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SUMMARY

Using a linear model that assumes only a portion of the errors to be independent,
a general distribution for the standardized residuals is derived. From this distribution,
the sampling distribution for the maximum marginal likelihood estimator of a variance
inflation parameter is obtained. Inferences based on this estimator are discussed. These
results are compared with inferences based on the corresponding maximum profile
likelihood estimator.
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1. INTRODUCTION

For the analysis of data under a linear regression model, the standardized residu-
als are used to assess many of the usual assumptions including the assumptions of
independent and identically distributed errors. In particular, if it is possible that some
of the error terms have variance potentially larger than the others, it would be
appropriate to examine this inflation of variance.

Cook, Holschuh and Weisberg(1982) examine a model that allows for variance
inflation using maximum likelihood estimation. In their article, they conclude that the
small sample distribution theory appears to be intractible. In this article, we present a
general distribution for standardized residuals that requires only a portion of the errors
to be independent. While the distribution for standardized residuals under independent
and identically distributed errors has been known for some time, this general distribu-
tion appears to be new. We include two derivations of this distribution. One method
of derivation uses likelihood modulation, while the other method follows from a scaled
multivariate Student distribution.

Using these results we are able to present the exact small sample distribution
theory for the maximum likelihood estimator of a variance inflation parameter when
we know which component of error is subject to potential variance inflation,

2. PRELIMINARIES AND NOTATION
Let us write a linear model in the form

y=XB+oz

where y is a response vector of n observations obtained at input levels recorded in the
r linearly independent columns of X, We assume the error vector

_|Z1] -
z_[z2 N, (0,9)

where Q = diag( T,I) is partitioned according to z, i.c., we are allowing z , the first p
components of z to have arbitrary positive definite covariance matrix T. The analysis
to be presented is independent of the choice of basis L(X), the linear space spanned by
the columns of X, Let V be a n x r column orthonormal matrix with L{V) = L(X).
Then V can be augmented by a matrix N so that [V N]J is an n x n orthogonal matrix.
Since I-VV” = NN’ the standardized residuals d can be written

I-VV9y _ (I-VV'z Nt

d= Ha-vv oy il — 1la=vv ozl — Titll

where t = Nz, i.e. d depends on z only through t. Tt is important to note that the dis-
tribution of d depends only on the distribution for z and not on the parameters B or
o. Therefore, inference for T can be based on d or on equivalent statistics in L+(V ),
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the orthogonal complement to L(V). Next partition V=[V21] according to z=[z;]
and choose N so that

N, 0

H= N; Nj

where N; is p x q with q = rank (I-V,V ) .Then t = Nz can be writien

t,
-B-

where €, = diag{A, I} with A=I+N{ (T-I)N, partitioned according to t. Finally, the
standardized residuals d = .03 can be partitioned according to z, namely

[t 1l

d, 1
4= {dz] el

3. DISTRIBUTION THEORY

The objective of this section is to present a derivation of the distribution neces-
sary for inference for T. When z ~ N, (0,X) with Z positive definite, the distribution
fordis

N{Zr"NéZz

N;zz Nn—r(Ol QL) (1)

Nty

n—r i o
B lop 2 jVElY I""IEI‘%[d’(E‘l—Z"1V(V Tivyly 7:-1)(1] o))

hy@d)=T

fordd=1and V'd = 0.
i.e. d on the unit sphere in LY(V).

These distributions belong to the class of projected normal distributions (Fraser
(1979)). See Fick (1984) for a derivation of the form given here. Notice that when X
=1, hy(d) is a uniform distribution on the sphere in L+(V). This general model for d
will not admit any reduction in dimensionality via sufficiency for general X. How-
ever, when X = diag{T,I} it can be shown that the likelihood for T depends on d only
through d; and hence d; is sufficient for T.

When A =[-V IVi is nonsingular, i.e. p = q, the likelihood for T can be written
n—-r

2

L(d,IT) o IT-KI* [l—d{KA‘ld 1] (3)

where K=I-(I-+T—1)A)™! . An illustration using this likelihood function is given in
section 3.
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Since d; is sufficient for T interest now centres on its distribution. When p =q, d;
has a distribution on the interior of the p-dimensional ellipsoid d ";A~'d, = 1. The
density for d ;, when T = I, has been given by Ellenburg (1973)

r[n_r]
2 ) e e
gy = A (1-d,A7d,) 2 )
r[m] R
2

ford;A7'd, < 1.

Note that g;(d;) is constant on ellipsoids d ,A~'d, =k. Doornbos and Prins
(1958) give this result for p=2. Butler (1984) gives a number of other references that
present g;(d ;) . Using the representative likelihood function L"(d | T) chosen to
have L*(d | I) =1 we can write the density g(d ;) ford,

grdy) =g @)L d; I (5)

Note that the density gr(d ) can be viewed as the "null" density g;(d ) modulated by
the likelihood. This device was used by Watson (1956) and Watson and Williams
(1956) in discussions of distributions on spheres. A discussion of likelihood modula-
tion and its application to other settings can be found in Fraser (1968, 1979). The
density for d ; can now be displayed by using (3) and (4) in (5).

r n-r
2 , ) o-1-p 1 ) _n-r
grd)=———<—IA%(1 -d;A7d)) 2 -KI% (1 -d,KA7'd,) &)
r[n—r—[! npa
2

ford;A7'd, < 1.
When A is singular so that p > q = rank ( I-V,V ), the p-dimensional vector d,
is a function of a q-dimensional vector, specifically d ; = N r where r =t /|it||.

For this case, we now give alternate derivation of the density gr. If we define
u =t /It,]l, it follows from the distribution of t given in (1) that u has density

n—r

r[n—r]
2 _Af-r
———= A% +u'An) 2 @)

gr(u) =
F[%] anz

This density is a scaled g-dimensional Student distribution with n-r-q degrees of
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freedom. Since r =u/(l +u‘u )"ﬁ and the transformaton from u to r has Jacobian
-9 _4
(1-rr) 2 one obtains the density for r

2 1 bof—g _Ah-r
g(r) = [AF%(1-rr) 2 Q410’0 -AYr) 2 (8)
F[n-r«;}
2

forr'r < 1.

Note that r has density on the interior of the q-dimensional sphere r’r = 1. Infer-
ence for T can be based on d; , r or v. Notice that, when specialized, the densities
6), (7) or (8) induce the same likelihood (3).

4. INFERENCE FOR VARIANCE INFLATION

We now specialize the general results from section 3 to the case of p = 1. In this
case, the matrix T becomes a scalar t representing the variance of z;. This special
case has been called a ’'variance inflation’ model by Cook, Holschuh and Weisberg
(1982) when one assumes that the first (or chosen) component of error ( z; ) is sub-
Ject to potential variance inflation. ( real variance inflation would mean that T > 1)

In the case p = 1, we can take the distribution theory a little further and obtain an
exact test and confidence intervals.

The likelihood function given in line (3) becomes

n-r

L', l9=(1-0%1-xkd?a) 2

where a = 1-V IVi ( a scalar between 0 and 1 } and x = 1-(1+a (t-1))"L. Notice that
d is, in fact, minimal sufficient,

The likelihood is maximized at
(n-r)dZ/a -1
te————— +1
a(l—df/a)
The distribution for t can be obtained directly from (6) or (7) as
lVa + (t-1)
lVa + (t=1) Lot

We now briefly outline some properties that follow from the distribution theory.
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It should be noted that t as defined can take on values that are less than zero (in
fact, t can take on negative values down to -( 1/a - 1 ) < 0 ). Further, it can be shown
that t is not unbiased. In fact it can be shown that

4= (n—-r-3)t + 2(1 — 1/a)
n-r-1 n-r—1

18 an unbiased estimator for T with variance
2(n-r-2)
(m-r-5)(1/a + (t-1))*
From the information inequality, a lower bound on the variance of unbiased estimators
can be shown to be

Var(%) =

2(n-r+2)
(m-r=1)(1/a + (==1))?
Notice that this lower bound is the variance of £ based on n+4 observations.
A one sided 1 - o confidence interval for T would be
- (l/a + (t-1))
Fiq

T>—l/a — 1)

where F,_ is the 1 - o percentile from Fy ;.

The uniformly most powerful size o test for Hy:t = 1 versus H:T > 1 has the
critical region

tt> 1+ (Fy - 1a

with power

Fl—u
1-B=P|F>—-——
B [ l1+a(r- I)J
It is of interest to compare these results with those reported by Cook, Holschuh
and Weisberg (1982). They offered a profile likelihood function
LP(d,lt) =t — xd #/a) ™72

The maximum of this function is a solution to a quadratic equation (or a boundary
point). This solution can be written as
2

dj na na—1)
—(@+) - —=) - (1 - =°=)
a n+l n+l 1
= +1+0(—
o a(l ~din) * (n+1)

The profile likelihood function and the (marginal) likelihood function are very close in
most situations. Typically, the profile likelihood is a slight positive translation of the
marginal likelihood. They are not close when df is small but in these cases there in
no evidence of variance inflation with either curve.

5. AN EXAMPLE WITH LIKELIHOOD INFERENCE
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We now illustrate the results with the location - scale model in which:

X =1and V = 1/n*

First, we consider an analysis of the likelihood with p = 1. In Figure 1, we have
graphed relative likelihood functions for n = 100 and t = 1, 3, 10, and 20. Both the
horizontal and vertical scales are logarithmic. The dotted horizontal lines can be used
to indicate 10% and 50% relative likelihood intervals. Typically, one would focus on
the smaller likelihood limit. When this limit is greater than one, T =1 is not plausible
and variance inflation is then a possibility. Notice that the curvature of the log - likeli-
hood at the maximum seems to be approximately constant. In fact, it can be shown
that

azlong __1n-r- £2
dlogr2"™' 2 m—r  (la + (1-1))?

INSERT FIGURE 1 HERE

Next, we offer an example of a likelihood analysis with p = 2. The famous data
on growth rates of plants from Darwin (1878) (see also Andrews and Herzberg (1985))
coniains 2 observations where variance inflation could be considered.

Table 1. Differences in eighths of an inch between cross- and self-fertilized plants of the same pair

49 23 56
-67 28 24
8 41 75
16 14 60
6 29 48

The standardized residuals are d” =

(0.1987 0.0146 0.2483 -0.6226 0.0500 0.0217 -0.0916 0.1421 0.3828 -0.0349
-0.0491 0.2766 -0.1057 0.0571 -0.4881)

For each pair of residuals, a likelihood for T was determined along with 50% and 10%
relative likelihood intervals. Figure 2 displays a plot of the lower 10% limit versus the
lower 50% limit for each pair of standardized residuals. The *famous’ pair is fagged
as are a few other pairs



