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Summary

Through the use of a monotonic transformation, we present a new family of distri-
butions defined on the unit interval that is derived from the family of beta distribu-
tions. This family is being called the modulated beta family since the members of the
family are also obtainable through an application of likelihood modulation. Various
applications and illustrations are included here along with several natural generaliza-

tions.



2. The Modulated Beta Distributions

The family of beta distributions defined on the interval (0,1) have probability

density functions

fit;e,B) = %ﬂ%&%t""(l—t P, o<1 (2.1)

with parameters o>0 and A>0. By invoking the monotone transformation -
X = T/i—x(1-T)] for x¢0,1) where T has the beta (a,8) distribution, one obtains a
family of distributions on (0,1} which will be called the family of modulated beta dis-

tributions. The probability density function for X is given by

FL""'ﬁ] fl_n)a 20_1(1_1)ﬂ_1
T{«)0(8) * (1—xz)o+?

Implzie,B.6) = 0<z<1. (2.2)

As before o, p>0; the parameter «¢[0,1) will be referred to as the modulation parame-
ter. When & =0 the modulated beta (a8,x) distribution reduces to the beta (a,8)
distribution. The transformation from T to X is monotone and defined on (0,1) for
all x<1. However, when x<0 one can replace X by (1-X) to obtain a random vari-
able having the modulated beta (8,a,x*) distribution where «'= x/x—1)¢(0,1) so that

attention can be restricted to the case xe0,1) without losing generality.

The family of modulated beta distributions with fixed e« and g is stochastically
ordered by the value of the modulation parameter x. Specifically, if X and X" are
distributed modulated beta with parameters x and «* with x>x* then X is sto-
chastically larger than X°. As & increases on [0,1) the distribution of X becomes

increasingly concentrated at the upper end of the range (0,1).



-3

An important feature of the family of modulated beta distributions is the fact
that it is closed under the monotone transformation X = X'A1-h(1-X")) or its inverse
X" = (-X)h f1—-Xh) for he[0,1). If either X or X' is modulated beta then so is the
other; the modulation parameters « and «* satisfy the relationship
(1—x) = (1—x*)(1—h) where all of xyx* and he0,1). Similarly, for any two members of
the family of modulated beta distributions there exists an he[0,1) such that the .
transformation transforms one member into the other. In particular the transforma-
tion used to define the family of modulated beta distributions corresponds to x* =10

and h = k.

Associated with the family of beta distributions is the family of inverted beta dis-
tributions, also known as the beta-2 distributions. If 7 ~ Beta(e,8) then U= TA1-T)

has the inverted beta (o,f) distribution with probability density function

T{a+B) u™!
T(a)T(B) (14u)*+?’

fiplu;,B) = u>0 (2.3)

Applying the same transformation to X ~ Modulated Beta («8,k), namely
Y = X/{1-X), one obtains a modulated inverted beta distribution with probability den-

sity function

NP a—1
fmiplyie,B,6) = I‘((&)-Ittﬁﬂ)) {1._5)0(14-(1!{-;:)3;)“‘”9’ y>0. (2.4)

Note, however, that ¥ = X1—X) = (1~x)"'TA1-T) so that the distribution of Y consti-

tutes a rescaling of the inverted beta (e,8) distribution with scale factor 1/41—«).

The modulated beta («,8,«) distribution can be represented as a mixture of beta
distributions where the mixing distribution is the negative binomial (a,x) distribution

with probability mass function
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pumlsiae) = T(a)s! (1-x)*, 7=012,.. .

This follows from the series expansion of (1—t)™ valid for [t|<1 when »>0. The pro-

bability density of the modulated beta («,8,x) distribution then has the form
Tmalia8,6) = Yipa(diax)fgz;0ts.B)
s

Using the same argument, the density of the modulated (scaled) inverted beta (a,,x)

distribution can be represented as
fml'ﬂ(y;alﬁxn) = EPnﬁ(]l;ay‘)fiﬂ(y;atj;ﬁ)-
J=0

The representation of the modulated beta distribution as a negative binomial mix-
ture of beta distributions provides a connection between the modulated beta distribu-
tion and the noncentral beta distribution. The latter distribution can be represented
as a mixture of beta distributions where the mixing distribution is the Poisson () dis-

tribution, namely

N
e "M\ .
J-! fﬁ(I;a"—J:ﬂ)

folzia) = 3

I=0
If one assumes that A has a gamma (a7, distribution, a member of the conjugate
family of prior distributions for X, then the marginal distribution of the mixing vari-
able is the negative binomial (aqx) distribution with « + 1/1+r,), and hence the mar-
ginal distribution of X is an arbitrary negative binomial mixture of beta distributions.
In the special case when the prior parameter 7,>0 is arbitrary but « = a, the margi-

nal distribution of X reduces to the modulated beta (a,8,x) distribution.
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The moments of the beta (a,8) distribution are given by

Dlat+p) Dlatr) (o),
D(a) T(a+B+r) (a+8)’

BT ap)= r=12,.. (2.5)

where (a), = [{a+n)/T(e) is commonly referred to as “a ascending factorial »". When
n Is a nonnegative integer then
(a)o=1and (a),=a(a+1) " - - (e+n-1), n=12,. .

The moments of the modulated beta (e,8,x) distribution cannot in general be

expressed in closed form. However, using the representation ( ) it follows that:
E(X"j0,8,%) = 3 paslfi0.6)E(T ;04 5,5)
J=0

Byl ettien )
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(a+ﬂ)r ! ’ ! )

where F denotes the hypergeometric function in «. The hypergeometric series in Z

with parameters @, 5 and ¢ is defined by

. _ e (a)j(b)j Zj _ F(C) = F(a'i'j)r‘(b'*'j) ﬁ
FlebieiZ) = L=y = = M@ 2 Mets) s &7)

A comprehensive treatment of the hypergeometric function and its properties may be
found in Erdelyi et al. (1981), Volume 1, Chapter 2. In the present context a,b and
¢>0 so that F(ab;c;Z) is absolutely convergent for |Z|<1. Moreover ¢>b>0 so that

F(ab;e;Z) has the integral representation
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F(“J»".C,Z) = P(cl J" z’_1(1_=l=4—1 ,
0
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An important special case of the hypergeometric function arises when c¢=a (or

equivalently %) in which case

F(a b;8;2) = éﬂﬁ(—;’)ﬂ% = (1-2)™.

Using this special case we can represent the r* moment of the modulated beta («,8,x)

distribution by

E(X";0,8,k) = {a), Flat-B,a+4r;04 84r&) . (2.8)

(a+8),  Flo+B,a;a+8ik)
3. The Likelihood Modulation Method

For certain problems in parametric inference, one can combine knowledge of the
distribution of the appropriate statistic at a specific point in the parameter space with
a specification of the likelihood based on that statistic in order to determine the distri-
bution of the statistic for all points in the parameter space. This procedure was used
in the construction of tests of significance on the circle and the sphere by Watson and
Williams (1956) and appears to be implicit in the analysis of dispersion on a sphere
given by Fisher (1953). The process of adjusting a specific member of a family of dis-
tributions by the likelihood was named likelihood modulation by Fraser (1968) who
explicitly used the method to obtain the distribution of the correlation coefficient when
sampling from a bivariate normal distribution. The first formulation of likelihood

modulation as a general method appears in Fraser {1979).
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The method of likelihood modulation will noﬁ be described in detail. Let f(x;#)
be a family of joint density (probability) functions for x = (z,...,z,) indexed by
parameter 0¢©, a general parameter space, for which a statistic t = ¢(x) is known to
be sufficient. The likelihood L(x;#) can be reexpressed as L(t;#) in order to reflect the
fact that the likelihood is the same for all x that yield a particular value t of the
sufficient statistic. Indeed, the class of possible likelihood functions can be partitioned -
into equivalence classes of similarly shaped functions of # that are in one to one
correspondence with the equivalence classes of sample points determined by the
minimal sufficient statistic, a property that led Fraser (1976} to refer to the latter as

the likelihood statistic. Since
L(t;8) = h(t)g(t:#)

where g(¢;¢) is the density (probability) function of the sufficient statistic and A(¢) is
a constant of proportionality for the likelthood viewed as a function of ¢, it follows

that for any specified 9,
g(t:6) = g(t:00)L7(¢:8)

where L°(t;¢) is the representative likelihood obtained by standardizing the class of
similarly shaped functions relative to #, so that L'(t;0) =1 for all t. Hence, if one
knows the distribution of a sufficient statistic z(x) at a specified ¢, and one knows the
representative likelihood L°(¢;¢), then modulation of the specified distribution by the

representative likelihood yields the distribution of the statistic t¢(x) for all #e¢6.

The family of distributions that was introduced in Section 2 by transformation of
a random variable having the beta (e,8) distribution can also be obtained through the

use of likelihood modulation. Assume that a family of joint probability distributions
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admits a statistic X that is sufficient for the parramet.er xe0,1), and that the distribu-
tion of X when « =0 is known to be a beta (e8) distribution with («4) specified.

In addition, assume that the representative likelihood has the form
L(zx) = (1—x)(1—xz)~loth)

where L°(z;0)=1 for all =z¢(0,1). Then modulation of the density when x =0 by the
representative likelihood yields the family of densities (2.2) for the modulated beta dis-
tribution. This family has been obtained by Fick and Davidson (1986) in the investiga-

tion of the residuals from linear regression under a variance inflation model.
4. Further Families of Generalized Beta Distributions

The family of modulated beta distributions introduced in Section 2 was observed
to be closed under the monotone transformation X = X°A1-A(1-X")) for hef0,1).
Although the density function of the modulated beta distribution has a closed form, it
can also be represented as a negative binomial mixture of beta densities. This section
examines ways in which the family of modulated beta distributions can be generalized.
Two distinet generalized families are suggested that lead to a further generalization

that ineludes both families.

The first generalized family corresponds to extending the closed form (2.2) for the

density of the modulated beta distribution to obtain the following density

1 T(a+f) z°7(1-z)!
F(y,ee+fix) D))  (1—xz)

filzseBrye) = , 0<z<1 (4.1)

where a, 8, v>0 and «¢[0,1), and where F denotes the hypergeometric function in vari-
able x with parameters 4, o« and o+8. By use of the series expansion of (1-xz)7,

the density (4.1) can be represented as a mixture of beta distributions. In this case the



_g-
mixing distribution is a generalized hypergeometric distribution in the class given by
Kemp (1968) and catalogued by Dacey (1972) and has probability function

. 1 I(c) ID{a+)0b+s) 7
Phyp(d50,5,.5) Flab;e;x) T{(a)D(b) T(e+7) 1

(b). 5
_ 1 (a,)J( )J ﬁl i=0172,.
Flabiex) (c); 1!

where a, b and ¢>0 and «e[0,1). The probability generating function for the general-

ized hypergeometric distribution is
G(t) = Flab;ext)/Flabic;x).

The density (4.1) can then be written
NizsaBw) = X paplirneatBin) ffzietj,6), 0<z<1.
=0

Onmne obtains the modulated beta distribution when 4 = e+8 in which case the general-
ized hypergeometric mixing distribution reduces to the negative binomial (o) distri-

bution.

The second generalized family corresponds to arbitrary negative binomial mixtures

of beta distributions with densities given by
fdmia B k) = ¥ puliv )] fesetif), 0<z<l (4.2)
J=0

for v>0, and where as before @, 8>0 and x¢[0,1). The density (4.2) can be expressed
in closed form if and only if » =a from which one obtains the modulated beta distri-
bution, or when x =0 which yields the beta distribution. The density (4.2) can be

represented as follows:
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fozi0,B,v.k) = (I—Ac)”rﬂic%l)-z"'1(1—::)‘9_1F(a+ﬁ,u;a;xa:), o<z <1

= (1—x)"J glz;0,8)F(a+8,v;a56 1)

where F denotes the hypergeometric function in variable xz with parameters a+8, v

and a.

The family of modulated beta distributions constitutes the largest subfamily con- -
tained in both the generalized families of densities (4.1) and (4.2). A further generali-
zation to include both these families of distributions can now be proposed. This family

has densities
g(z;0,8,7,v,6) = X ppyp(di7,v,048,6) [ glz 0+ 7.8)
J=0

= Mfﬁ(x;a,ﬂ) (4.3)

Fy,v;048 )

with e, 8, 7 and »>0 and «¢0,1). Note that the hypergeometric funetion in the
numerator involves the random variable z as well as the modulation parameter «,
while that in the denominator depends only on «. From this most general family of
densities (4.3), one obtains the subfamily (4.1) when + = o+8, the second subfamily
(4.2) when v =2, and the modulated beta family of distributions _(2.2) when both

7=o+8 and v =o.



