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SUMMARY

Using a linear model that assumes only a portion of the errors to be independent,
a general distribution for the standardized residvals is derived. From this distribution,
the sampling distribution for the maximum likelihood estimator of a variance inflation
parameter is obtained. Inferences based on this estimator are discussed.
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1. INTRODUCTION

For the analysis of data under a linear regression model, the standardized residu-
als are used to assess many of the usual assumptions including the assumptions of
independent and identically distributed errors. In particular, if it is possible that some
of the error terms have variance potentially larger than the others, it would be
appropriate to examine this inflation of variance,

Cook, Holschuh and Weisberg(1982) examine a model that allows for variance
inflation using maximum likelihood estimation. In their article, they conclude that the
small sample distribution theory appears to be intractible, In this article, we present a
general distribution for standardized residuals that requires only a portion of the errors
to be independent. While the distribution for standardized residvals under independent
and identically distributed errors has been known for some time, this general distribu-
tion appears to be new. We include two derivations of this distribution. One method
of derivation uses likelihood modulation, while the other method follows from a scaled
multivariate Student distribution.

Using these results we are able to present the exact small sample distribution
theory for the maximum likelihood estimator of a variance inflation parameter when
we know which component of error is subject to potential variance inflation.

2. PRELIMINARIES AND NOTATION
Let us write a linear model in the form

y=XB+oz

where y is a response vector of n observations obtained at input levels recorded in the
r linearly independent columns of X. We assume the error vector

=1*1 - N 0,0
z_zz N]](l)

where Q = diag( T,I) is partitioned according to z, i.e., we are allowing z | , the first p
components of z to have arbitrary positive definite covariance matrix T. The analysis
to be presented is independent of the choice of basis L(X), the linear space spanned by
the columns of X. Let V be a n x r column orthonormal matrix with L(V) = L(X).
Then V can be augmented by a matrix N so that [V N] is an n x n orthogonal matrix.
Since I-VV" = NN~ the standardized residuals d can be written

d=_UVVy _ A-VVyz _ Nt
Ha-vvoyyll — lla=vvyzll ~ el

where t = N7z, i.e. d depends on z only through t. It is important to note that the dis-
tribution of d depends only on the distribution for z and not on the parameters B or
©. Therefore, inference for T can be based on d or on equivalent statistics in LH(V) ,
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the orthogonal complement to L(V). Next partition V=[V;] according to z=[: ;] Ang

choose N so that

N, 0

= Ny, N,

where N is p x q with q = rank (I-V,V ;) .Then t = N'z can be written

ty
ty

Nllzl+Néz2
Nz,

t = N, (0, Q,) (1)

where Q, = diag{A, I} with A=I+N (T-I )N, partitioned according to t. Finally, the
standardized residuals d = III\tI_ItI can be partitioned according to z, namely

d, 1
d‘LJ‘nm

3. DISTRIBUTION THEORY

The objective of this section is to present a derivation of the distribution neces-
sary for inference for T. When z ~ N, (0,X) with T positive definite, the distribution
for d is

N,t,

nr _nr

hy(d) = F[%] 2r 2 IVvEly I—%Izl-'ﬁ[d El-plv (v Eivyly ’Z‘])d] 2@
fordd=1and Vid =0.
i.e. d on the unit sphere in L+(V).

These distributions belong to the class of projecied normal distributions (Fraser
(1979)). See Fick (1984) for a derivation of the form given here. Notice that when X
=1, h(d) is a uniform distribution on the sphere in L+(V). This general model for d
will not admit any reduction in dimensionality via sufficiency for general . How-
ever, when X = diag{T.I} it can be shown that the likelihood for T depends on d only
through d; and hence d; is sufficient for T.

When A =/ —V1V{ is nonsingular, ie. p = g, the likelihood for T can be written
n—T
2

(3

where K=I-(I-+T-1)A)™" . An illustration using this likelihood function is given in
section 5.

L(d,IT) e I1-KI* [1—d;KA-1d1]
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Since d; is sufficient for T interest now centres on its distribution. When p = q, d,
has a distribution on the interior of the p-dimensional ellipsoid d“;A~'d, = 1. The
density for d ;, when T = I, has been given by Ellenburg (1973)

F[HJ
2 . . o-—rp ,
gid))= IA T4(1-d,A7d ) 2 (4)
1_{ H—I—B] TCP/Z
2

ford;A7d; < 1.

Note that g;(d;) is constant on ellipsoids dA~'d, = k. Doombos and Prins
(1958) give this result for p=2. Butler (1984) gives a number of other references that
present g;(d,) . Using the representative likelihood function L*(d | T) chosen to
have L*(d | 1) =1 we can write the density g(d,) ford,

grd)=gd)L @, | T) &)

Note that the density g(d ;) can be viewed as the "null" density g;(d ;) modulated by
the likelihood. This device was used by Watson (1956) and Watson and Williams
(1956) in discussions of distributions on spheres. A discussion of likelihood modula-
tion and its application to other setlings can be found in Fraser (1968, 1979). The
density for d | can now be displayed by using (3) and (4) in (5).

| =t
2 1% fa -1 n_;_ 4 ‘o =1 nz—r
gr(d,) = A% - d;A™d ) (1-d;TA™d)) (6)
r[g]
2

ford;A7ld, < 1.
When A is singular so that p > q = rank ( I—VIV{ }, the p-dimensional vector d
is a function of a g-dimensional vector, specifically d ; = N;r where r = t /At

For this case, we now give alternate derivation of the density g,. If we define
u =1t /|t,]l, it follows from the distribution of t given in (1) that u has density

n—r

F[n—r}
2 _ax
gru) =————<——IAI"*(1 + u’Aln) 2 (7
r[n—r ]1:‘1/2
2

This density is a scaled q-dimensional Student distribution with n-r-q degrees of
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freedom. Since r =u/(1 +u’n )% and the transformation from u to r has Jacobian

1-r7r) 2 one obtains the density for r

n-r

n—-r—q

r[ﬂ
IAF%(1-rT) 2 1(1+r'(1 —A‘l)r)— 2 (8)

gq(r) =
r‘[ﬂ nd/2
2
forr'r < 1.
Note that r has density on the interior of the q-dimensional sphere r'r = 1. Infer-

ence for T can be based on d; , r or u. Notice that, when specialized, the densities
(6), (7) or (8) induce the same likelihood (3).

4. INFERENCE FOR VARIANCE INFLATION

We now specialize the general results from section 3 to the case of p = 1. In this
case, the matrix T becomes a scalar t representing the variance of z;. This special
case has been called a ’variance inflation” model by Cook, Holschuh and Weisberg
(1982) when one assumes that the first {or chosen) component of error ( z; ) is sub-
ject to potential variance inflation. ( real variance inflation would mean that T > 1)

In the case p = 1, we can take the distribution theory a little further and obtain an
exact test and confidence intervals.

The likelihood function given in line (3) becomes

n-r

L@, =0 -0*% (1 -xd?a) 2

where a = 1-V IV{ ( a scalar between 0 and 1 } and ¥ = 1-(14+a (7—1))"'. Notice that
d? is, in fact, minimal sufficient.
The likelihood is maximized at
_(n-r)di/a -1
C al-d2h)
The distribution for t can be obtained directly from (6) or (7) as
lVa +@-1)

F
l/a + (t-1) 1 a=r=1

We now briefly outline some properties that follow from the distribution theory.
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When considering the variance inflation model, the parameter space for T might
be restricted to [ 1, <o ). It should be noted that t as defined can take on values that are
less than one (in fact, t can take on negative values down to -( 1/a - 1 ) < 0 ).
Further, it can be shown that t is not unbiased. In fact it can be shown that

(n—r-3)t 5 2(1 — 1/a)
n-r-1 n-r-1

is an unbiased estimator for T with variance
2(n-r-2)
(n-r-5)(1/a + (-1))?
From the information inequality, a lower bound on the variance of unbiased estimators
can be shown to be

2(n-r+2)
(m-r—1)1/a + (z-1))*
Since the model for t is not of exponential type, we know that this bound cannot be
attained uniformly in t for any unbiased estimator (Fraser (1976 pp 344). But notice
that this lower bound is the variance of the unbiased version of t based on n+4 obser-
vations.

A one sided 1 - o confidence interval for T would be
& (1/a + (t—1))
Fl—a

T>—(l/a = 1)

where Fy_g is the 1 - o percentile from F,,_._;.
The uniformly most powerful size o test for Hy:t =1 versus H:t > 1 has the
form ’Reject H, ’° if
t>1+(F;,—1)a
with power

_ Fio
I_B“P[F 7 l+a(1:—1)]

5. AN EXAMPLE WITH LIKELIHOOD INFERENCE

We now illustrate the results with the location - scale model in which;

X =1and V = l/sqrtn

First, we consider an analysis of the likelihood with p = 1. In Figure 1, we have
graphed relative likelihood functions for n = 100 and t = 1, 3, 10, and 20. Both the
horizontal and vertical scales are logarithmic. The dotted horizontal lines can be used
to indicate 10% and 50% relative likelihood intervals. Typically, one would focus on
the smaller likelihood limit. When this limit is greater than one, T =1 is not plausible
and variance inflation is then a possibility. Notice that the curvature of the log -
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likelihood at the maximum seems to be approximately constant. In fact, it can be

shown that
12

azlongr __1n-x-1
dloge2 " 2 o1 (l/a + (t-1))?

INSERT FIGURE 1 HERE

Next, we offer an example of a likelihood analysis with p = 2. The famous data
on growth rates of plants from Darwin (1878) (see also Andrews and Herzberg (1985))
contains 2 observations where variance inflation could be considered.

Table 1. Differences in eighths of an inch between cross- and self-fertilized plants of the same pair

49 23 56
-67 28 24
8 41 75
16 14 60
6 29 48

The standardized residuals are d” =

(0.1987 0.0146 0.2483 -0.6226 0.0500 0.0217 -0.0916 0.1421 0.3828 -0.0349
-0.0491 0.2766 -0.1057 0.0571 -0.4881)

For each pair of residuals, a likelihood for T was determined along with 50% and 10%
relative likelihood intervals. Figure 2 displays a plot of the lower 10% limit versus the
lower 50% limit for each pair of standardized residuals. The 'famous’ pair is flagged
as are a few other pairs



