
The approach used here, formally embedded in regression theory, is
closer to Yates than to Fisher.

This discussion will be directed to a randomized block experi-
ment, but it applies equally to any design.

We postulate

5

yij = u + Pz + Yj-FEiJ’ Zpi = Eyj = 0.

For the intact design, a fitting of the regression Yij =m+ r. + Gj’

Zri = ch = 0, yields m = y, r, =Y., ~ Y cj = y.j - Y,

Sy2 -ml - .7, - e T .
AR g7 ed

. g_j + %, with (r-1)(e-1)df.

s.s., residuals {errors)

= SW.. - 4.
(yzg y;.

If some observations are missing, our objectives are the same,
but the normal equations would not yield simple algebraic solutions and
would require numerical solutions. Suppose this is done, so that values

of m, r,,cj are at hand. We can then use the regression yij =m+ Pi + cj
1

to calculate a Y-value for each of the missing observations. Suppose
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this is done and let us think of fitting a new regression

Yéj = m' + ré + cg to the completed table of observations. This

amounts to seeking Y’ values such that

2 Z
_ ! - f . . - - - .
S(yij Yﬁj) + E(Yij Yig) is minimized

S here stands for summation over the actual observations and ¥ is over
the filled in wvalues.

Clearly, this s.s. is minimized by ¥' = ¥, so we get the same

regression as before. Hence m' =m, ré =7, cj = cj, and the sum of

squares is left unchanged and therefore correct. The fitting to the
completed table can be carried out according to the solution of the

intact design, where the symbols m, r, = 5;_ -y, C, = §lj - g-may invelve

J
the substituted Y-values. Hence, if a way can be found to obtain these
¥Y-values without actually fitting the first regression, methods appropriate
to the intact design 1i.e. analysis of variance computations may be used.

Suppose that a single observation is missing in row 7 and column m.

Write the symbol Hm in this cell and proceed with the fitting of

Y..=m+ r. + .

TJ 1
.z, e o i o
e ¢ re r re| °

Now some of the symbols T, Ti-’ T-j involve the symbol Y The fitting

is to be such that sz = yZm' We have, then,
Yim e b re
' I !
- T1e + ¥im + Ton + Yam _ T s ¥y
e r re

where 7''s represent sums over the actual observations. Solving for
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¥4 vields
Lm PTS kel - T
- » sm

Y s
me (1) (e-1)

a missing-value formula for the randomized block design. Each design

will have its own missing-value formula, derived as above or in a
similar fashion. Always the number provided by the formula minimi-
zes the error term, in fact, leaves it unchanged and entirely correct.
(It is obvious that, in a completely randomized design, the numbers
substituted to regain orthogonality, will be the sample averages.)

These facts can be used in several ways to cope with missing
values. We could in any design, substitute symbols for the missing
values, carry out the appropriate analysis of variance and choose the
values of the symbols that minimize the error s.s., which of course
is a quadratic form in the symbols.

If we have a convenient algebraic expression for the error s.s.,
in the randomized block design it is S(yij - g%. - glj + gjz, we can
designate Yim to represent the missing observation and choose its
value to minimize the error s.s. This leads to the same missing-
value formula.

If more than one missing value occur, we can derive a number of
equations, equal in number to the number of missing values, to be
solved for the numbers to be substituted for the missing values.
Alternately, we may substitute for all but one of the missing values
some number presumably g and use the missing value formula to fill in
the cell left empty. Then, remove one of the y's and replace it with

the value from the formula, and so on. This iterative procedure
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usually converges rapidly.

After supplying the missing values, we make the usual computations

d.f. 8.8.
% 72
@.

replications r-1 z " 7o

Tf-j 7

treatments t-1 by pralee
¥ Xt (error) (r-1) (-1)-n by subtraction

2

2 T

total rt-n-1 a yij -

n stands for the number of missing values. The totals used in the com—
putations include the numbers supplied for the missing values.

As we have seen, the error s.s. so calculated is correct. All
other s.s. are increased above their correct values, because adding
numbers to the original observations can only increase the total s.s.
but none of the increase appears in the error s.s. One can study ways
of correcting these s.s., but usually we have no direet interest in
them anyway. The whole missing—value precedure is really just a simple
way of getting the correct error s.s.

The standard error of any contrasts we may wish to study, if they

involve the missing values, are easily adjusted for this fact.

Missing values by covariance

Again, as an example, let us discuss the randomized block design,
with one observation missing in cell (Z,m). Put Yim = 0, and intro-
duce a concomitant variable xij’ defined to be zero everywhere except

for By = -1l. Then, fit the regression
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Y..=m+r.+ec, +br.. Zr.= c.=0.
Td T Jd Td T dJd

Thus we minimize, subject to the restraints,

- 2 2
Sy -m-r. - cj) + (0 -m - ry,o- g+ b) ; where 8 represents

1d
summation over the actual observations and is the s.s. minimized by
fitting te the actual observations. The whole s.s. is minimized, and indeed
attains the same minimum value, by choosing b = m + r, + ¢ . This is
the same argument used before. » is seen to give the same missing value
as was reached earlier. One can say that this device transfers non-
orthogonality in ¥ to non-orthogonality in & and there are no missing
values.

What we do see here that is new is that the whole exercise can
be put into the form of a covariance calculation and the correct s.s.

for the reduced and adjusted s.s. may be found in this way.

The covariance table takes the form

d.f. (xx) (zy) (yy)
1 1, _ 1 _oy
rows r-1 c(l - Iz) —E&w - C(TZ- P) R&y Ryy
1 1 1 T,
columns c-1 P(l - 0) '"Ckm - ;(T_m - E) = C&y Céy
T T
11,1, I+ tem T _
rxe (r-1) (e-1) (1-—r-—c-%rc)~wuxx =t % 76" E&y ”
total re-], 1-2+ =rp i ¥
re xY re Yy
e T T
We get b = E&y/Eﬁx = £ 1 rl %f » which is the missing-value

“r e re
formula reached earlier, because the T's, here, including as they do

the "'observation" Yg,, = O» are the T' g calculated before. The residual

8.8., i.e. the correct error s.s., is
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E_ -DbE_ =K -[E° [E_ with (r-1)(c-1) - 1 d.f.
¥y Y vy Xy

If we want the correct rows s.s., we get it by the standard covariance

procedure, setting up (rows + error) and so on.

This approach is obviously available whatever the degign of the

experiment.

Split Plots

The discussion up to this point, according to which the analysis
of experiments is embedded in regression theory, assumes the presence
of only one error term, obtained by minimizing the residual s.s. When
we have more than one error term, reflecting comparisons of different
precisions, some extension is needed. To have something definite to
discuss, think of a factorial experiment in which each level of the
first factor requires a different subject, while all levels of the
second factor may dbe applied to the same subject. Suppose the exper-
iment is carried out in a number of replicatioms. Let yijk be the
observation corresponding to level 7 of the first factor, level J of
the second factor, in replication k. Then, © and X run over subjects
and j operates within subjects. We may now set up a model

Ypge = WH 8 F 05 4 Tpg + 0 + Npp g

with Zd = Zy = Zﬂij =Zp =0, N;; represents a subject to subject

component of error and Eijk a within-subject error. We assume
2 2
g: N(0,97), n : N(O,Gn), €, N independent.

Recalling an earlier result, within-subject comparisons will

2

, 2 . . 2
have error variance ¢ and between-subjects comparisons ¢ + go_,

Jd=1,...,9.
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Separating out the total variation into the within and between
subjects components,
- = ¢ g = Y. +qg 22 (y. ,—
S(yijk ) S(yﬂgk Yiun) 72 TR
Now, yi‘k = 3 + 5i + pk + 1.

Yigh ~ Y5 = Y5 7 Teg T Sk T Sien

The weighted s.s. of vesiduals, with weights inversely proportional to the

variances, is

WSWo = Yo ~ Vi - "%:,j)2 F DL alyy g - v - 8 - ey ¥,
with W = 1/02, Wi = 1/(02 + qci).

The normal equations obtained by minimizing this s.s., for the
intact design, separate into two independent sets and yield the stan-
dard split-plof analysis, without requiring the values of W and ¥'.
When some non-orthogonality is present, e.g. when a covariate is
present, the normal equations do mot separate and require the values
of W and ¥', which must be estimated. We are thus led to complexity in
the normal equations and to difficult distribution problems due to the
estimation of ¥ and W'.

The s.s. to be minimized, arising from

ey = + 6.+t vy, +q,.+ + e, el I
y@gk H 61 Yg ﬂzg Pr Bx@gk Szgk 8

»?

R A TR Y e R
2

+ W % i aqly, - w — 8, - o ~ B, )Y
Probably the simplest practical advice here is to carry out the
covariance analysis separately in the main plet and in the sub-plot
analysis. This amounts to minimizing individually the two s.s., leading
to different estimates of B in the two parts, presumably each with lower
efficiency than could be reached if they could somehow be combined.

This is the only penalty paid for separate analyses. All the distribu-

tion theory remains valid.
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The missing value problem may be regarded as a special instance

of covariance and the same considerations apply.

The Rejection of Observations

The decision to reject observations should never be reached
lightly. The decision to reject is a decision that the error system
is out of control and we lose the essential basis for reaching assured
conclusions. In a way, the concern is less agbout the observations we
remove than with the ones we retain. How trustworthy are they if the
error system is not to be trusted? No matter what the grounds for
rejection (except when reasons for rejection external to the sample
are at hand) or the procedure we may use to justify the rejectiom, it
remains true that we reject them because we do not like them and retain
them because we do like them; a fragile base from which to claim to
prove something. The occurrence of observations we do not like is the
commonest feature of all experimental and other statistical inquiries.
There has been an inordinate amount of writing on the subject, going
back at least 200 years. Many rules and procedures have been put
forward for rejecting observations and for protecting ourselves, wholly
or in part, from their contributions. Probably it is best not to use
any rejection rule and such devices as "robust" methods and non-
parametric methods should be used with judgement and caution. Not

simply because the data are ragged and untrustworthy.

Incomplete Blocks

The notion of an incomplete block, i.e. the block is too small

to hold a full replication, has already been encountered in factorial
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experiments. The devices used there depend on the fact that, in a
factorial experiment, especially a large one, some of the contrasts

can be judged to have no real importance and can be sacrificed through
being confounded with blocks. This device is no longer useful when

all contrasts have the same importance, unless one is willing to employ
balanced confounding. This discussion, then, has to do with balanced
incomplete blocks. The condition of balance may be eased somewhat,
leading to partially-balanced incomplete blocks, but this question will
not be pursued here.

The objective in blocking is, of course, to ensure that every
contrast we study is made within as uniform a set of conditions as
possible. When the blocks are complete, every contrast is made within
each block. This, evidently, is the condition that must be relaxed
when the blocks are too small to contain all the contrasts. We must
settle for arrangements in which every contrast is made within some
blocks. If the arrangement is to be balanced, all contrasts must be

perceptible within the same number of blocks.

A Historical Example

Seven strains of tobacco mesaic virus were to be compared by
applying them to the leaves of young tobacco plants. It was known that
individual plants differed substantially from one another in sensitivity
to the virus and further that there were important differences among the
leaves of each plant, in as much as each leaf was younger than the one
immediately below it.

In these circumstances, we would naturally think of a latin

square arrangement, with plants corresponding te columns and leaf
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position to rows. For such an arrangement, we would require plants with
7 leaves, but it was judged that the largest number feasible was 3.
Nevertheless, we still need what the latin square would provide, namely,
contrasts made within plants and within leaf positions.

We might think of taking 3 rows out of a 7 x7 latin square, but
this does not necessarily yield a usable arrangement. TIf, for example,
we take the first 3 rows of the latin square below,

4 B ¢c D E F G

B ¢ D EF F G A
¢c D E F & A B
o g F G 4 B C
E r & A B ¢ D

¢ A B ¢ D E F

thus making up seven groups of three, each to be applied to a single
plant, we find that . Ereatment A, for example, appears on the same plant
once with ¢, F, twice with &, & and not at all with D, . This arrange-
ment is entirely unsuitable, On the other hand, if we select rows
1,2,4, we find an arrangement in which each treatment appears on the
same plant once and only once with every other treatment. The condition
of balance is met. The groups of three constitute incomplete blocks.
This arrangement has another feature, usually not sought, that the ob-
gservations are grouped into replications (top leaves, second leaves,
third leaves}. Such special incomplete block arrangements are called
incomplete latin squares or Youden squares, after W.J. Youden who first

published an account of such arrangements.
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We may remark that the complementary set of rows, 3,5,6,7 furnish
an arrangemen£ in which each treatment appears in the same group with
every other treatment in two groups and would provide a suitable allo-
cation if plants with four leaves were to be used. Again, if we were
using plants with six leaves, deleting any row from the 7 x7 square
would provide a grouping in which each treatment appears in a group 6
times with every other treatment.

If our plants had only two leaves, we would require 21 plants to
attain balance and if we wanted the grouping into complete replications

we would need 42 plants.

Balanced Incomplete Blocks

We shall speak of an experiment in which ¥ varieties are tested,
in b blocks, each of which contains k different varieties, each variety
tested * times and each variety appearing in a bleock with every other
variety X times (X < v, A: the number of times each pair of varieties
occurs together in a block, i.e. the number of blocks contalning each
pair of varieties).

Clearly, these parameters cannot be assigned numerical values
arbitrarily.

1. The total number of observations is
v = bk = N (say)

2, The total number of pairs (within blocks) is

v(v-1) bk(k—l) .

A 2 - 2

Hence,

b k(k-1) (k-1)
v(v-1) = Two1)y

by (1).
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These conditions are necessary, but are by no means sufficient, to
ensure a suitable design. That some design exists is clear. We need
only make up all k-subsets of v, [z] in number, and assign each to a
block. This would yield a design with »r = (E:i}, b= [i}. Usually
these numbers would be too large to be suitable. The enumerative pro-
blem, then, is to find arrangements that meet the conditions and that
are not too large.

The assumptions made earlier for the randomized complete block
are suitable here also. We envisage differences among blocks, among

varieties and error.

Yog =W By T ey e

The only way in which the treatment of this assumed structure differs
from that in the complete block is the set of values taken by J = J(Z)
varies with %, i.e. from block to block, according to the groups in
the incomplete blocks.

_1 ) 2
B= g SQ:-u-8;-0) +EXB +n5o;

7 7 P
af
oF _ 8 —u=-B. -9, =
aw = Wy Mo B o) =0
“_@..E_=_s(y,_u_3 -8, +E=0 p=1,2,...,b
asp ig Z Jip T
3E
—= = _S(y.. ~Uu - B. - 0.)8, = = )
aq)q (yw u B@ cpJ) Jq+n 0 g=1,2, N
3E _
ag—zsi—o
3F _ _
3n = Z ¢j =0

Using latin letters to denote estimates, these equations can be

rearranged to read:



Nm+k2bi+r2vj23y

km+ k bp + (sum of v's in block p) + £ = ;3 ypj

ro+ (sum of b's for blocks containing vq) + rvq +n=12y
i

iq
Zbh.,=0
z
Zov.=0
Z
That is:
(1) Nﬁ =G
(2) km + kbp + (sum of ¥'s in block pP) + & = Bp’ p=1,2,...,b
(3) v+ (sum of b's containing vq) + qu = Vq, g =1,2,...,v
(4) 2B, =0
5 Zv.=0
(%) y
Adding (2)

bk +k Z bp +r Z vyt b&=21 Bp =G
hence £ = 0 in virtue of (1), (4), (5); similarly, n = 0.
Now, add those equations in (2) over p = p(g), i.e. over those
blocks containing variety ¢g. There are ¥ such blocks. We get:
Pkm + k(sum of bh's containing vq)

= T

+ I (sum of v's in block p) = 2 Bp p

p=p{(q) p=p(q)
Now, 2 (sum of v's in block p), i.e. the sum of all the v's in

p=p(q)

blocks containing vq, is seen to he

rvq + 3(sum of all other ¥'s)

(r-A)p + A(sum of all p's) = (p-)v .
q q

T
-A
Hence, ym + 3 b 4 ZZA v m—gn.
p=p (@) P k “q k

Subtracting from (3),

r
_rAy oy g -
Uq(r‘ % ) Vq % 4 q 132:‘°‘3v



75

;1
N P_.r:& =3 bl k = P_...}i
OW, k = l ka
l__
v
1 -3 9
If we define F = ko Eé-< 1, since k < v, v =4
1.+ rk g rE
2
Notation
G=25
Y
Vé is the sum of the observations on variety s
Bp is the total of block p
r = 2 B_, the total of blocks containing variety &
p=p(s)
3. =V, -7 [k
s 8 8

If we are to use this solution to deduce standard errors, we must
solve the equations without making use of the relations among the right

sides. We get:

" _1
g = B{Z Bp -G, n= U(Z Vé - &
riv =V - %— Z Bp - %{2 Vﬁ - &) + ﬁ%{z Bp - G).
¢ 9 " pplg) ) .
Putting Vé 1, all others = 0, we get Var vq =2 (1 - EJ.

H

o] 1
wEC P
202
rE

Putting V¥

£ 1, all others

0, we get Cov(pq,vt) =

2
=20 L L
Hence, we can calculate Var(vq-—vt) ol G R )

20’2
»rE "

In a randomized block design with the same number of observations
and the same error variance, the variance of this difference would be
202
—— , smaller than we get with the incomplete block arrangement., Thus
E reflects the loss in precision resulting from the fact that our con-

trasts come only from the blocks in which the components appear

together. F is called the efficiency of the design.
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0f course, the point in geing to the smaller, incomplete blocks
ig usually that by so doing, we attain a genuinely smaller error var—
iance, presumably enough smaller to more than compensate for the loss
of efficiency.

The sum of squares of the residuals may be calculated according

to the following pattern

2 2
Blocks (ignoring varieties) b-1 -% z Bp - G7/bk
Varieties (eliminating blocks) -1 z quq = 2 Q;/PE
Residual PU-b-v+1 by subtraction
2 2
Total rv-1 Sy~ - G°/bk

The Recovery of Interblock Information

This is a poor topic for lecturing. It is well laid out in
Kempthorne. See also Rao, J.A.S5.A. Dec. 1947, where he gives a rule
for getting the equations for the combined analysis from those of the

intrablock analysis.
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Biological Assay. The Interaction of Quantity and Quality.

Only the case of measured responses will be discussed here.
Instances in which the response is a count or the time until death
require rather different methods.

Usually, the administration of a graded series of doses yields
a monotonic response curve, mostly S-shaped. Sometimes the upper part
of the curve is non-existent.

Two cases must be distinguished. Sometimes small doses lead to
definite responses; this response curve leaves the zero dose with a
non-zero slope. Usually, in these instances, the response curve is
practically straight over a large enough range to permit an analysis
based on straight lines and working on the lower end of the response
curve. In other cases, low doses elicit responses so small as not to
be useful and the testing is carried out in the middle part of the
response curve where, as a rule, there is a range within which the
curve is sensibly straight and again the analysis can be conducted in
terms of straight lines.

Often assays are carried out to compare an unknown preparation
with a standard one, usually supplied by a government. The comparison
has two objectives, to decide whether the unknown preparation is qual-
itatively like the standard and, if so, to measure its potency relative
to the standard. The comparison is carrieéd out by comparing the two
dose~response curves.

Think of some preparation and its dose respomnse curve. Now
think of diluting this preparation with some inert material, so that

a given dose now contains less of the active ingredient than the same
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dose of the original preparation (dose is measured in mg., cc., toms,

etc.). The dose-response curve of this diluted preparation will be the
same as that of the original preparation, except that it is plotted on
a different dose scale. If doses of the standard aredenoted &; and of
a transformation of the form &

the unknown = kx,, with kK properly

22 2

chosen, should bring the response curves into coincidence. The value
of & that accomplishes this is called the relative potency of the
unknown (relative, of course, to the standard).

If, in any instance, the curves cannot be brought into coinci-

dence by the transformation x, = kx., the preparations are qualitatively

19
different and we have, in Fisher's words, an interaction of quantity

and quality. (Design of Experiments, Chapter 8.)

The Micro-assay

When small doses have appreciable effects and when we can work
within a range where the response curves are linear, we will have two
response curves radiating from a point on the response axis, whether or
not we have observations at the zero level of dose. (If we do, we get
into the "dummy treatment’ situation.) Assuming straightness, we seek
the value of the constant k which will bring the lines into coincidence.

The question may be set up as follows. Let z. , o = 1,2,...,1

la

be doses of the standard yielding responses Y1g and

1

2&’ a = 1,231--’?}42

be doses of the unknown yielding responses Y-

Define a new independent varilable £, defined by & = x in sample 1
and & = ky in sample 2. That is, £ = 2{1 + (k-1)§}, where the indi-
cator variable takes value zero in the first sample and unity in the

second. Then, fit the line ¥ = bo + P& to the sample CERCTRR TR
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We have

|.<:.
i

= by + bk

by + byx {1 + (k-1)8}

by + bz + bydw, b, = bl(k—l).

The normal equations for this fitting are

(n1+n2)b0 + bIS:c + b,S8x = Sy
boSe + bISxZ + b,Ssa” = Smy
by S8 + b135m2 + b,86%w? = Sexy

These equations may be solved for bjy,by,b,, the s.s. residuals calculated
(to estimate 02), and the relative potency calculated from k-1 = ;% .

Presumably we would want alsc to check on the straightness of the
response curves and to provide some evidence of the precision of the
estimate of relative potency. Testing straightness will be discussed
later. The question of precision may be dealt with by calculating con-
fidence limits by the argument first put forward by Fieller.

Let us write 8, = Eby, B, = Ebz, k-1 = 62/81 = X (say). The
function b, - Ab; is normal (assuming normal errors) with mean B,-AB, =0
and variance 02(022 - 2Xeq, + Azcll). The elements of the inverse matrix
can be found from the normal equations and 02 estimated by 52 from the
s.s. residuals. Then

2
= t° with n,+, - 3 d.f.

2 2
8 (022 - chlz + ATeqq)
According to the usual confidence limits argument, we seek those values
2 2
of A for which ¥~ = tu/2 to provide a l-o¢ confidence range. Thus, we

seek the values of A for which

2 2

2 2
d/ZS eyy) - Zk(bzbz-—tC£

/2°

The two roots of the quadratic equation provide the limits of this range.

2.2 2 2 2
ATy -2 ci,) + (bz—f:a/?_s Cpp) = 0.
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One curious fact about these limits is the requirement that

b% - tzjzszcll'must be positive if the inequality is to be satisfied
between the two roots. That is, bl must be significantly different
from zero at significance lewvel o. The rest of this development concerns
the design of the assay to render the statistical treatment as simple as
possible.

A first obvious restriction, one that would naturally always be
observed, is to use the same doses for both preparations,
Trla = Xy, = By (say) and ny = My = 1 {say). Then, the arrangement is
completely orthogonal. A concomitant rearrangement of the regression

equation, to take advantage of the orthogonality, is to replace

Y= by + byt byl

by
= L
Y= By + By(eE) + Bys'm, 87 = 8 - 2.
Then by = By - By
13
by =By - 35,
b, = B,

The normal equations are
an{J = Sy = b (yl{)f. -+ y2u.)’

__2 —_—
2%z, - @)"By = 2w, - @} + Yy )s

The first two equations represent an analysis of the sums (or averages),
and indeed they comstitute the fitting of a regression line to the
average of the pairs of y's on the same dose, The third equation is a
fitting of a regression to the differences of the same pair of y's,

constrained to pass through the origin.
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The two questions about the straightness of the two response
curves has been changed to one about the straightness of the average
curve and one about the straightness of the curve relating differences
to dose. These two questions of straightness may be approached in the
usual ways.

The analysis thus far can be embedded in an orthogonal transfor-

mation.
Y1 Ypy v Yia Yo vt Y Yo divisor
=8} 1 1 1 1 e 1 1 Vin
7 oz 7 -z 7 o5 e d?
By T~k X~ L~F XmE A ZZ(xu x)
%3
orthogonal
Zn ay a1 au aa an an
/ 2
- - - 27
B 40 orthogonal
2n by by by Py b, by

The analysis of variance table corresponding to this is:

2
d.f. S.S. s 9 - (Z(sca—'m")i”a)
0 ) ZTu ¢~ average slope 1 By, m T o
among levels n-1 zy+...z) = ~5 -5 27(x,~T)
residuals #n-2 by subtraction

2
_ (22 ()oY 1) ]

i 1
within 2 2 by sub- preparations zn+1 2
level " Fue1T ®on traction 22,
evels I rac levels X 7-1 by subtraction

preparations

total 2n-1 Syz-Gzlzn



V2n B,
z V2s(z -®)2 B
2 o 1

z = 22& Bz

n+l

il

We note that 31

The components Bysee-B, would be chosen to test the nature of
the departures from linearity of the average points. Values of poly-
nomials chosen to be orthogonal over the doses used would be most

satisfactory. If we define

Py = 2go

Pl = AIO + All x

Pyo= dyp + Ayy &+ Ay
atc.

with the A's chosen so that SPitua =0, 17 # j. We could choose
Agp = 1, P; = x-& , etc. Then 84 = Zquya is the quadratic component,
and so on. If the doses are arranged to be equally spaced, Fisher's
£'! polynomials can be used.

In the same way, we may wish to choose the coefficients in
gn+2""’32n to display the nature of the trend in the curve relating

the differences to the deose. We could define polynomials

Qy = Uy &+ 1y, &

2 21 22
and so on

with the u's chosen so that.SQiana =0, 2 # j. These polynomials

would be suitable for fitting polynomial regressions constrained to

pass through the origin.

We could arrange to have the doses not only equally spaced, but

g2
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reducible to 1,2,3 by a change of scale. These Q-polynomials and

tables of theif values have been determined by Fick (1985).

With Ql a xr, a little computation ylelds

a, a n(:;a+l) % - 2:§+1 22

If we take n = 3, we get:

Qlx) = g, (x) Qq(x)
1 11 3
2 8 -3
3 ~9 1

Yi1 Yp1 Y1p Yoo Hia Ypg divisor

3y 1 1 1 1 1 1 /6 B,

g, -1 -1 0 0 1 1 Vi B,

24 -1 -1 2 2 -1 -1 /12 quadratic
5, -1 1 -2 2 -3 3 V28 B,

Zg -11 11 -8 3 9 -9 V532 quadratic
B =3 3 3 -3 -1 1 V38 cubic

5 and &g are interactions of doses and preparatioms.
Fisher's example has doses 0,1,2. With two preparations, the

transformation would be

Y10 Hpo Y11 Yo1 Hi12 Yoz

= 1 1 1 1 1 1

g, -1 -1 0 0 1 1 average slope
24 -1 -1 2 2 -1 -1 quadratic

3, 0 0 -1 1 -2 2 preparations

B 0 0 2 -2 -1 1 interaction
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The multipliers in 5 are values of §,, found here simply by ortho-

gonality with z,.

Estimation of Error

When #n is small, the assay would presumably be replicated and an
estimate of error would be thus provided. If » is large and no repli-
cation provided, the first few components (the P's and §@'s) would

probably exhaust the trends, leaving the rest to represent error only.

Standard errors of bl and b,

2
We have Var Bl = GZ/ZZ(mu—E) , Var B, = ZUZ/Zmi, Cov (B,B,) = 0.

- 1 -
Also, bl = Bl-—Eﬁz, b, = B,. Then,

1

Var bl = Var Bl + Z—Bz
02[ 1 1
T2 2 7 2
LZ(muﬂr) Zma

We need also, Cov (b,,b,)}, which may be computed from

Var (b; + b,) = Var by + Var b, + 2 Cov (by,by).

. i 1

i.e. Var (Bl + E-Bz) = Var (Bl - E—Bz) + Var B, + 2 Cov (bl,bz). Thus
_ i _ 2 2

Cov (bl’bz) = -3 Var BZ = -@ /Z:ca.

The parallel assay

When it is necessary to work in the middle of the response curve,
it is customary to plot response against log {(dose). The transformation
L, = kml becomes log x, = log Xk + log 2y and the two response curves, if

qualitatively alike, become parallel curves, in the sense that they may
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be brought into coincidence by a transformation in the direction of the
log (dose) axié. The distance between the two curves is log (relatiwve
poteney).

If we confine the doses to the part of the range where the response
curves are sensibly linear, the statistical analysis amounts simply to
fitting a pair of straight lines, constrained to be parallel and finding
the distance between them. We would, of course, want to check on linearity
and parallelism.

If the sample values are (xiu’yia)’ a=1,2,...,n,, i = 1,2, we
can fit a pair of lines, constrained to be parallel, by defining
E =ax 4+ ké and fitting

Y

bg + b1 E

by +byx+Db,8, Db, =kby.
Here, the x's stand for log (doses) and kK is the log (relative potency).

§ = 0 in sample 1, § = 1 in sample 2. The normal equations are

(ny +n, )by + b Sy + bS8 = Sy
boSx + b18x2 + b,S6x = Scy
bySS + b S8x + b,36% = Soy
Again, the system becomes simpler if we arrange that =z, = x

1o 2a°’

ny = Hy, =0 and fit

Yy = BO +Bl(.’£-5) + 326', §r = § - %-
— 1
Then, bO = By - Bz - E'Bz
by = B,
b2 = B,
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The normal equations are
2H';BO - Z(yla + y2a)
2
2Z(xu—") B, = Z(maéf)(yla +y,,)

7 1
38225 2y, ~ ¥y
We see that the B's are independent, with
2 2
T P
22(:1:&-5)

The first two of the equations represent the fitting of a regression

Var B]_ =

line to the average of the response curves and the third the fitting of
the regression E(y, - y;) = comnstant.

We can construct an orthogonal transformation to exhibit all
the features of this regression. In particular, if the doses are chosen
to be in geometric progression, so that the log (doses) are equally

spaced, we would naturally use the &' orthogonal polynomial values.

yll y21 Tt yla y2a .. yln y2n divisor
2 1 1 1 1 1 1 V/2n

g, Elley)  El(z)) E{(x)  E{Gx) El(w ) Eix) V28 £{?

t t ' ] r t / 12
gn n—l(xl) n—l(xl) n—l(xa) n—l(xu) n—l(mn) nfl(xn) 28 En—l
A, q 1 1 -1 1 -1 1 Von
o “E1 3 €] £ -1 £1

_Et r _z! ' _rt r
Boy "En-1 n-1 -1 &1 n-1 n-1
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&y o By,a, o 33’33"‘3n are quadratic, cubic etc. components, depicting

lack of straightness of the average line. & a B reflect

b4
71 2°%410 0
lack of straightness of the line showing the dependency of the differences
on log dose, i.e. lack of parallelism of the two response curves, i.e.

interaction of doses and preparations,.

Confidence limits for k = bz/bl are obtained as before.

Transect sampling

Frequently an area is sampled by taking strips, parallel to one
another and equally spaced, making complete counts or other assessments
and forming an estimate of the total by dividing this count by the
sampling ratio. An example is the timber cruise, used to estimate the
total stand on some given area. Strips of width d are cruised, recording
the total stand {(number, volume, or whatever) of each strip and its length,
so that the total area sampled may be calculated. TIf this is @, and the
total area is A, the recorded count, {, say is "blown up" to yield an
estimate of the total stand, T, by calculating T = CA/a.

This estimate may be questioned, but the real difficulty arises
because the systematic (i.e. not random) allocation of the samples pro-
vides no definition of error and therefore no way of estimating the
precision of the estimate.

Practitioners of the art recoil in horror from the suggestion that
the strips should be allocated randomly, for the good reason that it
would be unmanageable in the field. They have therefore developed a

certain mythology about the systematic sampling they practice.
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¢

1. The systematic sample yields more precise estimates than a randomly
chosen sample. In this they may be correct.

2. The "blow-up" is the correct procedure for estimating the total
stand. This would be the case for random sampling, but is not quite
correct for the systematic sample.

3. The observations yvielded by the systematic sample may be treated as
if they arose from random samples for the purpose of calculating the

errvor variance. This, of course, is nonsense.

We can look at the problem in the following way. Let us regard
the count on each strip, divided by the width of the strip, d, as an
estimate of the (linear) density of stand at the middle of the strip.
If we could know this density corresponding to each point of the hase
line, the stand could be described by the density curve and the fotal
stand would be given by the integral of this density function.

We have, in fact, only a few points on the density curve and they,
furthermore, have been observed with error. Our determination of the
total stand becomes, in this construction, an exercise in numerical
integration when the observed points are subject to error.

The appraoch put forward here is simply to fit a polynomial up
to the point where the residuals appear to display no trend and treat
them as displaying error only. This is a new and somewhat subjective
definition of error.

Since the sampling strips are equally spaced, the fitting can
be carried out easily using the tabulated values of the E'-polynomials.

If, in addition, the integrals of these polynomials are available, the
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whole of the arithmetic becomes quite simple. See DeLury D.B. 'Values

and Integrals of the Orthogonal Polynomials'.

Capture-recapture methods

Much has been said about the essential role of randomness in the
conduct of experiments. It provides a definition of error, and indeed
converts what would otherwise enter the comparisons as biases with error.

When the object of sampling is the making of an absolute estimate
of some quantity, randomness is still important if we need a sound
definition of error, but sometimes the estimate itself may be excellent,
even through randomness has not been introduced. We may then seek some
substitute for a definition of error based on randommess which, even
though lacking the authority of an a priori definition based on random-
ness, may still prove to be useful. The estimation of stands of timber
from a systematic sample appears to be an instance of this. Nothing
general can be said here; each device is special to its own particular
set of circumstances.

It is obvious, too, that when one is estimating, rather than
comparing, biases which can be "designed out'", without knowing exactly
what they are, in an experiment, may become important when estimation
ig the object. Indeed, it seems that usually the possibility of bias
transcends all other considerations.

One instance of methods that have evolved, in spite of the
impossibility of arranging a dependable procedure for randomization,

will be discussed here. It has to do with the estimation of the number
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of individuals in a population which is not tied to any framework which
could be used fo provide a basis for selecting samples randomly. An
instance of this is the estimation of the number of fish in a lake.
Methods of this kind have been used with biological populations of other
kinds and in other circumstances as well. It seems likely that they
have wider fields of applicability than is generally realized, however

they are not widely known.

Mark-recapture; tagging

The first proposal is rather obvious and has been in use for a
long time. (Laplace)

Let us suppose, to start with, that we have a population of ¥
individuals that is closed, no recruitment or emigration or depletion
through mortality. Let us capture a number ¥ of these individuals,
mark them and replace them in the population. Then, select randomly
a sample of size »n and ascertain the number x of them bearing marks.
Then, equating x/n with X/N, we get an estimator § = nX/z.

To put this in a statistical setting, we must regard x as a
statistical variable. 1Its distribution is obviously hypergeometric,
but if, as is likely to be the case, n is small compared to N, x may
be treated as binomial (for simplicity) without sensible inaccuracy.
The parameters of the binomial are y = ¥/§¥ and »n. We have, then,

z _ X . X _X
E =4, Var N(l N)/n

When we come to deal with the effects of the binomial error om
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the estimator ¥ = nX/x, we are confronted with the reciprocal of a
binomial wvariable, which therefore becomes infinite with positive
probability. It therefore seems best to deal with the reciprocal,
l/ﬁ, which is binomially distributed, and invert. This is, of course,
what we have done when we write ¥ = nX/x. We may note, even though it
is not important, that this estimator is biased, since its reciprocal
is not.

If we wish to exhibit the precision of the estimate (as we should),
we can make use of tables or charts giving confidence limits for the
binomial distribution to set limits for X/V and invert. Mostly, though,
it is sufficient to invoke the normal approximation to the binomial and

write

£
i

= N(0,1).

(L - %)

=l (S8

/%

Hence, we can evaluate the probability that this quantity will lie in

=

any given range. For example, the probability is about 0.95 that it
will lie in the range (-2,2).

Alternatively, the 95% interval is composed of those values of

¥ for which
z _ Xy2
(n N) )
X X, -2
E‘(l - Eﬂ

where g is the 5% point of X%l)'

Rearranging this inequality, we get
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We would expect that, replacing this inequality by an equality

and solving for‘g

e Ve would get the endpoints of the confidence interval

covering the mean of z/#n, from which we could calculate the range for V.
It seems prudent, though, to check this through.
The discriminant of the quadratic must be positive if it dis to

yvield real roots. The discriminant is

2
x|, 8.2 2, x
2o+ -4+ r

which may be reassembled in the form
z b4 x 1.2
T I L

Now, the greatest value that (%'_ %92 can take is %u The discriminant
is therefore positive in all circumstances and, since the quadratic is
concave upward, the function is negative between its two zeros.

We may as well, now, rewrite the inequality in terms of ¥

2 L nxz + 2V + n¥m + 1) = 0.

22
To get 95% confidence limits for ¥, we put 2 = & and solve the quadratic

for N.

Remarks

1. The procedure is heavily dependent on randomness in the sampling,
which in many applications is unattainable.

2. The estimate is yeached under the supposition that the proportion
tagged remains constant. This assumption would not be violated by
mortality or emigration as long as tagged and not tagged are equally
affected.

3. An influx of fish after the marks were released and before the sample
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is taken, being necessarily not marked, would do no more than create a

new population, which would be the one whose size is estimated.

A sampling of this sort is not likely to be employed much in
practice. Rather, there would be a sequence of samples, in each of
which records of tagged fish would be kept and perhaps untagged fish
would be tagged and released. This sort of thing can be done in a wide
variety of patterns. To discuss this kind of procedure, we need some
more notation.

Nt and Xt: the number of individuals and of tagged individuals

in the population just before the tth sample is taken

7, and x,: the number of individuals and of tagged individuals

in the tth samp le
m: the number of samples taken
n = Znt and x = Z‘.act
In particular, Nl and X1 are the numbers before the sampling starts.
It will be convenient to drop the subscripts, ¥y = ¥, X, = X.

The object of the sampling is to estimate ¥.

We can develop a general formula that is not overly complicated
if we make the simplifying assumption that each sample takes only a
small fraction of the population, i.e. nt/Nt is small. Then, we may

regard the sampling as binomial rather than hypergeometric. It is

assumed, of course, that the sampling is random.

The probability of obtaining Ty tagged fish in a sample of ny is
n, Wz, %t x, "%
] P R [ . = f, (say)
z, | |7 v =Ty (say).

z T i
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Adopting the method of maximum likelihood, the likelihood function is

m
o
X
logl = - Zmﬁlogﬁt + E(ntwmt)log(l - W;J plus other terms
not depending on N.
X N
3 logl _ 1 B 1 2 T
o o B g T Eeywy) o D g = 0
z )
I“F .{;
z
Now, even though Nt may vary with ¢, we may reasonably suppose that it
ol
varies in a manner expressible by Nt = Ng(t) and therefore E7'7§$ does
£
not vary with #. The estimating equation may therefore be organized to
read:
Tpom My Ky
m Nt
¥ 7 = 0.
t=1 t
tow
T

Some special cases

1. The size of the population does not change during the sampling
periocd. The population must be closed and all samples returned to the
population. Usually, all unmarked fish in the sample are marked and
returned. In any event, as long as the records are kept so that the X%

are known, the equation may be set up and solved for W.

In this case, N, = ¥, for all £. The equation is

T

X% - nt fg
N

Ll
N

This kind of sampling scheme and the above estimating equation are



referred to as Schnabel estimates, after Miss Zoe Schnabel derived the
estimating equation in a Master's thesis at Wisconsin (supervisor Mark
Ingraham) (Schnabel, Bull. Amer. Math. Soc. 1938). Miss Schnabel

suggested writing the equation in the form

n, X X, x,°
I[xt“ 1tt][l-&—£+—§—»~-+ ) =0

K v N2

and truncating at some point to form an equation of not too high a

95

degree. This is a dubious procedure and has, in fact, rarely been used,

ek

except in the form Z(mt -

for a first order approximation.

ﬁ ) ZnﬁXt } ZntX%
1 Zmﬁ x

If more accuracy is needed (as presumably it is), a sensible procedure

is to compute 'weights",

_ 1
Wﬁ = X%
1 - =
7y
and solve the equation
Xf
2Go, =, 5000, =0,
yielding the adjusted solution
5 - ZW%ntXt
2 ZW&mt
This procedure may be continued, computing new "weights", ———lf— and
1t
i

so on. This iterative process converged very fast, in most cases.
2. The proportion of tagged individuals in the population remains

constant. This kind of sampling is associated with the names Peterson

wemee) = 0, which leads to an explicit formula
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(fish) and Lincoln (birds). The first example of this discussion is
of this type.

To meet the conditions of this type, samples should be returned,
but a computation based on the hypergeometric distribution leads to the
game estimation formula when samples are not returned.

X n
Writing £ - X , the solution is N = r_t = 7
Nt xt

=
8 [

Confidence Limits

For the Peterson type, the discussion already given is sufficient,
since the sum of binomials variables with the same proportion throughout
is binomial. The Schnabel type of estimate requires a bit more discussion.
See DelLury, Journal of the Fisheries Research Board of Canada, 8 (4),
1951 and 15 (1), 1958.

Another approach to the Schnabel type of tagging plan is, I think,

preferable. Since

x, Xt Ly 1 Xﬁ X
iy G aty Aty 2F
z t t b
a plot of Eé-against Xt gshould vield a straight line through the origin,
t
with slope %-2 P (say). We may therefore think of fitting a regression
x

of ﬁé-on X,, constrained to pass through the origin.
According to standard statistical theory, the residuals should be
weighted inversely as their variances. Thus we minimize

2
x n
t &
ZW {——PX } , W, = g
t nt t t Xt [ th]

Nt

¥y
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This leads to the estimating equation

A 2 Ly
PZWI?X'{;:ZWTEE;X'&’]“E'
n, X2 x, X
$ z t 7t _ z t Tt
X X X X
w,E.(l - _E) —E-(l _.;E)
v N N N
- ~ 1 .
Writing p = = and rearranging,
u n X
o - t ¢
t i
) =0 .
Xf
1"'"7\'—
N

This seems to be identical with the maximum likelihood equation.

Thus we see that the maximum likelihood estimator weights the
observations according to sample size and also according to the pro-
portions of tagged individuals in the population.

Here our inability to ensure randomness in the sampling becomes
embarrassing. Owing to the tendency of fishes to move about in
schools, the proportion tagged available at any particular sampling may

X

be vastly different from 7%— and therefore the weights may be seriously

wrong. In these circumstances, it seems prudent to weight by sample

size only. This leads to the simple estimator

2

Fx, X rn, X
p-—tt, gttt
2 nt Xt 2 xt Xf

This is the estimator published somewhat earlier than Schnabel's by
Schumacher and Eahmever. For the reasons given above, T think it a
preferable estimator, even though it does not use the statistically
efficient weights.

A simulated sampling study, with randomness assured, showed no

persistent differences between the estimators themselves or in the
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lengths of the confidence intervals associated with them.

The rest of the analysis may be conducted according to standard
regression theory, using the s.s. residuals to estimate error. This is
a different definition of error from that used earlier, in that it
includes variation from all sources (mechanical, biological) in addition
to the binomial sampling error. Of course, no randomness has been
arranged, but it seems preferable to include all deviations from expec-
tation than to simply postulate a binomial error distribution which is
not even sampled randomly. Another consideration is the fact that this
binomial component has a variance that increases as the number of tagged
individuals increases, thus violating the condition of constant variance.
The effect of this is likely to be small, in as much as the binomial
component is usually heavily outweighed by other sources of varilatiom.

The substitution of error, so regarded, may be made alsc with the
T X

Peterson type of estimate. We have & Pl P((say) and we may
t

think of:estimating P by a weighted least squares fitting, by minimizing

Ty
o n (——-w E’f . We get, in this way,
t by

x Lx
AL D2 ~
imy (o-B) =0, Beggt = 2
t t
X mz 2
; . t o2 . t
The s.s. residuals is 2 »n (wm._ P} , which reduces te Z — - — .
t 'n n 7
z ) t
i 2
Then, the estimator of 02 ig given by 82 = —l—-[z t_ E—}. The esti-
m=1 g n

. oo 2
mated variance of P is s /n.
Confidence limits for P are given by

P -ts/M<P=P+¢tsa/i.
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‘o s X b -
Writing = for P and — for P, we get, after some rearrangements,
N : "
confidence limits for N:

nX nX

=N =

x + t savn 2 -+ 8vn

Catch-effort methods

Another approach to the estimation of mobile populations depends
on the notion of effort expended in capturing samples — net-night,
angler-hour, etec. We then come out of our sampling with a list like

the following.

sample number catch effort
1 e e,
2 e, e,
m e e
m m

From these records, we can calculate others, for example, the catch per

c
unit of effort for each sample, c¢(f) = ZE-, total catch up to sample %,
t=-1 ¢ th
Kty = 2 s and total effort expended up to the ¢ sample,
i=1
t-1
E(t) = Z e..
=1

Usually, when appreclable fractions of the population are captured
and removed, the depletion shows up in diminished catches per unit of
effort. In some circumstances, this change in the catch per unit of

effort may be used to estimate the size of the population.
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A mathematical formulation

Let ¥ = N(f) be the size of the population at time %, r{(f) be
the rate of influx into the population and d(£) the rate of depletiom.
Then,

dn

G- W@ - de)),

which, of course, says nothing. Now, assume

(L r@&)y =20
(2) dE) = k(t)e(®)
(3) k() = k, a constant, called the catchability.

(1) and (2) imply that the population is closed and that the rate of
depletion through sampling is proportional to the rate of expenditure

of effort. (3) says that, throughout the sampling period, each unit of
effort captures the same fraction of the population. This in turn implies

that the units-oefieffort do not compete with one another. .

With these assumptions,

1 dN
ﬁ'a‘; = —ke(t)
N5 ¢
log N | = —3:[ el{t)dt = -kE(E)
(o) 5

= n(eFW®

ay -KE ()
Hence 55 = kN (Q)e

gg-= -c¢{t). Thus, we get

and, because the population is closed,

o) = k moye ™ EE) ng

S log C(t) = log (k N(O)) - k E().
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Again, because the population is closed,
K() = §(0) - B(E) and C(t) = k N(E)
by definition. Therefore, eliminating N(E),
C(t) = &k N(O) - k K(¢).

We may, therefore, plot either or both of these straight lines. If
they do turn out to be reasonably straight, the assumptions are, in
some measure, supported. The fitted lines then'yield estimates of
k N(0) and k.

The question of procedures for a numerical fitting is perhaps

not wholly obvious. A simple model may help here.

A bead model

Think of a population of ¥ white beads in a box. A unit of
effort may beAakdip with a small scoop. The white beads Eaken by a
unit of effort are counted and replaced by an ?qual numbeé of red beads,
to keep the unit of effort constant. Any red beads taken in the sanmp-
ling are replaced. For simplicity, assume that each unit of effort takes
the same number »n of beads. Then, %-is the catchability. Assume also
that # is small compared té N, so that the sampling is virtually
binomial.

Let the proportion of white beads in the box, just before the tth
sample is drawn, be p(¢). Then, if C(£) = ¢(£) is the number of white
beads in the tth sample,

EC(t) = np(E), Var C(t) = np(E) (1-p(E)).

If K(t) beads have been removed in the first £-1 samples, then
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p(t) =1 - 7 and we have

EQC@) |K@)) = n - T K(E) = ki - kK(2).

Thus, this relation is of the conditional sort met in regression theory
and may be fitted according to regression methods. While a weighted
fitting is theoretically preferable, it appears that an unweighted
fitting is adequate. Standard regression methods then yield estimates
of k¥ and k and their standard errors, with the estimate of error taken
to be the s.s. residuals. Fieller's method supplies confidence limits
for N.

An equation like log C(£) = log (XFN(0)) - EKE(£) may be derived
for this model by caleculating the uncenditional mean of C(%). See
Delury, Biometrics, Vol, 3, No. 4. It turns out to be

E(L)

E C(E) = kN (1-k) or

log E C(%)

log (kN) + E(t) log (1-k)

log (kW) - kE(t) since %k is émall.

This does not fit intoe the regression pa£ﬁern, but extensive
simulations indicate that fitting using the usual normal equations
yields satisfactory estimates.

These simulations, which used fairly large amounts of effort in
each sample, turned out to produce biased estimates and led to the

suggestion that K(£) and E(f) be calculated as
1

K(E) = ¢ +ec, + .0 te,  tyoe,
E(t) = e, te, + + e + I
; 1 2 0 00T t=1 2 ¢

This correction may be thought of as a continuity correction or as a

compensation for using binomial instead of hypergeometric theory.



Catch-effort methods may be used in conjunction with a tagging
study, by tagging and returning all captures and disregarding all re-
captures. Indeed, there are several advantages to this combination of
methods. If the catch-effort and tagging estimates agree reasonably
well, depending as they do on randommess in different ways, they give
considerable support to each other. Also, each contains information
on the assumptions on which the other depends.

1. Catch-effort estimates depend on constant catchability. Tagging
records supply a population of known size, so recaptures supply a
sequence of direct estimates of catchability, which can be studied
for trends.

2, Tagging estimates require that tagged and untagged be equally
catchable. This may be studied by applying catch-effort methods to
tagged and untagged separately, to detect any difference there may be

1

between them. '

103
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1. The rate of a chemical reaction, y, is measured 3 times at each

of 5 equally-spaced temperatures, tl’ tz, t3, t4’ tS. The averages
of the measured rates are, in appropriate units,

tl tz t3 t4 t5

1 2 9 28 65
The error sum of squares, with 10 d.f., is found to be 11.3.

Carry out a study of the curve relating rate of reaction
to temperature, with a view to deciding the degree of a fitted

polynomial that will £it the cobservations adequately.

Find the values of the coefficients of this fitted
polynomial, written in the form ¥ = Boié + Blgi + etc.
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2. The fitting of a regression Y = bo + blu + bzv is carried out in
the following arithmetical form. (All numbers are exact, in the

sense that they have not been rounded off.)

16 40 200 733 1
40 120 500 1989 0
200 500 3000 8285 0
733 1989 8285 37899
1 2.5 12.5 45,8125 0.0625 0
0 20 0 156.5 ~2.5 1
0 0 500 - -877.5 ~12.5 0
0 156.5  —877.5 4318.4375
1 0 12,5 26.25 0.375  =0.125
0 1 0 7.825 ~0.125 0.05
0 0 500 -877.5 ~12.5 0
0 0 _877.5 3093.825
1 0 0 48.1875 0.6875 0,125 =0.025
0 1 0 7.825 ~0.125 0.05 0
0 0 1 ~1.755 -0.025 0 0.002
0 0 0 1553.,8125 '

(a) Identify the values of bo, bl’ b2 and the sum of squares of

residuals,
(b) Calculate the sum of sqguares attributable to u.
(c) Calculate, in two ways, the sum of squares attributable to v,

(d) Calculate, in three ways, the sum of squares attributable to

i and v together,

(e) Do you perceive anything odd, exceptional or unusual in this

fitting? Comment and offer an explanation to account for it.

(£) A parameﬁer of interest is defined by n Ebl - Ebz. Calculate
957 confidence limits for 1.
Eb

Ebz :

n

(2) A parameter of interest is defined by A Calculate 95%

confidence limits for A.
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3. Observations on a response, y, and a concomitant variable, x, are
made in two different sets of circumstances, referred to here as

sample 1 and sample 2. Sums of squares and products are as follows.

d.f.  fxx)  (xy)  (y)
within sample 1 4 16 30 70

within sample 2 2 6 10 18

(a) Calculate the slope of a linear repgression fitted to the

observations in sample 1,
(b) Make the same calculation within sample 2.

(c) Carry out a test to decide whether the slopes obtained in

{a) and (b) are significantly different.

(d) Whatever the conclusion reached in (c), calculate the slope
of two regressions, constrained to be parallel, the sum of
squares attributable to regression and the sum of squares

of residuals.
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4. A randomized block experiment, In which a response, y, is
measured and a concomitant variable, x, is recorded, leads

to the following list of sums of squares and products.

d.f. () (zy) (yy)

blocks 9 —— s ——
treatments 1 13 25 48
error 9 7 5 "130

Calculate the reduced error sum of squares and the adjusted
treatment sum of squares.

What conclusions (or observations or suspicions) would you

offer if (a) the wvariable z cannot reflect treatment differences

and, presumably, was included only to establish some control

over errory (b) the variable & may be affected by the treatments.
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5. D -~ diameter of weft yarn
T - amount of twist in weft varn
1 ~ number of picks (i.e. weft yarns) per inch
x - a measure of stiffness of the fabric
Dl = 2,1 D2 = 3.0 , Row Totals
) x U & U x
88 84 95 104
Tl = 2 82 75 88 94
74 61 84 75
Cell totals 244 220 267 273 511 493
95 71 95 78
T2 = 8 92 55 g2 72
84 54 82 56
Cell totals 271 180 269 206 540 386
Column totals | 515 400 536 479 1051 870

(a) Calculate, by the analysis of covariance, adjusted sums of
squares of x, corresponding to I, I', D x T and carry out

tests of significance on them.

{(b) Calculate a table of x-values, adjusted to the average

values of u.

(c) Test the significance of the regression of x on u.



Two new designs for a projectile are proposed.

These designs differ

from the current standard only in the shape of the nose, but are of

the same weight and the same diameter.

The new designs are intended

to reduce air drag, and an experiment is planmned to determine which

is the better of the mew designs, and whether the reduction is

sufficient to warrant a change.

10 rounds of each projectile are

fired and velocities are measured at the muzzle and at 100 yd. from

the muzzle.

The average retardation, u, in ft. per sec. per 100 ft.,

(dv/dx), and the initial velocity, vo in ft. per sec., are both

recorded.

The experiment is carried out over a period of 10 days

in order to make comparisons under various weather conditions,

The data are given in the following table.

(u, v4)
u = retardation (ft/sec/100 ft.) v, = initial velocity (ft/sec.)
Day New design I New design 1T Standard
1 ¢ 86,1985) (108,2016) (105,1999)
2 ( 87,1983) ( 90,1981) ( 98,1975)
3 { 96,2006) (107,2003) (102,1992)
4 (105,2020) (110,2005) (105,2019)
5 ( 99,2008) ( 88,1984) (116,2021)
6 ( 98,2002) (107,2017) (112,2001)
7 (117,2024) (118,2008) (114,2014)
8 { 86,1971) (113,2014) {118,2015)
9 (104,2010) (113,2020) (110,1996)
10 ( 94,2002) (115,2018) (115,2018)

Using the analysis of covariance technique, and assuming that retardation
is a linear function of initial wvelocity, obtain answers to the following
(Note:

questions. It is known that initial velocity is not dependent on

the shape of the projectile.)

.../Cont'd.



Question #6 cont'd.

(a)

(b)

(e)

Do the new designs reduce the air drag? If so, which 1s
the better of these designs? Estimate the reduction in

retardation by means of a confidence interval,

Do day~to~day differences in conditions affect the initial

velocity? The retardation?

If the analysis had been conducted on the observed
retardations without the adjustments for initial
velocity, would the difference in designs have shown
up as significant? What would have been the residual
error in this case? What effect would a 25 ft./sec.

increase in inditial velocity have on the retardation?

110
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A feeding trial to compare three diets iz carried out using rats.
A randomized block pattern is used, with 4 replications. The
final weight of each rat (y), its initial weight (u) and the

weight of food it consumed (¥} are recorded below.

Carry out an analysis of covariance in which adjustment is made for
(1) initial weight only; (2) initial weight and amount of food

consumed.

In particular, study the contrastsdiet 1 vs. diet 2 and diet 2 wvs.
diet 3. Calculate the adjusted diet averages in both (1)} and (2).

Write a short statement of conclusions indicated by the analysis.

Diet 1 Diet 2 Diet 3
U v y u v Yy u v Y
Rep 1 209 301 280 204 315 291 189 269 273
Rep 2 190 284 267 175 280 266 199 275 290
Rep 3 192 296 281 179 298 283 187 266 284
" Rep 4 178 271 265 186 307 286 i81 258 276

Totals 769.. 1152 1093 744 1200 1126 756 1068 1123

Sums of Squares and Products

d.f.  (uw) (uv) (vv) (uy) (vy) (yy)
Between Reps 3 599.59 490,33 514,00 136.50 226.33 152.33
Between Diets 2 78.17 =141,00 2232.00 -104.25 = 45,00 166,50
Reps x Diets 6 551.16 634,67 852,00 561.25 667.67 592.17

(Error)

veo/cont'd.



Question #7 cont'd.

551.16 634.67
634.67 652.00
561.25 667.67
1 1,15151680
121,16683254
0 21,3811%600
1
0
Calculation of
629,33 493,67
493.67 3084.00
457.00 622,67
1 . 78443742
0 2696.74677887
0 264.18209906
1
0

Calculation of Regression in Error Row

561.25

667.67

592.17
1.01830684
21,38119786
20.64528605

.81510925
.17646081
16.87234289

1747.08
2154.34
1821.09

3.16982364
142.54803040
42.02648205

1.81510925
1.17646081
16.87234289

11z

Regression in Diets + Error Row

457.00
622.67
758.67

. 72616910

264,18210040.

426.81072130

.64932305
.09796326
400.93058164

1580.00
4200.34
1838.34

2,51060651

2960.92888421

690.99282493

1.64932304
1.09796326
400,93058614

voofconttd,
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Questicon #7 cont'd.

Sums of Squares for Regression and Deviations

Regression Deviatlons
d.t. 5.8, d.f. 5.5, meS,
Error 1 Not needed and 5 20.6453 4,13
not calculated
Diets + Error 1 7 426,8107
Adjusted Between Diets 2 406.1654 203.08

Sums of Squares and Products

d.f.  (uw) (uv) (vv) (uy) (vy) (yy)

Error 6 551.16 634,67 852,00 561.25 667.67 592,17
Sum 7 569.16 436.67 3030.00 556,75 717.17 593,29
Calculation of Regression in "Sum" Row
569,16 436.67 556,75 1562.58
_ 436,67 3030.00 717.17 4183.84
556.75 717.17 593.29 1867.21
1 76721836 .97819594 2.74541430
0 2694,97876311  290.02117888 2984.,99993762
0 290.02117807 48.67941041 338.70059404
89563144 1.89563144
0 .10761539 1.10761538
17.46866821 17.46867371
Sums of Squares of Deviations from Regression
d.f. S.5. m.s.
Exrror 5 20.6453 4.13
Diet 3 ws. Diet 2 + Error 6 48,6794
Adjusted Diet 3 vs. Diet 2 1 28.0341 28.03

.o /cont'd,
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wwwﬁg, Question #7 cont'd.

Sums of Squares of Deviatiocns from Regression

d.f. S.8. M.S.
Error 4 16.8723 4,22
Diet 3 vs. Diet 2 + Error 5 17.4687
Adjusted Diet 3 vs. Diet 2 1 0.5964 0.60

Sums of Squares of Deviations ftoem Regression

d.t. 5.5. m.s,
Error 4 16,8723 4,22
Diets 4+ Error 6 400.9306

Adjusted Between Diets 2 384,0583 192,03



8. A randomized block experiment compared three treatments, ¢
in three replications r1s Tgs Pge One of the measured responses

was lost,.

The reported values are given in the following table.

1 2 3
ry 4 3 6
z, 3 6 5
rq 6 7

Use any "missing value' technique you wish to obtain the numbers

indicated by the asterisks in the following analysis of wvariance

table.
d.f, S.5.
replications
Cdfreatments * * !
error * *

Are the sums of squares you obtain theoretically correct, or are

they approximations to the correct wvalues?

115
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9. The following data represents the gain in weight in 1b. of pigs
from 5 litters fed on 4 different diets. During the course of
the experiment two of the pigs escaped from their pens into the
corn bin thus invalidating two of the observations. The remalning

observations are:

Diet i 2 3 4
Litter 1 175 139 167 138
2 136 148 157 126
3 136 163 ' 141
4 169 152 132
5 166 159 156 156

(a) Assuming an additive model, estimate the missing observations.
(b) Given unbiased estimates of diet and litter effects.

() Set up an analysis of variance table and test at the 5
percent level the hypothesis that diet effects are all

equal, Use both the approximate and the exact test.



10. Two preparations are known to be qualitatively alike, but may
differ in potency. The relative potency 1s to be estimated

by administering doses mll’ xlz, esey xln of preparatiocn I

and doses Loqs & cees Ty of preparation II,

227 2

obtaining measured responses

Y112 Y120 c000 Y

and y21s yzzs LN yzn *

It is known that, at zero doses, the response is zero and that,
in the neighborhood of zerc dose envisaged in this test, regressioms

of response on dose are acceptably linear.

Develop algebraic expressions for all the quantities needed to
estimate the relative potency and to caleulate confidence limits

for its wvalue,





