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CHAPTER 1

INTRODUCTION

A. Motivation

A substantial collection of theoretical results has
been developed since the early 1960's based on the presenta-
tion of a statistical problem as a structural model. Research
is vigorous and exciting. One reason for this is that the
assumptions needed to apply the methods that are derived from
the model are fewer than more traditional analyses. The major
difference is the assumption of normality of the errors. This
assumption is no longer needed to obtain exact tests of signi-
ficance or confidence intervals when a structural model can be

used.

The implementation of the analyses has been delayed
for various reasons. The most substantial is most of the
distribution theory that arises from the analysis involves
multiple integration that (except in special cases) cannot be

handled analytically.

For reasons that become clear later, it is essentially
impossible to develop tables to display percentage points for
these distributions along lines similar to the t and F

distributions. But analysis with non-normal error forms can
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be performed. The analysis of each data set requires the
computation of distributions that are essentially special to
that data. As the complexity of the model increases, the
computer time needed to perform the analysis increases. As
computers get faster, relative costs will go down. At
present, the cost of a statistical analysis usually forms a
very small part of large applied research projects. The
practical researcher should not be discouraged from spending
more than a dollar for the statistical computing needed for

a $10,000 research project.

We begin with a summary of the ideas needed to apply
the methods. Applying these methods to familiar regression

models is straightforward.

In Chapter 5, several of the ideas illustrated in
Chapters 3 and 4 are displayed in the general setting of this
chapter. Presentation in this form offers a unifying perspec-
tive for the tools illustrated in the more specialized

situations of Chapters 3 and 4.

The applied reader can proceed quite comfortably to

Chapters 2, 3 and 4.



B. The Model

Many commonly used models can be presented in the
general framework of a structural model. Consider a response
variable Y (with space S). In many applications, we have
grounds for a statistical model that displays Y in terms of

another variable 2%z (with space S) .

In fact, a realization of Y 1is obtained through an

unknown transformation of a concealed realization of Z .

We symbolize this as

<
1l

8z

Where the transformations © form a group G , the
presentation of Z 1is made explicitly in the model. The
statistical problem is to then make inferential statements

about the unknown transformation 6 .

The variable Z 1is described by means of a probability
distribution. In a general setting, it may be known to come
from one of a class of distributions, the characteristics of
these distributions describing properties of Y not already
covered by 6 . We will use ) to index such classes of

distributions (with space A).

The model can now be presented as



f)\(Z) A e A

It is an error- or variation - based model.

eguivalent to a traditiocnal response-based model.

It 1s not



C. The Analysis

Now suppose that Y is realized. The model, together
with the observed Y is called the inference base. Tt
summarizes all the information available for statistical

analysis.

We now summarize the methods available through the
use of the inference base alone, methods that necessariily
follow from the data and the model only. It is the object
of this thesis to describe how the use of these methods leads
to substantial insight in real situations and to also display

simulation studies investigating properties of such methods.

We begin by asking, 'What information is available
about the unknowns described in the inference base?’
Certainly statistical statements about the unknown % should
lead to knowledge about 6 since Y = 8%2 and Y is observed.
But we can write Z = 6_1Y for some 6 in G . This

identifies Z as a point on the orbit GY of the observed Y

where

GZ = {gZ:9 ¢ G} .

In fact we can write

GZ = GY

and thus we obtain the observed value of the function GZ of

the variation 2 .



There is no differential information concerning where

the unknown but realized 2 1lies on the orbit GY .

Let us summarize our information formally.

Y
Y = 02 6 € G
(1.1)
fA(Z) A e A
GZ = GY ”

This summary contains arbitrary ingredients that
are unconsciously presented but have no relevant bearing on
its use. Specifically, the distribution fA(Z) is no longer
the appropriate distribution to describe Z in light of the
information GZ = GY

The correct distribution to describe Z is in fact
the conditional distribution given the information GZ = GY .

We can now formally display these observations as a

factorization of the inference base.

We have

a) the marginal model for GZ with its observed value,

b) the conditional distribution given GZ = GY describing
Z together with the presentation Y = 6% for some 8

in G .



The preceding suggests that we examine Z in terms

of the orbits GZ and the position of 2 on an orbit.

For this it is convenient to choose a reference point
on each orbit; let D(Z) be the reference point on the orbit
GZ . We can then record the position of 2 on the orbit by

finding a transformation [Z] in G which generates % from

D(zZ)
zZ = [z]lD(Z2) .
For notational simplicity it is convenient to write
c 1
Z = gb when it is clear that g = [Z] and D = D(Z).

We now describe the marginal distribution for D and
the conditional distribution for [Z] given D using the
powerful tool of invariant measures.

On the space S in ZRN the familiar Euclidean volume

measure is

VN(A) = j dz A c S .
A

Let h denote a transformation in G . We have

! We assume the exactness of G and the differentiability of

all functions involved {see Fraser (1978)).



aha

J._(h:2) =
w' ; ‘az +

2

I (2) = 3,(12] : D(2))

where dZ/JN(Z) is an invariant measure since

On the group G consider the action of G acting on itself

{on the left)

. _ {9hg
Jp(h:g) = ’——ag‘
(1.2)
JL(g) = JL(g : 1)

where 1 denotes the identity element of G so that

[ 7] 7% nee.

ng I, (9) g Ty ]

On the group G , consider the action of G acting

on itself (on the right)

? From now on, all Jacobians are positive.



* o - |ogh
Ty 9 = }Bgr
(1.3)
* *
JL(g) = JL(g 1)
so that
J dg - [ _d9 h ¢« G .
Bh J; (9) B J}(9)

To display the marginal and conditional distributions
derived from the inference base in terms of g and D , we

require

92
fA(gD)lgTaj—BT‘dng '

i.e., the distribution for % described in terms of the new
coordinates.

The Jacobian J(Z) = I 92 is the new key ingredi-

1o (S, D)

ent.

It can be written as

-1 -1 -1
J(Z) = JN(h :h "zZ)J(h Z)JL(h : g)

using any h on G and corresponding nt on S

If we choose h = g we find that



1

3(2) = I (g :D)IDIT (g~ :q)

-1
T (2)I(D)IL () .

Thus the change of variable can be expressed as
az = JN(gD)J(D)J£1(g)dng )

These observations would serve little purpose except
for the fact that JN and JL are usually easily calculated
anéd the factor J(D) is not needed to display the conditional
distribution for [Z] given D since it enters in as a
constant which can be incorporated into the derivation of the

norming constant.

The joint distribution for g and D can now be

displayed as
£, (gD) 3,y (9D) T (D) I, (g) dgdD .
The marginal for D 1is
h, (D}AD = IG fl(gD)JN(gD)J(D)Jil(g)dg- ap . (1.4)
The conditional for g = [Z] given D 1is

g, (g : D)dg = h;1(D)fl(gD)JN(gD)J(D)ng(g)dg . (1.5)



Recall that D is observed and displays all the infor-
mation about the unknown Z . We have the observed D
together with the probability of what has been observed;

h, (D) . This probability depends only on X . The assess-

k(
ment of X is based on the likelihood function for A

L(D| A) =ch

where ¢ 1is any arbitrary constant. It is often called the
marginal likelihood function for A being derived from the

marginal probability of what has been observed about 2

Plausible X values might be chosen based on the
observed likelihood function. We then could consult the
conditional distributions gk(g :d) for these A values for

our study of the unknown 6 with the observation that

[yl = 081Z]

g, ([21 ; D(2)]



D. Comments

Familiar inferential statements can be derived from
the above such as tests of significance, estimates and confidence
regions and numerous illustrations follow in Chapters 2, 3
and 4. The theoretical formulation of such tools will not be
displayed here (see Fraser (1978)]. Specific instances will

be described later.

The technigues described here are very firmly based.
The esgential factorization of the inference base is unigue.
The tools used to display the coordinates [Z] and D are
convenient but clearly not essential to display inferential
statements about the unknowns ©6 and X . The choices of
[2] and D(Z) are completely arbitrary and terminal state-
ments of significance and confidence concerning © depend
only on the choice of ) wvalues and that is determined by a
uniguely displayed marginal probability and its associated

observed marginal likelihood.

However, there is a catch. If the family fk has
enough symmetries then the integration over the group can
possibly be performed analytically. For many interesting
families of error distributions, the integration can be
performed only numerically. The only qualification for this
is that with some situations, certain expressions can be
displayed as infinite series and the like. But on practical

grounds such formulae are likely not useful. Some encouraging



L=13

work has been done with approximate expressions however, [Lund

(1967), Sprott (1977)).

Direct numerical quadrature and monte carlo appear to
be the strongest tools available. With the advent of high
speed computers, considerable research has been devoted to
the development of efficient integration techniques. As
computers get faster, computer time will become less and less
important. This thesis takes full advantages of these tools
in displaying the conditional distributions and marginal

likelihood functions.

In Chapter 2, the choice of error distribution is
described and a large group of families of error distributions

are discussed.

In Chapter 3, the location-scale model is analyzed
with real data. The ideas of robustness and resistance are

considered and encouraging results are included.

In Chapter 4, the regression model is analyzed and
similar issues are addressed along with indications for

future work.

In Chapter 5, many of the ideas introduced in Chapters
2, 3 and 4 are placed in the general setting described in this
chapter. They have the advantage of clean display and allow

things to be seen from a more unifying perspective.



CHAPTER 2

THE LINEAR MODEL AND THE ERROR DISTRIBUTION

A. The Inference Base and Necessary Analysis

Consider a sequence of repetitions of a system under
various settings of input variables. Let Yy = (y1 T ,yn)l
designate the sequence for the response and suppose that the
response has a linear location model '

y = XB + 0z

where X = (x1 § e s ,xr) records r linearly independent

vectors based on the input variables.

For the variation z , we have the densities fA(z)

A ¢ A and for the response we have the variation based model
r +
{y =%8 +0z,(8,0) eR xR}

giving the set of possible functions for the response y in

terms of =z .

If the repetitions on the system are independent then

the error distribution can be displayed more firmly as



1 fl(zi) 5

=8

i

It will be clear in which context the notation fh is

intended.

The transformation group here is the regression-scale

group [see Fraser (1968)]. The realized orbit for =z is

+
L(X.y)—{a}f1+ +arifr+C¥.ajE]R,CE]R]'.

For some of the discussion later on it will be con-
venient to display properties of the analysis from a model
displayed in a slightly more canonical form. It is trivial

to show that the matrix X can be written as

where V = (v1 5 sis ,vr) is orthonormal and T is upper tri-—
angular. The Gram Schmidt orthogonalization process is one
method that could be used to determine V and T . Then the

model can be written as

where o = TR .

Clearly L+(V ry) = L (X;y) .



Convenient coordinates on the orbit are given by

a(z) = V'z so that the vector =z has projection Va(z) on

3
the space L(V) . The vector 2z has projection =z - Va(z)

on the orthogonal complement Ll(V) . Thus
z = Va(z) + (z - Va(z)) = va(z) + s(z)d(z)

where s(z) is the length of the residual vector and d(z)

is the unit residual vector. This suggests using the vectors
¥y vV ,d as the r+1 basis vectors for L+(V r2)  with
coordinates al(g) i az(z) LR ar(g) ,s(g) ‘ (é(g), s(g))
identifies z on L+(V',§) and g(g) indexes the different

subspaces (i.e., d 1is the reference point).

We have

K
I

Va(y) + s(y)d = Vo + oz

ve + o(vatz) + s(2))d

V[% + “é(E)J + Gs(g)g .

Accordingly

1]
=
[

o + ca{z)

(2.1)

()]
—

L
—

]

ds(g) w

® L(V) — the space spanned by the columns of V .



And we can note that

if we wish to study the parameter 8 relative to the original

basis vectors.

Actually this method has been found to be one of the
most numerically stable methods to carry out standard

regression calculations.

Indeed, very often in experimental situations, it is

the coefficients a, *** a, that are of primary interest;

perhaps for the purpose of testing component hypotheses such
as polynomial fitting or the partitioning of degrees of free-

dom in factorial experiments.

To obtain the marginal and conditional distributions

we first need to make the change of variable
z <> {(a(z),s(z) ,d) .

For a = a(z) we have Euclidean volume da ; for s = s(z)

we have Euclidean length ds and for d(z) we have s™ da

where da 1is used for surface volume on the unit sphere in

LY (v) . This gives

a5 = dads 8 T * §a

By substitution, we obtain



n-r-1

£f,(Va+sd)s dadsda

3

The marginal distribution for d is

h}\(d)da=J J f)\(Va+sd)sn_r_ldads'da. (2.2)
e oy a.F8d )

R R

The conditional distribution for (a,s) given d is

n-r-1

hil (d) £, (Va+sd)s dads . (2.3)

Here we have argued towards the distributions directly.

Using the tocls from Chapter 1 we find that

J ((b,s):d) =5

~

I
143]

Jr+l((13 ,s))

I
=

J(d)

Now consider separately the two parameter components

o , 0 ; Equation (2.1l) can be rearranged so that o and o

are separated.

Q
4]
—
L4
~—
Il
(1]
—_
¢ N
~
.



This separation is essentially unique, up to re-
expression of the individual components. The important
observation here is that there is a one-to-one correspondence

between the unknown o and the unknown T . Probability

statements about T can be directly interpreted as confidence

~

statements about o . Similarly with o and s .

Specifically, the specification of a with ¢ wun-

known determines 2z as a ray in L+(V; z) and T represents

as a vector the coordinates on L+(V; z) needed to index such
rays. The specification of ¢ with o unknown determines
an hyperplane parallel to the hyperplane L(V) and s

represents the coordinate necessary to display the distance

between the two hyperplanes.

The distribution for T = T(z) is

g%\'('{‘:g)dg'=h;1(§) [ f)\(S(V?-l-(g))S
9

The distribution for s = s(z) 1is

n

g3 (s :d)ds = h) ' (Q) [ £, (s(vr+d))s"lar - ds . (2.5)
g D) r+d T

We will have occasion to display somewhat more familiar

coordinates from time to time involving the t, statistic and

~

s, statistic where



s, = s/vVn-r and t = al(z)/s,

From a numerical point of view this has advantages
for the integration removing part of the distribution's
dependency on sample size. This will be clearer later. The
distributions for Ez and s, are found by the ocbvious
transformations. Th; additio;al constants tend to complicate

the expressions and we will usually display the less

cluttered ones.



B. Standardization

There are a large number of classes of distributions
that display interesting properties that we may wish to
identify from the data. All we require is the functional
form of such families as norming constants and other quantities
can be found easily with the use of numerical integration.

It is important that such families (always indexed by ) do
not reflect the characteristics displayed in the model by

@(f) or o . In other words the characteristics to be
handled by a and ¢ should be fixed within the family

{fk: A € A} . For example, if all the members of the family
fl have standard deviation 1 then o can be interpreted

as the response standard deviation no matter which member of

the error family is used.

We may wish to contemplate families which in their
canonical form have changing location and scaling depending
on X . It is the characteristics other than location and
scaling that we are interested in having the parameter A

handle.

One possibility is to standardize the distributions
with respect to mean and standard deviation. That is, to

require that



This of course would not work for many long tailed distribu-

tions like the Cauchy.

Another possibility that seems reasonable for
symmetric distributions is to standardize with respect to

median and standard error. That is,

0 1
J fA(z)dz = 0.5 , [ f)(z)dz = 0.6827 .

—c0 -1

For the normal distribution this agrees with the first

standardization.

Yet another possibility that seems appealing for
asymmetric distributions and agrees with the preceding for
symmetric distributions is to standardize so that (-1, +1)

is a central 68.27% interval; that is,

-1 o
J fA(z)dZ = 0.15865 = J fl(z)dz
1

-_—00

Clearly for a model including possibly asymmetric
families the particular application may dictate the interpre-
tation that is desired for the unknowns o and ¢ . The
computer program which handles the determination cf such

standardized densities can be easily modified to handle any

form of standardization.

One other type deserves a brief mention. If the

error family is made up of members with positive density on



(0 , +=) only, we might wish to standardize so that the
interval (0, 1) has a fixed probability content, perhaps to
agree with a folded normal distribution (0.6827), or perhaps

an exponential distribution (0.6321) .

It is likely that in such cases that the original dis—
tributions would not be relocated and that Va would be
interpreted as the starting corner for the response. It
should be mentioned here that such variable carrier models

can be easily implemented using the methods described here.

The computer program is set up to determine the
norming constant and appropriate values to determine the
standardized densities. Values of the natural logarithm of
the standardized densities are then stored in an array and the

expression

fA(Va-ksg)

is evaluated as the exponential of the sum of n logarithms.
The values of the n numbers are determined by a simple
linear interpolation determined by each of the component
coordinates of va + s@ . Through experience this has been
shown to reduce computer time dramatically as a large amount
of time would have to be spent with function evaluation.

Numerical accuracy with this method has been very encouraging.

The remaining sections of this chapter consider a

number of families that have been suggested as offering



insight into the study of linear models; some for their direct
application to data and others for their contribution to the
understanding of how the distributions that are used for

inference respond to the data.

In some instances, complete or partial reduction of
expressions can be made by direct analytical integration.

These are included where possible.



C. The Normal Distribution

The normal distribution is certainly the most important
functional form for displaying an error system. Many random
systems have error patterns that follow this distribution.
Arguments based on randomization or the central limit theorem
or numerous other physical theories offer support for the use
of it. Most of the families studied were constructed so as to
include the normal distribution so that direct comparisons
{(via the marginal likelihood and then with the conditional

distributions) can be made. We have

1
f(z) = —————={exp -z"'2/2} .
E= (2w)n/2 s
The conditional distribution for af(z) , s(z) has the
form
A 2
1 Ly . n-r _8 1.n-r-1
o F2 exp{-ya'alda - —— exp{-Sis ds (2.6)
(2m) 2
where Af = Zﬂf/z,/F(f/2) .
Note that a, ***a.,s are independent and indeed

independent of d .

The marginal distribution for d is that of a uniform
distribution on the unit sphere in LL(V) . This is directly

observable from the fact that £(z) is spherical and is there-



fore constant on spheres centred at the origin. Other distri-

butions derived from the normal error form appear later.



D. The Student Distributions

The Student t-distributions arise naturally from
classical normal analysis as the marginal distribution for
the t-statistic. As the degrees of freedom is lowered,
there is more probability in the tails. There is a great deal of
empirical evidence to suggest that certain data sets come
from error distributicns with more tail probability than the

nermal. The Student family offers rational tails rather than

exponential tails. The functional form is
I1[}’\+1] (A+1)
2 - P
3 (L+z°/2) A e (0, =) .
vomix T [5]
They are symmetric and so have median 0 . They have 68.27%
probability in (—!lA ,RA) ; here are some values of RA .
A ‘ 1 3 6 10 15 25 o
EA ‘ 1.8367 1.1966 1.0903 1.0524 1.0343 1.0202 1.000

Some representative standardized Student densities

are plotted in Figure 2.1.

Many of the illustrations included in this thesis are
based on this error form. There are arguments made in
Chapter 3 that give strong support for its usage in practical

situations.
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Figure 2.1 Standardized Student()) densities
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Unfortunately, there appears to be no way to display
the conditional distributions derived from its use apart
from expressions involving integrals. Even samples of size 2
and 3 from the Cauchy distribution lead to horrendous
expressions. Numerical integration based on simple Gaussian
quadrature rules gives very accurate results with the location-
scale mcdel discussed in Chapter 3. The theory behind
Gaussian quadrature rules is summarized in the Scientific
Subroutine Package manual available through IBM. Additiocnal

comments on numerical integration are made in Chapter 3.

It was mentioned that the joint error distribution

n
I £,
i=1
longer tailed distributions like the Student family the

zi) was spherical if fk was the normal. With

contours of the joint distribution develop lobes along the
coordinate axes and the joint pattern can be best described
as resembling a children's jack from the game of jacks. The
2 dimensional contours are displayed in Figure 2.2 and an
understanding of this type of phenomena appears to be very

useful with the monte carlo studies of Chapters 3 and 4.
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E. The Exponential Power Distributions

Another symmetric family for exhibiting tails longer
than the normal is the exponential power family. The density

function is given by

exp{-i—IZIA} Ae (0, ®) ., (2.7)

Representative standardized densities are plotted in Figure
2.3, Notice the rather unnatural cusp at the origin when

A <1 . At best, this family can only be viewed as an
approximation to the actual error family. It does have the
advantage of including error forms with tails shorter than

the normal for X > 2 . This family was considered extensively
by Box and Tiao (1973) and also Barnard (1974). As X + « ,
the standardized distribution tends to a uniform distribution

on (-1.46477 , 1.46477)

£ (z) = 0.34135 -1.46477 < =z < 1.46477 .

Two dimensional contocurs of the error distribution are

displayed in Figure 2.4.

It turns out that partial integration can be made with

this family.

We can compute



B n-1
J rf, (s(2T vy +d;))s " ds

]

which is the joint distribution of T and 4 .

ey = (2LFL/A 1,4t

r(1+3\~)] and r(T,V) =

then we obtain

[ cn(k)exp{-é x (T ,V)sk}sn_l
0

Let u = sA to obtain

r{T , V)
now let w = ——— u
2
to obtain
n
A T o n_
<t 2 A
3 [r(T ,V)] J exp{-wlw
=~ 0
n n
(N (n). X by
= == r[x]z (x(z, W)

1
- Az“r“[1-+%] j=1 ly=1

This is the joint distribution for

r
) T, Vi T 9

1

1

dw

T

First let

1 T.v .+d,

u ul

>| B

and d . To

1

.8)



determine the conditional distribution for T given g now
only involves an r dimensional integral (hl(é)) . The
actual distribution will differ by constants depending on the
standardization. These symbols were suppressed to increase

the clarity of presentation.

As an illustration, consider X = 2 corresponding

to the normal distribution: the conditional distribution is

then
-
hzi(d)T{%] n | o 2) 2
EaT Iy |l ‘ L Ty Vg * 8y
2-2°r" (14 3] (i=1 lu=1
AT (2 -2
n-r |2 (1+T'T] 2
21Tn/2 ~
A —r 1 _%
= R (1+?T) (2.9)
n
which is the canonical Student(n-r) on R" (see Fraser

(1976), p. 79}.



F. Asymmetric Distributions

Traditionally, when there appears to be evidence of
an asymmetry or skewness in the error system, some nonlinear
transformation on the response is considered. Quite often
such asymmetries are linked with a hetrogeneity of the

variance making even stronger evidence for data transformation.

Of course the analysis described earlier in this
section can handle skewness head on by including an allowance
for asymmetry in the parameter A . If tail length is also
a consideration then it makes sense to consider A as two
dimensional. There is no change in the analysis except that
now it appears reasonable to consult a contour plot of the
marginal likelihood function for é = (Al ,AQ) %

One interesting family that was devised to display

the phenomena is the following class of distributions which

have functional form

“}\1+l _)\2+l
(L+r(-2)z’/2) 2 @+r@en,) 2 (2.10)
where F(z) is some symmetric distribution function. For =z

large and negative F(-z) will be close to 1 and F(z)
will be close to zero, making the left tail of this distribu-

tion similar to a Student(Al) density. For =z large and

)

positive the density will be very similar to a Student(}\2

density. If A1 = Az we obtain yet another symmetric class



of densities. If A, < A the densities are negatively skewed

1 2
and if 11 > AQ the densities are positively skewed. As Al
and A2 + o these distributions tend to N(0, 1) . This has
been called the skewed Student(?\1 ,12) family. Several

examples of the standardized skewed Student densities are

illustrated in Figure 2.5.

Often in life-testing problems a simple scale model

with Weibull errors is used as a basis for analysis

B-1 B}

z > 0 .

+h

—

N
It

exp{-z

Bx

If in fact one considers

y = log w

then one obtains alocation-scale model

Y

Hl + oz

£(z2) exp (+z) exp{-exp{+z}}

where upu = f&n o and o = B_l .

This error distribution is another example of an
asymmetric error distribution. In fact -z has what is
called the standard extreme value distribution. This model

has been investigated by A. Dobriyal and A. McIntosh at the



University of Toronto (see Fraser (1978), Section 2.4).

There are many other asymmetric distributions that
would be interesting to consider: +the noncentral + and
F distributions, other variations on the addition or
multiplication of symmetric densities, adding modulating

factors, etc.



G. Scaled Normal Distributions

We now consider the situation in which the errors have
a multivariate normal distribution N(Q , L) . We are
admitting here the possibility of dependency of the errors
and several special cases will be considered here and in later
sections. The distributions derived in this section will be
used later as an aid to understanding other distributions

and also for some monte carlo studies.

We have

1 = exp{--%z'E_lg} .

f.(z) =
o M2z

(2m)
The marginal distribution hz(d) has the form

L = exp{—%(Va+:3(:'1)2_1(\15;1-1-sd)}sn_r—jL

I da ds
2 ~
a ‘s (2W)n/2|2|

-1 i -1
exp {1z + 50T VTG @'V @+ s 0 via)}
B J Js (2m 2|z

_1 o
. exp{— : 52[ 27 - 2Tl vy v'z'l]d”s“ ! qads

=1
[V'Z v I 2| n-r-1
Js g exp{—;(é R@)s }s ds

1.
(2m) 2 |z|”



=1

where R =1 ' - g ly(w's vy v'r?

Now if u = % d'Rds2 then we obtain
vl %_l e
_ |[v &7 "v] 2 2
= . exp(-uju du
o n-r n-r
2 ' 2
(2m) | Z] (d'RrR4)
vty
=T L (2.11)
n-r [217 5
(d"Rd)

so that the conditional distribution for (a,s) given d 1is

i n-r
a__ |v'z7lv| (a'rd) ? 1 ) —
Yo R exp{-3(va + sd)'z (va + sd) }s da ds
(2m) - h - N -
(2.12)
The conditional distribution for s given d is
n-r
2
(a'ra) —f—
= = exp{-3(@'rd)s’}s" " tas . (2.13)
r(BE -
2

The conditional for T given d 1is given by



%, n-r
- 5
|v'z™'v| (a'ra) 2
A = exp{—iSQ(VT+d)' 3™ (VT+d)}sn_lds
n-r n/2 ? = R % e

S (2m)
_tn-r |VZ_1V|%(d'Rd)n;r : (2.14)
A % " n/2 ° -

(v +a@rs™t v+ a))

This distribution is in fact a relocated and rescaled

Student(n-r) on r" given by

A . L i n/2
A= W1+ (x-ww (- ) . {2159
n

We will write

r
T = Studentn_r(g, W) on R .

To find ¢ and W we display the quadratic form in

(2.14) as

-1
vy v'ila)

1yl =1 ryp—l ' 1l Vi
(T+(v'z7-v) v g} (v v (T+ (V'E
- ST ]
+d'" (z7-vv'sTv) vEo)d

so that

=1

i o=~ g v

d

~



and
-1 _ 1 ., 1e—1
W = ovpg (Vv I v) .
For monte carlo work in Chapters 3 and 4, we will be
T
interested in the distribution of components of T = ~% on
£y Ly r ) I,
R x IR = 1R . ~

Our method of derivation begins with a consideration
of the canonical Student distribution, Studentn_r(g + I) on

R" which has density

n-r

A
n

(l+—§'§)_n/2 ‘

If we write x = (%1 r X ),

then the distribution can be written as

A 1 A 1 1
n-r n—rl
5 13
] 1 2 T 2 }-‘51}51
A - (l-kxzxz) A (l—kxzxg) 1+ -
n=ry ver n e (l-+x2x2)

(2.16)

in other words, the marginal for X, is Studentn_r(o ,I) on

3 x
R 2 and the conditional for _____L___; given X, is
' 2 ~
. SR Y
1
Studentn_r (0, I) on IR ‘

1



The distribution for T can be described as

T=u+ I'x where TIIT' =W.
Now if
w W U
W = 14 12 and § = t1
oy Moo Uy
then

the marginal for T2 is Studentn_ (M

and the

conditional for T1 given T2 is Studentn_r (v, z)

r

OI'l]Rl

where

-1
voE oy s W W (T — )

(2.17)

1
=5

1
(T, =)} - [w

.
2 = [14+(T,=u,) Wy,

-1
11~ WyoWooW,y]

One justification for the above result proceeds in the

following way.

Let



This splits the quadratic form in expression (2.15)
into two pieces as in expression (2.16). Splitting the joint
density into conditional and marginal resembles the corres-
ponding expressions in the canonical case. You won't be dis-

appointed if I spare you this expression.

The use of these results will appear in Section 4D
with monte carlo integration. The important idea here is that
all of the formulae can be worked out analytically (as is
practically characteristic of normal theory results). Later
on we will be using particular sums of scaled normal distri-
butions to attempt to emulate the contours of nonnormal dis-

tributions for which the analytical results are not practible.



H. Spherical Distributions

We noted earlier that if the error distribution is
made up of independent standard normal variables that the

joint distribution for =z 1is spherical.

In fact, if the errors are independent and identically
distributed then the uniform distribution for d characterizes

the normal distribution as the parent.

Theorem

Let z be a random sample from a symmetric continuous
density function £ and let g denote the standardized
residual vectcor. Then the distribution h(d) characterizes
the parent distribution £ . If the distribution for d is

uniform, this characterizes the normal.

Results of this nature have been proven by Prokhorov

{(1965), Zinger (1956) and Zinger and Linnik (1964).

The presentation of these results and other related
interesting characterizations can be found in Kagéan, Linnik,

Rao (1973, Section 13.5).

It is interesting however to consider the case where

z has a general spherical distribution

f)\(g) = g)\(g'g) .

We know that



hy (d) =

so that the conditional distribution for a and s given d

is of course just the marginal

n-r-1

A (Va+ sd)'(Va+sd))s da ds

n-r‘gl(

- " 2, n-r-1
An—rgA(g at s )s déds . (2.18)

The marginal distribution for T is

2 5 n-1 .
L An_rgk(s (L+T'T))s" ~ds-dT
L
and letting u = s(l+T'T)"
2, n-1 1
= A __g,(u)u du daT
Ll n-r A (1+-T'T)n/2 .
which is just
A 1
n-r .
A (1+1rm)™/ 2
n %
which is the Studentn_r(o , I} on RY . Notice that this
shows that
n-1 when the integral
du =

f g, (’)u -
u A Al is convergent.



One interesting nonnormal spherical distribution is

Studentl(o , I) on R™ with density




CHAPTER 3

ANALYSIS OF THE LOCATION-SCALE MODEL

A. A Classical Example

We now begin an examination of the simplest linear
model, the location-scale model. We have a data set y and

the feollowing model

A great deal of the results seen in this chapter have
direct applicability to the understanding of more complicated

linear models with general error distributions.

We now examine the Darwin data as recorded in Fisher

(1971).

The data came from an experiment to compare the heights
of cross-and self-fertilized plants. The design involved 15
pairs of plants, each pair consisting of a cross-and a self-
fertilized plant grown under the same conditions in the same
pot. The data available are the fifteen differences in height

cross— minus self-fertilized

3-1



3-2

49 23 24 -67 28
75 8 41 60 16
14 -48 6 56 29

It is of interest later to note the two extreme values

on the left tail of the sample.

For illustration we consider 2 error families; the
standardized Student()\) distributions (Section 2D) and the

standardized exponential power (A) distributions (Section 2E).

It perhaps seems reasonable to consider the Student
distributions to allow for longer tails than the normal and
the exponential power distributions to allow for the

possibility of shorter tails than the normal (here A > 2).

(i) Likelihoocd Analysis

The observed value of 4 is

0.1987 0.0146 0.0217 -0.6224 0.0500
0.3828 -0.0916 0.1421 0.2766 -0.039%

-0.0491 -0.4881 -0.1057 0.2483 0.0571

Let the likelihood function derived from the Student

analysis be

Lgp(d [ 2) = A by (Q) .



Figure 3.1 The observed marginal likelihood
function with Student errors
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We have chosen the representative curve that has LST(d | =) =1.
This allows for direct likelihood ratio comparison with the

classical normal analysis.

From the exponential power analysis we will have

h, (4)

Lgp(d | A) =2, h,(d

so that Lg,(d | 2) = 1 corresponding to a normal analysis.
We remark again that for A < 1 there is a rather unnatural
cusp at the origin that becomes more and more anncying as A

gets small.

The computer program produces the likelihoods in both
tabulated and graphic form. They are plotted in Figures 3.1
and 3.2 . LST suggests that A values in the range from 1
to 9 are reasonable for the remainder of the analysis.

L offers evidence against short tailed distributions. For

EP .
illustration we consider A values from 0.5 to 2 (further

comments about this situation will be made in Section 3H.

(ii) Inference for u and o

Figures 3.3 and 3.4 display the t-statistic distribu-
tions for selected values of A from the Student and
exponential power analyses respectively. Recall that we are

using the more familiar form for the t statistic here
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Now consider the formation of confidence intervals
for the location parameter 1§ . The central 1-a confidence

interval has the form
(Y-tQSy//H ’ Y—tlsy//ﬁ)

t,) 1is the central 1-a probability interval

where (t1 Pty

for the t-statistic based on the appropriate conditional
distribution. The computer program computes these intervals

for any chosen A values and confidence levels.

The 95% intervals for the Student analysis are as

follows:

A=1 =2.25 0.53 14.8 42.9
3 -2.28 1.17 9.5 43.1
6 -2.28 1.55 5.8 43.2
9 -2.27 1.73 4.1 43.0

® ~2.14 2.14 -0.03 41.8

The 95% intervals for the exponential power analysis

are as follows:
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ty Ry Hy Ho
A=1.0 -2.05 1.13 9.89 40.94
A= 1.5 -2.18 1.58 5.51 42.21
A= 2.0 -2.14 2.14 -0.03 41.84
A= 2.5 -1.98 2.61 -4,50 40.23
A= 3.0 -1.74 2.93 -7.58 37.86

Figures 3.5 and 3.6 display the s-statistic distri-

butions for the selected values of ) where s, = s/vn-1 .

Central 1-oa confidence intervals for ¢ have the

form
Y %y
=it e
Ry~ By
The 95% intervals for the Student analysis are as
follows:

s, s, 81 82
A =1 0.602 2.544 14.836 62.66
A= 2 0.695 2.277 16.575 54,315
A=3 0.698 2.075 18.191 54.110
A =6 0.675 1.772 21.303 55.905

A= 0.634 1.366 27.633 59.527



And for the exponential power analysis:

Sq By %4 9
A =1.0 0.676 1.934 19.52 55.86
A= 1.5 0.661 1.582 23.86 57.08

A =2.0 0.634 1.366 27.63 59.53
A= 2.5 0.612 1.231 30.67 6l.66

A= 3.0 0.598 1.144 32.99 63.11

The intervals that have the strongest support are
those near the maximum likelihocod values. 2All the intervals
of course have the property of marginal as well as conditional

confidence since

E{(l-a:d) =1-a .

They are taking advantage of more information than intervals

with a strictly marginal confidence property.

The computer program that handles this analysis has
been used hundreds of times now. It has been demonstrated
that even beginning students of statistics can understand
and interpret the output. It has been distributed (in card
deck form) to over 40 centres around the world by the author

(i.e., Fick (1975)).

More comments will be made in later sections.



B. Hardware and Software

Most of the work with nonnormal error distributions
demands that the user have easy access to a large-scale
computing system. This prerequisite is now satisfied by
virtually all academic centres where statistical methods are
used. Systems with the availability of both batch and inter-
active systems would be ideal for the use of the methods

described in this thesis.

(1) Graphics

The key ingredients for the terminal stages of
inference are the distributions themselves. Of course, summary
statistics derived from these distributions can be very use-
ful but there is no substitute for a display of a probability

distribution or an observed likelihood function.

For displaying one dimensional distributions and
likelihoods, CALCOMP and GOULD were used extensively. The
use of CRT terminals is increasing all the time. A very use-
ful situation would involve the use of a CRT with an optional
device for obtaining hard copy when the display is in an

appropriate form.

For two dimensional displays, a contour plot routine
was developed for use directly off a line printer. It is
illustrated in Figures 2.2 and 2.4. The function is evaluated

in a grid and then a coded value is assigned depending on the



function value. One particularly useful scheme of coded

values was

9 blank 8 blank 7 blank etc.

giving from highest to lowest value. Often this scheme gives
a very clear idea of the shape of the distribution. With non-
normal error forms the patterns cbserved are often very
interesting (see Figure 2.2). A plot in this coded form can
often be used directly to determine approximate function

values.

If the computer programs are used interactively, one
obtains added flexibility and speed at the terminal stages of
inference. For example, one could consult the marginal like-
lihood function first and then, based on its form, select a
range of A wvalues for the remainder of the analysis involving

g .

(ii) Integration
Many numerical integration methods were tried over the
last few years. Indeed several very sophisticated adaptive rules

were tried.

These rules were not devised with statistical distri-
butions in mind but were in fact designed to handle pathologi-

cal functions with continuity and differentiability problems.



For the integration problems considered here, these
routines are not recommended. For a majority of situations
considered, simple nonadaptive rules such as Gaussian quadra-
ture and Simpson's rule offered excellent results at low cost.
Consult the SSP (IBM Scientific Subroutine Package) manual

for reliable and accurate code (DQGn and DQSF).

Most of the integration that was carried out involved
infinite or semi-infinite regions. With some information
about the distributions involved, it does not seen necessary
to transform these regions to bounded regions. Generally,
truncation at some reasonable point does not appear to cause

errors.

Even rules that involve some transformation often
lead to an implicit truncation that (in this author's opinion)

can occasionally lead to hidden errors.

Clearly, boldly generalizing statements such as these
must be taken with a grain of salt. This whole area demands
the input of the special considerations needed in individual

situations.

*

The area of numerical multiple integration is a very
active topic of research for numerical analysts and
statisticians. At this time, there are no methods available
that offer consistent, reliable results for the integration

of general multivariable functions.

A number of techniques have been developed tc handle



specialized situations. The so-called product rules, that are
extensions of the single variable rules, (such as the Product
Gaussian rules) have a disadvantage with statistical distribu-
tions. Generally, densities have contours that are more like
spheres than cubes and in high dimensions. This can lead to
considerable waste in function evaluation. Most of programs
develcped spend a majority of their time with function
evaluation and so it is imperative to ensure that such evalua-

tions are made in as efficient a way as is possible.

With the location-scale analysis, all double integra-
tion was carried out in the following way. One coordinate
was integrated out with a Gaussian rule (DQGn) then the second
coordinate was handled by a Simpson's rule (DQSF) that carried
along both the value of density function for the marginal
distribution of that coordinate along with the distribution
functicon for that coordinate. In one step, we obtain the
marginal density and distribution function. The density can
be plotted and the distribution function can be used to compute
percentage points needed for estimates and confidence

intervals. (See Fick (1975) for additional information.)

For higher dimensional integration, a combination of
numerical quadrature and importance sampling monte carlo
methods were found to be very useful. (A more detailed

discussion of this idea is given in Section 4D.)



(iii) Random Number Generation

With the monte carlo integration and other simulation
studies done in this chapter and also in Chapter 4, extensive
random number generation was used. A very reliable package
has been developed at McGill University by G. Marsaglia called
SUPER DUPER (Marsaglia (1973)). It uses a combination of a
shift register and linear congruential generator. See Knuth
(1969) for a very interesting presentation of these generators

and their properties.

The rest of this chapter and Chapter 4 are concerned

with the extensive use of the tools described in this section.



C. The Performance of the Marginal Likelihood Function

The analysis of the Darwin data in Section A began
with the calculation of the observed marginal likelihood
functicen. We anticipated that this function would give us
some indication of the range of ) values to be used for
inferences concerning u and o . Of course the knowledge
of the true value of X would be ideal as the inferential
statements about u and o would be very firmly based.
Clearly the ability of the marginal likelihood function to
accurately predict the actual value could be important. We
now consider the sampling properties of the likelihood
function. Specifically we wish to study the model for

possible likelihood functions.

If AO is the true value of A in a given situation
then the probability of the observed d is determined by its
distribution hA (d) . The likelihood functicn is computed

0
by

Ld|2) =ch, (@ .

In other words, for every AO ; there is a probability

measure PA on the space of possible likelihbod functions.

0]
If there is a simple real or vector valued statistic to index
the likelihood functions then the study of P, could be based

on the study of the distribution of such statistics.

Typically such statistics are not available. The



understanding of some of the properties of these probability
measures can be of considerable help in the evaluation of an

observed likelihood function.

The analytical properties of hl(d) and correspondingly
of L(d | A) appear to be quite complex and intractible.
Accordingly, a simulation study was carried out to assess

some of the properties

Attention was restricted to the situation with indepen-
dent Student(X) errors. First, some ideas on what is to be

expected.

We expect P, to assign higher probability to likeli-
0

hood functions with modes near AO .

i

3l

” highex:.probability under ‘P '

o}
for l

than for ——

Figﬁre 3.7




We do not expect Pl to be of a form that will enable
us to always make sharp distinctions between candidates for
A . In other words PA may be highly nonuniform for some A
values and nearly uniform for others. For example, with a
normal error form hm(g) is uniformly distributed on the unit
sphere in Ll(%) (i.e., all d's are equally likely).
Accordingly we expect that for large A the likelihood
function will always be fairly close to 1 — sometimes
larger, sometimes smaller since the Student()) distributions
have contours very similar to the normal distributions

(particularly for A > 30) .

For low A values, the contours are considerably
different than the normal (recall Figure 2.2, XY =1,2).
The likelihood function at small A values can be very large

or very small since hk(d) becomes highly non-uniform.

These qualitative ideas give us guidelines as to the
character of the measures PA for the possible likelihood

functions.

The likelihood function can only be replaced by a set
of statistics when the statistics index the functions. There
is, however, a pair of statistics that offer considerable

insight into character of PA .

An estimate of A can be obtained as the maximizing
value A . We now examine how this maximizing value succeeds
in providing inferences approximating those that would be

available from the correct true X value.
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with low A, , h, (d,) would be great® than hx'@il) -
0s

0
0

Specifically, 50 samples of size 30 were generated
from Student distributions with A =1,2,5,8 and « (the
normal distribution). The parameters p and o were set
at 0 and 1 respectively but these values were not the
concern for this part of the study. For each sample, we
determined the maximizing value A and the apparent precision
of i as indicated by the likelihood function curvature.

The types of likelihood functions depend in a nontrivial way
on the configquration g . Typical functions range from very
sharply discrimating functions (particularly for low A

values) to practically flat curves giving little indication

s




of the apprepriate A value. One indicator is given by an

estimate of Fisher's information function

32

J(A) = -E{—— log L(d | A} | A| ;
3A -

the usual estimate is

~ 52
J = -— log L(d | A)‘ .
3A ~ A=A

and the corresponding estimate of the standard deviation of

A is

§i=\f13.
We are merely estimating the curvature of the log

likelihood at A anticipating that the shape of this curve

will be approximately quadratic.

Typically the likelihood function itself displays far
more information than just A and EX with moderate sample
sizes. The curves can take widely varying shapes that may

give additional clues and directions for the choice of X .

The Student(A) distributions change moderately from

A =5 to XA =10 and then more moderately for X = 10 to

=
Il

@ . Accordingly we mapped the range X =5 +to ¢« into

the range 5 to 10 and let X designate the modified
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parameter and A, designate the original parameter. The
context will make clear the particular choice. The transfor-

mation used frcm old to new is

Notice that selected A values go from

1,2,5,8,* to (1L,2,5,6.875, 10)

~

In Figure 3.9 we have plotted §A versus A for
these five cases; included with each plot is the standard

deviation of the estimate

/Z(X—§]2/49 s

Clearly if the data came from a Student density with
low A, wvalue, the likelihood function has a much better
chance of suggesting a fairly narrow range of A values than

at high X, values.

Approximate 95% intervals could be based on

The actual levels based on this study were



A 1 2 5 6.875 10
50 50 48 43 49
levels 5—0‘ ﬁ E ﬁ '-56

With A = 6.875 and 10 these intervals almost always
completely cover [0, 10] and so for a large number of situa-
tions the likelihood is noninformative if data came from a

distribution that is either normal or close to normal.

This appears to be very dangerous. In such situations
we would likely consult several Student analysis for u and
0 ; perhaps, even ones with low )\ wvalues. Fortunately the
use of a Student analysis with normal data leads to inferences
that are very similar tc those derived from a normal analysis.

This and several other ideas are addressed in the next section.



9.6
10.1
8.5
8.9
16.3
11.2

-0.0741
-0.0165
-0.2009
-0.1548
0.0065
0.1102

10.0003
8.0199
10.3493
8.6350
12.1158
11.4596

0.0103
-0.3549
0.0746
-0.2414
0.4004
0.2794

TABLE 3.1 STUDENT(3) DATA
Y
9.7 8.9 10.5
9.8 9.1 7.6
9.6 11.1 8.7
9.9 8.3 11.2
9.2 11.1 11.9
11.8 16.5 10.4
y = 10.243
SX = 1.6115
&
-0.0626 -0.1548 0.0296
-0.0511 -0.1317 -0.3046
-0.0741 0.0987 -0.1778
-0.0396 -0.,2239 0.1124
-0.1202 0.0987 0.1909
0.1794 0.7209 0.0181
TABLE 3.2 NORMAL DATA
y
8.6594 9.7119 9.0439
10.0567 10.0853 8.9361
9.9531  11.2711  10.4885
9.4240 8.1329 11.0372
9.3683 8.7775 11.1030
10.5267 11.3192 10.0750
Y = 9.9445
sg = 1.0071
d
-0.2369 -0.0429 -0.1661
0.0207 0.0260 -0.1859
0.0016 0.2446 0.1003
-0.0960 -0.3340 0.2015
-0.1062  -0.2152 0.2136
0.1074 0.2535 0.0241

11.7
9.9
10.9
11.1
10.3
9.5

0.1679
-0.0396
0.0757
0.0987
0.0065
-0.0857

10.2524
10.5039
9.7510
9.7933
10.2973
9.1870

0.0568
0.1032
-0.0357
-0.0279
0.0651
-0.1397



D. The Performance of a Student Analysis

In this section, we make a direct comparison between
two analyses, the classical normal analysis based on normal
errors, and the Student(3) analysis based on standardized
Student(3) errors. Both analyses are examined with generated

normal data and generated Student(3) data.

The differences between the analyses are displayed by
the conditional distributions gi(t | d) and gi(s | d)  since
all tests and confidence intervals can be derived from them.
Many data sets were examined with various sample sizes 20 ,
30 , 50 from the Student(3) and the normal distribution.
Similar results were found with each sample gize. The

examples here are for sample size 30 .

For the normal data we took u =10 and o =1 and

for the Student(3) data we took u =10 and ¢ =1 .

Representative samples for each case are shown in

Tables 3.1 and 3.2.

The distributions for the Student(3) sample are

displayed in Figures 3.10 and 3.11l.

The distribution for +t based on the correct
Student(3) model is to the right of the origin and is
concentrated, while the distribution for t based on the
normal model is of course just the ordinary Student(29) dis-
tribution. The Student(3) analysis adjusts depending on the

form of the data. The large positive observation (16.5)
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has contributed to the fact that the sample average is too

large and the standard deviation is inflated.

Inferential statements about | are based on
y - tsyf/r_l = 10.243 - 1.6115 t //30 .

Since the conditional distribution for t with the Student (3)
model is to the right of the origin, it is correcting for
the enlarged sample average. Also, since it is more concentrated
it is correcting for the inflated standard deviation.

The distribution for s based on Student(3) is some-
1
29

v

what diffuse in comparison with the X(29) distribution

obtained with a normal model.

Inferential statements about o are based on
sy/s = 1.6115/s . Once again the Student(3) analysis is

carrecting for the inflated standard deviation.

The use of a normal analysis for the data set would
have led to very misleading inferences. The appropriate
Student (3) analysis appears to correct for the biases that
are introduced into § and sy that naturally occur with

~

Student (3) data.

Now let us consider the normal data set. It is
certainly reasonable to anticipate that the Student analysis

handles Student data properly but what about normal data?

The distributions for t and s  are plotted in
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Figures 3.12 and 3.13. 1In both cases the distributions based
on the normal model and the Student model are very close,
Indeed the estimates and confidence intervals obtained are

very close.

The phenomena in these two examples has been observed

repeatedly in our study.

Of course, if a sample is known to have come from a
particular distributiocn, we should use the analysis appropriate
to that distribution. The computer program that does this is

easy and inexpensive to use,

More generally, if a sample is known to have come
from the Student family, then we can consider the estimation
of X based on the marginal likelihood function, or we can
even contemplate using with moderate confidence a single A

value, say A = 3 .,

1t was mentioned that the Student analysis corrects
for biases introduced by extreme values that occur naturally
with nonnormal data sets. In the next section we consider a
method of measuring how accurately Student analysis corrects

for extreme values.



E. The Influence of Qutlying Observations

We now examine the resistance of the Student location-

scale analysis to the presence of outlying observations.

With the Darwin data, there were two observations to
the left of the bulk of the data. In the generated Student (3)
sample there was one observation off to the right of the

majority of the data.

In an applied context, we should ask whether such out-
lying observations should affect the analysis chosen for it.
From a realistic viewpoint, they might have been the most
important observations, clues for further experimental

investigations.

The viewpoint taken here is that the analysis should
routinely handle such extreme values in a way that is reason-
able relative to the majority of the data. In fact we focus
our concern and examine what affect a deviant observation has

on the location-scale analysis.

For this we generated a random sample of observations
from the normal (10 , 1) distribution and then carried out the
location-scale analysis using various pertubations of one of

the initially central observations.

The initial reference data set is as follows:



10.81 9.72 8.64 9.42 9.60

9.18  10.02 8.11  11.11  11.49
9.66 8.15 8,36 9.02 11.09
9.70  10.24 9.89  10.26 8.68
11.98 8.89 10.69 10.45 11.52

Statistics calculated from this set will carry the

; = R .
superscript R ; thus yR ;r S ,dR ; the observation

We designate an altered sample by y with statistics

Y r SY r @ . We now examine such a data set as one that we

~

might be confronted with in application.

From our data, y , we can make inferences in the

=~

direction of confidence intervals and obtain

u=(§-t2%/5} §—tl%ﬂﬁ)
o : (53[/82 . Sy/sl)

where (ti’ t2) ’ (s1 ,52) are appropriate probability
intervals from the distributions gi and gi which depend on

d except in the normal case.



We now consider how to compare these intervals as the
observation is moved out on the left tail of the sample

distribution.

We make the comparison by rewriting the confidence
intervals in terms of the original inference data set and then
examining the intervals or even the corresponding distributions
for t and s . The rewritten intervals are

TR [?R—Tzs /vn , }}R—Tlsi//ﬁ)

R
7

R
o (s /S, . sz/si)

LS}

from which we obtain

§R - TSR /v¥n =y - tsy/mﬂf

R —
sz,/S = s¥,/s
which gives
s -R -
Y Yy -y 3. 1)
T = = ke -
s sk /vn
y Y
R
s
4
S = 75 (3.2)
S
Y

As the observation is moved out on the left tail, vy

moves out at a rate proportional to 53 and becomes a poor



estimate of the centre of the distribution and correspondingly
the standard deviation sy_ becomes inflated in a somewhat
obvious pattern. If the intervals based on y are to remain

relatively close to those based on the original gR then the
conditional distribution for t will have to shift to the
left and become more concentrated and the conditional for s
will have to become inflated relative to the initial distri-
butions. This phenomena was seen with the Darwin data and
also with the computer generated Student(3) data. The

question here is whether the distributions shift appropriately

to give reasonable resistance to the outlying observation.

We can investigate the proceeding by examining the
percentage points of the conditional distributions or even
the conditional distributions themselves. For this, we
examine the two variables T and S in (3.1) which contain
the appropriate corrections to relate their conditional dis-

tributions to the original reference data set.

The distributions for T and S are now recorded
for several location-scale analyses. Specifically, we record
the normal analysis in Figure 3.14, the Student(3) analysis
in Figure 3.15 and the Student(l) (Cauchy) analysis in Figure

3.16.

Note that under the normal analysis, the inferences
are dramatically altered as the observation shifts to the

left tail. By contrast the Student(3) analysis and Student(l)
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Figure 3.16
Resistance densities

(student (1) analysis)
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analysis are relatively stable. There is of course an initial
effect as the observation moves from the centre of the data
set changing its primary configuration. But once beyond the
centre, the additional effect on the location and scale dis-

tributions remains small.

These results were obtained repeatedly with various

initial samples.

The displays are of course closely analogous to the
influence curves of traditional robust analysis (see Andrews
et al (1971)). 1If we plot the medians of the conditional
distributions against the amount of perturbation then the

resulting influence curves are remarkably stable.

The plots here however contain much more information
than influence curves. Confidence intervals and tests of
significance are available from the plots. Asymmetry of

various effects is also apparent.

Observations were also moved as far as forty standard
deviations from the centre of the distribution with little

effect on the Student analyses (see Figures 3.17 and 3.18).

The discussion of this section and Section D have
ignored the information that would be supplied by the observed
marginal likelihood function. The Student data analyzed in
Section D had a sharply discriminating likelihood functicn
strongly indicating a A range from 2 to 4. In this section

the marginal likelihood function began as essentially flat for
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Figure 3.18
Resistance densities
(student(0.5) analysis)
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the reference data and then developed modes at lower and lower
A values as the observation was moved out. In fact the
marginal likelihoods have modal values according to the

following table:

Deviation 0 -2s ~-4s -6s -8s

™
I

Mode large 6 3 2 2

If the appropriate analyses were chosen adaptively
based on the maximum marginal likelihood estimates we would
obtain the adjusted conditional distributions plotted in
Figure 3.19. Again, remarkable stability is found. The
longer tailed Student distributions can (in a sense) still
accommodate a deviant observation without substantially
affecting the estimates of the two unknowns needed to describe

a fit to the data.
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F. The Dependence on the Deviation Vector

It has been mentioned in several instances that the
conditional distributions depend on the deviation vector in
a nontrivial way. As soon as the joint error distribution
becomes nonspherical, the distributions adjust accordingly
based on the data set through d . The attributes of this
phenomenon have been discussed in earlier sections, but the
direct analytical study of these characteristics appears to
be quite complex. To understand the properties of the

marginal likelihood function appears to be complicated also.

In this section we discuss one atfempt to understand
how a nonnormal analysis is affected by different configura-
tions. The method is based on an attempt to emulate the
actual contours of a joint long tailed error distribution by
a distribution in which the analysis can be handled analyti-

cally.

The contours for a Student error form were displayed
in Figure 2.2. The distinctive characteristics of this
pattern are the lobes extending along each ccordinate axis.
We can try to copy these lobes with normal distributions
having one coordinate rescaled. The scaled normal distributions

were discussed in Section 2G.

Consider the following distribution.



[
)

1 z2 22 T 0

1 2 1

fz (z1 ,22) = exXpy———rexpi—— .
1 2TV T 2T 2

If T is sultably chosen (greater than 1) then the ellipsoidal

contours will approximate the lobe along z, found with

2 dimensional Student contours.

To gain an approximation to the lobe along 2z, we can

place a second rescaled normal on the first.

Cq zf Zg
c, f. (z, ,2z,) +c £, (2, ,2,) = expy———rexpi-—
1 21 1 2 2 22 1 2 o ?I 211 2
2 2 _
c, z, z, c, + c, = 1
+ expy——rexpj———
27 T, 2 21'2 c, 1 Sy > 0

An example is plotted in Figure 3.20.

In n dimensions, we can consider the distribution

where
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fZ (z) = ——— I  expi-—rexpi—— . {3.3)
k 7 (2m) Y1, izk 2 2T
k k
(1
1
. @
_ 1
Ek = T . (3.4)
1
O T

We can compute the conditional distributions and
marginal likelihood analytically for this case. We begin by
displaying the distributions and likelihood for an error dis-
tribution with one coordinate rescaled fZ (g) . This only

k
involves the specialization of the results from Section 2G to

the location-scale model and the matrix I = Ek . We require
= =1 =
(v'z 1V) v'Ehd , d'Rd and W to specialize the expressions
v'z"1d=i1'(d1,...,dk/rk,...,dn)
- o
=_l__ X di+dk/rk = L[Ti_l}dk P
vn izk vYnl'k



1
,...,l] =H

-1 = r_l"'l]dk
w's" v virla = ‘/I_‘—lk—l— g (3.5)
~ ]_+H(T——l]
k
a'x7la =1+ [Ti-l}df{ . (3.6)
~ k

L
S
W= 1+%[%-1”2/[1+%+di][%}z—lH . (3.7)

From Section 2G, we see that if the error form is

fz (z) then the conditional distribution for T given d is
k> %

Studentn_l(v , W) on R! where



=
I

We shall call this density g% (T|da .
- =

The conditional for s given d

We shall call this density gg (s | ad) .
" =

The marginal distribution for d is

|
W

When the error distribution is a sum of rescaled

n

normals 1 c; £y , the conditional distribution for

i=1 i

given d is then

.

can be described as

(3.8)
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c. ho (d)gy (T | d) [{ c,h,. (d)| ,
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i=1 i

the conditional for s given d is

Il 3

S
¢y by gy (s &) / (Ze; by (4))

i=1 i

and the marginal likelihood for (11 o == ,Tn) is proportional
to

C

1 +

Il t~13

i Pry (9

From extensive study of the conditional distributions
derived from the Student models, we have seen several types of
resulting distributions. Depending on the configuration g H
the t densities can be highly concentrated or even diffuse.

They can be substantially shifted from the origin and are

often clearly asymmetric.

The densities gg are all symmetric but the densities
k

based on Zci fZ will typically be asymmetric. For example,
i

let us suppose that ¥y is an outlying observation in the

right tail, then we would find that dk will be large and

positive. If T is greater than 1 , then g% will have
k

its mode to the right of the origin (positive v ) and be

concentrated (W < 1) (see equations (3.5) and (3.7).)



This is precisely the phenomenen to be found with a Student

analysis based on low A values.

With location-scale models, it is often the presence
of one or two outlying observations on one tail that can make
the use of an appropriate Student analysis critical for stable
inferences. In these situations, it has been found that the

use of a single fZ can offer very reasonable approximatiocns
k

where k 1is chosen to correspond to the most deviant observa-

tion, Y (with corresponding d, ). This amounts to the

k
use of a relocated and rescaled Student distribution for t .
Approximations somewhat similar to these and derived from

another point of view have been suggested by Lund (1967).

When the error form is exponential power (Section 2E), he
suggested a relocated and rescaled Student[n(%}— 1] distri-

bution. In his investigation, the mode of the t density
derived from an exponential power analysis is found
numerically. The appropriate approximating density is located
at this modal value. Unfortunately, all of these distribu-

tions are symmetric.

The distributions derived in this section have the 1
and c¢ values unspecified. The choice of these values
would typically be made in some iterative way and would depend

on the type and form of approximation desired.

One reasonable method would be to match chosen contours



n n
based on I f,(z;) with those based | c, f; (z) say

. 1 P = i T N

i=1 i=1 i

along coordinate axes. Another method is discussed in Section

Notice that the conditional distributions derived from

n
} c. £ are sums of densities weighted by the values of

(d) . Each probability hZ (d} depends only on di @
i” kK~

Tt is clear that if one or two di are large then they will

have a dominating effect on the form of the resulting

densities. This give further support for the use of a single

rescaled normal fz (z) 4in certain situations.
K~

We now turn our attentieon to the study of the marginal
likelihood function. In Section C we attempted to understand
some of the sampling properties of the likelihood function
through simulation. The model for possible likelihood functions
is difficult to study since there is no simple statistic

available to index such likelihood functions.

We now study the model for possible likelihood functions

when the error form is fZ (z) . In this case there is a
K~
simple real valued statistic available to index the functions

and its distribution is now derived.

The marginal distribution hZ (d) is displayed in
K -

expression (3.8). Notice that the distribution for d
depends only on the square of its kth coordinate, di



The marginal likelihood for Ty is then

-L(g]Tk) = chy (d) .

x
We now choose the representative curve that enables
direct comparisons with T = 1l corresponding to identically

distributed normal variables
L(d| ) =3 _, hzk(g)

This likelihood function depends only on di and its
associated marginal distribution. There is a one to one

correspondence between di and L(d |Tk) i

If we can find the distribution for di for general
Ty then we will, in effect, have described the model for
possible likelihood functions for this case.

The likelihood function derived from the joint distri-
bution for d is the same as the likelihood function derived

from the marginal distribution for dﬁ " say fﬁ (di)
k

L(d | 1) = Ly (d | Ty
The distribution for d2 can then be written as

k

k
T

Ty w 2 2
£2 (a4 ) = g(d )Ty (4 | 1)

k



for some function ¢ dependent only on di . But

and since Lk(di [ 1) = 1 we have that

k 24 . Eka2 2
ka(dk) = fi(dk)Lk(dk | Tk) . (3.9)

This is called the likelihood modulation technique.

(See Fraser (1968), p. 196 for another example.)

To display the distributiocn f? (di) ; all we require

k

is fk(dﬁ)

1 to complete the formula.

Cramér (1946) derives the density ff(di) (p. 389)

in a different context. It can be described as

We now include its simple derivation. Let 2z denote

a sample from N(0, 1) . Replace =z by new variables x by

means of an orthogonal transformation where

/n z

L]
I

==



then
2 - 1
& (m-n'/(1-3]
l—% 52(5)
which is
X2
2
n
x4+ ) x?
2 i 1
i=3

which is distributed as a

2 2 2 ;
X(i)///(x(i)—kx(n—Q)] variable

and which is beta[%, E%%] .

Notice that

| =

/ 1
- 1-H < dk < l-—n .

The deviation vector of the form

(F1//amI, ..., t/1-%, ..., T1//0/5-T)
n
kth coordinate

corresponds to a data set y with all coordinates equal but

AT



{One can also show that dk

scaled symmetric beta(E:g

has a relocated and re-

n-2

51 3 1 distribution on

Using equation (3.8), we can now display the distri-

bution for

This
the marginal

£f. (z) .
Zk oo

This

distribution

2
dk -
—%
- -3 1f 1
T[E~—J T R e 1]
2) _ 2 k Ty
K I 1 T n-2 n;l
2 2 1 2
—-1(d
Ty k
1+
1+ L{2-1]
k
-2
-1 nz -1
], e a2
n k 5 1
. T 1~ 0 <d, <1-=.
5 2 1 k n
(dk) -3
distribution describes the sampling properties of

likelihood function when the error form is

distribution can be displayed in terms of a beta

also. In fact if u = then the density for
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n- 2 3
I‘[T] (l—a)u (l_a)u 1
1 n-2 1- 2
F[?]T[T] 1l-au 1-au (1 - au)
where
r-&-
_ k
a_ —
1+%H;-ﬂ
k
Tn other words, S=ofIR . pagald WAl o
1-au 2 2
2
d
&)/t
T nl|t 1
k k 1~-=
no_ oy [1 n—ZJ
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1 2 2
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k 2
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1*%{%'1}
k
n
If the error form is ] ¢, f; (2) , then the marginal
i=1 i~

likelihcod function will be

2
eyl s | 15l

Ie~—3

i=1



G. Importance Sampling Monte Carlo

Several forms of monte carlo integration have received
considerable attention in the literature (see, for example,
Hammersley and Handscomb (1964) for an extensive summary]. In
certain situations, they can give results that are more
accurate and more efficiently obtained than the so-called
fixed point numerical guadrature rules. Used properly, they
can lead to substantial reduction in the function evaluations
necessary to evaluate an integral. Unless a substantial
amount of information is available about a given integrand,
most nonadaptive fixed point rules can spend considerable
amounts of computer time evaluating a function at points that
offer little contribution to the resultant approxinate

integral.

Monte carlo rules can be very useful with multi-
dimensional integration. In many respects, high dimensional
integration is a frontier for research for numerical analysts
and statisticians. At this time, I am not aware of any high
dimensional rules that have proven reliability with general
functions. By studying the properties of a given integrand
perhaps by making contour plots of sections or other
theoretical tools, it can be determined where to devote most
of the function evaluations. There are also adaptive rules
which search for modes or ridges of functions and then set up
some appropriate grid for function evaluation based on the

search.



We now briefly describe how importance sampling works.
We describe it with a one dimensional integral. Say we desire

the integral of a statistical function £
f f(x)dx

Say there is some density g that we suspect is very
similar to £ in shape. If its integral is known and we can

generate random samples from it, then we can write

where E denotes expectation with respect to the distribution

with density ¢ .

If we randomly sample from the distribution with

density g say, (Xl’ cee s xm) then

=i

If £

i

will tend to J f{x)dx as m =+ = by the law of large numbers.

m
For any finite m, % z g(xi) will approximate the desired
i=1
integral. The variance of this estimate is

2
J [é(x) - fE(e)dt] g(x)dx/m .
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Clearly, the accuracy of this estimate depends very
strongly on the choice of function g . The function g 1is
often called the support density. We desire that é be as
nearly constant as possible over the region for which g has

large density values.

In assessing candidates for g , it is reasonable to

plot g along with g on the same graph.

In the determination of the conditional distributions,
the major barrier is the calculation of hk(g) which, for
location-scale analysis, involves a double integral. One
dimensional integration can be handled very efficiently with
simple Gaussian gquadrature rules, so in this section we
investigate how this monte carlo method handles the integration

of the second coordinate.

t,s,d
A
(t, s, d) then the conditional distribution for ¢ given 4d

~

It f denotes the joint distribution for

is

" —1 t,s,d
£ (t]a) = h, 7 (d) JS £, T(t,s,d)ds .

Let us suppose that the one dimensional integral over

S 1is computed, but only hk(d)f;(t | d) is available.

Suppose also that a density is available that
approximates f} . We shall use g to denote such approxima-

ting support densities.
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Suppose also that we can sample from this approximating
distribution. If (t1 ¥ e ,tm) denotes a randocm sample from

g then

i
hy () £y(e; | D)

lm
g .
i=1 g(ti)

should be close to the unknown hk(d) .

~

We are still faced however with an appropriate choice

of g . We now make use of the results from the last section.

The distribution made up of a sum of scaled normal
densities appears to have contours similar to the contours of
independent Student(A) variables. The appropriate

t-statistic distribution based on Zci fZ could be similar

i
in shape to f; if the gquantities CormeerCy and
Ty s eve s T, are chosen wisely.

Several data sets have been considered both real and
computer generated. We now include an example that was
considered in D . The data is displayed in Table 3.2. The

most influential observation appears to be = 16.5 .

Yo

Based on the discussion in the last section it seems reasonable
to use a single rescaled normal density for the analysis. We

accordingly consider fz (z) and contemplate the choice of

28

various = T depending on the value of A that is

Tog

desired. For illustration we consider X = 2,3 ,6 and <« .

The choice of T 4in each case could then be based on the
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Figure 3.21 The ratio hx(d)ff./gr along with g:

{a) A=w , 1=4 (b) x=2, 1=6
(c) A=3 , T=4 (d) A=6, T=4

(scaling with respect to the ratio)



straightness of the ratio f§ |g$ relative to the distribution
t
9 -

Figure 3.21 gives an idea of the form that such curves
can take. Based on a study of such curves, the following T

values were selected.

For the monte carlo, we first considered m = 100 .

Here are the results.

Estimates of hx(d)

A Monte Carlo Quadrature
2 31.6 32.6
3 51:7 53.5
6 38.5 39.1
o 1.0 1.0

The quadrature estimates are based on a very precise rule that
required 241 function evaluations. They are exact in the
sense that the decimal was rounded correctly. The monte carlo
estimates are accurate enough for likelihood assessment of A
values and the normalization of the joint distribution for z

and s given d



The accuracy with monte carlo rules increases slowly
as m 1is increased (as 1//m) but these results are very
encouraging. It has been found that the choice of T is not
extremely critical for this form of accuracy (i.e., =
values between 3 and 8 all lead to fairly close results

for the low X values).

Real gains from the use of monte carlo integration are
anticipated for the higher dimensional integration needed

with regression analysis. This is discussed in Section 4D.



H. The Normality Assumption

(i) Cautions and Comments

In real experimental situations, there is often strong
support for the assumption of normality of the errors. 1In
such situations, it might be argued that the only legitimate
significance levels and confidence intervals are those

derived from the traditional normal analysis.

The simulation study on the marginal likelihood
function in Section 3C demonstrated that in sampling from
normal data there is often only weak support for the consulta-
tion of only a normal analysis based on the observed marginal
likelihood functions from a Student analysis. Typically,
such curves are rather flat, suggesting an often wide range
of )X values that usually included the normal. In Section 3D,
it was observed that, with normal data, the inferences
derived from Student analyses are quite close to the correct

normal analysis.

It appears to be reasonable to question cur assumptions
whenever possible. At a minimum, the examination of other

analyses may lead to additional insight into a problem.

The marginal likelihood function appears to be a quite
sensitive tool for the detection of nonnormality. Based on
such a detection, the user could at least consider the results

from a nonnormal analysis such as a Student analysis. In such



situations, the results of such an analysis may suggest a
reappraisal of the assumptions being made and perhaps provide

an impetus for a repetition of the experiment.

(ii) Another Comment

Another way to display the fact that the assumption
of normality may be appropriate is to display such information
in the form of a prior distribution for the parameter A . If
p()) denotes such a prior density, then a posterior density

for X given d would be proportional to
p(ML(d |2 .

Such priors were used by Box and Tiao (1973) in their
analysis of the Darwin data with the exponential power distri-

butions. They considered these distributions in the form

2

c())exp —%ﬂz|1+h

where -1 < A <1 .

They standardized these distributions with respect to
mean and standard deviation (see Section 2B). They did not
inciude the distributions for A > 1 . Although they do allow
for longer tails, these members are certainly somewhat

unnatural since they develop a sharp peak at the origin. By



consulting Figure 3.2, one can see that the marginal likeli-
hood function displayed in their units would peak at the

boundary of their parameter space (A = 1) .

In my opinion, this should have led to concern that the
chosen error family is not adequately describing the structure

of the wvariation in this system.

Recall that the use of the Student family for variation
led to a marginal likelihood function with mode near A = 2.5.
The Student family offers a broader range of descriptions for
the variation than the exponential power family when longer

tails are suspected.

With their model, the message supplied by the marginal
likelihood function is a deficiency in the model. Box and
Tiao offer a range of priors to indicate to the degree of
support for the normality assumption. They considered a
family of relocated and rescaled symmetric beta densities.

r(2a) a-1

— _2 —
p(;\)——'—"Ta_T(l )\) l<)\£l,azl.

r?(a)2

The corresponding marginal posterior densities continue
to suggest A values greater than zero (normality) but become
increasingly dominated by the prior as a gets large. Except
for a =1, all the priors are zerc at A = 1 . They
implicitly remove the longer tailed distributions from

consideration.



I. Supplement: An Empirical Study

Many of the ideas discussed in this chapter were of
a qualitative nature illustrating aspects of the
robustness and resistance of non-normal analyses. In
sections F and G, attempts at a mathematical description
of such properties were discussed.

It has been mentioned in several places that the
primary tools for inferences concerning the unknown
parameters are the displays and plots of the distributions
and likelihood functions. Attempts to reduce such
displays to a collection of statistics will result in a
loss of information that may be illuminating at a terminal
stage of inference. 1In sectiom C, we considered a
simulation study of the marginal likelihood function by
studying the maximum marginal likelihocod estimate and
the log likelihood curvature. The purpose of the study
was to supply insight into the highly complex model for
possible likelihood functions.

In this section we consider a study of the Student (3)
analysis compared with the classical normal analysis. An
example from this study was considered in detail in
section D, Two important characteristics derived from
the conditional distributions are the median estimates
and the confidence intervals. To assess these
characteristics a large collection of data sets were

generated. 100 sets of 25 numbers were generated from a



tudent (3) distribution with =0 and ¢ = 10 and
100 sets of 25 numbers were generated from a normal
distribution with pu =0 and o = 10. All 200 sets
were analyzed with a Student (3) analysis and a normal
analysis.

The median estimates derived from the Student
analysis were denoted ﬁ3 and 83 and from the normal
analysis, ﬁw and Sm. See section A for their
formulae.

The widths of the 95% confidence intervals provided
important clues to the understanding of the analyses,
they are denoted £3(u), ﬁm(u), £3(0) and Ew(o)
where for example:

A

23(u) = HRp T Mg

when (ﬁL, ﬂR) is the 95% confidence interval for |
derived from a Student (3) analysis.

The observed mean squared error gives an idea of
the accuracy of the estimate.

T(n - 0)2/100

Y(6 - 10)2/100

The results are as follows



Student (3) data Normal data
u a u g
Student (3) 4,492 3.925 4,554 2.947
analysis
Normal
analysis 6.993 31.946 3.350 2.354

The average confidence intervals widths were as

follows
Student (3) data Normal data
g U a
Student (3) 8.605 8.670 8.139 7.744
analysis
Normal
analysis 10.812 7.981 8.239 6.082

The observed confidence levels were

Student (3) data Normal data

u o] U o]

Student (3) 96 98 92 98
analysis 00 00 00 100
Normal 97 60 96 96
analysis 100 10 100 100

Several points deserve comment. Notice that with the
Student data sets, the Student analyses offer tighter
intervals for 1y than the normal analyses and retain the
appropriate confidence level. Notice also that a normal

analysis leads to very unreliable intervals for o.



With the normal data sets, there is no appreciable
difference between the two analyses. Table 3.3 displays
the results from the Student (3) data sets and table
3.4 displays the results from the normal data sets.

There is one other characteristic of this study
that deserves comment here. From the 100 student data
sets, 15 of them contained one or more cobservations that
were more than five standard deviations (5¢) from p.
They were sample numbers 1, 5, 15, 16, 19, 35, 42, 49,
75, 80, 85, 87, 91, 99 and 100. In all but 1 case
(¥ 35), ﬁ3 is far closer to zero than ﬂw. All
Student (3) intervals for u are tighter than the normal
intervals with these sets and yet they all cover wu. 13
of the 15 normal intervals for o fail to cover o while
all 15 Student intervals cover o. These comments offer
further evidence of the resistance of Student analyses to
observations that can dramatically affect inferences

derived from classical normal analysis.



a [ ~ ~ ~ A ~ ~
Semple Mg I, 23(u) £ () Oy o, 13(0) % (o)
Number

-04656 =-3.354 112412 10.189
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=Ce300 =3,184 3
—Caa01 =0, 832
Ge344 -24818
1.811 24659
1429 _Q0s519
51575 Siken
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-0s916
1820
1,347
24120
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1.646
De394
0,971 AZ.109
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Table 3.3 Results from the analysis with
student (3) data.
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30 3.a82 24,279
L
~2e439 ~1.638
~1.589 ~14503
0e.941 1.687
- = -
=1.470 —1.128
2,764 3.182
1,427 24291
44132 3,313
4O T1.527 0e595
~Ce5626 2,099
-1s464 ~1e117
= a 0330
-Z+287 -2.332
£e509 14277
=0e565 0eQal
S
0e553 1.460
107432 1.072
50 =-z.721 ~1.473
=3,042 =2a162
~2.043 -2.+800
-0.945 -1.472
le272 1387
£.638 43211
~4.0568 -2.8569
Ce3R7 0e159
—0a612 0a548

60 T3.557 24202
c.380 04137
0.337 0.621

-14557 n.242
Co560 1,221
~14699 —le4la
C.593 -1.405
__Celdsa _De547
=1.723 <0.959
~1753 -1.823
TO 7.321 54976
24863
—0.926 -0.216
2e551 24260
1.508 1<841
-1.452 “0.142
Q.451 04234
~24€0S -34020
—1la57€ 30 ,

80 =c.17a De007 5e823 7,771 )
1.135 -0.353 9,218 10,878
Qala2 =-0.48] 10,193 11417€

0,530 0,451 114479

<0050 0. 855 B, E50 11.149
-2.838 -2.918 8s725 10:67a
0.088 ~0.029 7.124 7.277
2185 . _0.935 . _8s031 S.a7p
2,430 24200 Oe G55 7e512
“Ce692 -0.145 3.405 11,118
G0 1.962 1721 34879 1C2374
-Ca881 =0y947 10089 Ca7a9
Cs408 1e773 10e260 '11.797
~04492 -1.886 7587 €.70€
06911 00995 6eA19 7.7a8
=0.5 ~1a119 be620 _7a392
2a122 —0s022 9y 653 10.069
1965 1+916 7:70% 10e221
=1.,980 -22918 50520 70962
~—Oa k60 =d.003 Be823 9a974
1250 1.387 6eaQla 6el45

Table 3.4 Results from the analysis of
normal data.



CHAPTER 4

ANALYSIS OF THE REGRESSION MODEL

A. An Example

The family of Student distributions provided a very
flexible range of tail length for the analysis of the location-
scale model. We anticipated that many of the favourable
pProperties discussed in Chapter 3 would carry over to more

complex regression models.

With location-scale data, a deviant observation or
observations can often be transparent but with even simple
regression problems, detection of such observations is a

difficult problem.

It is anticipated that a Student analysis of regression
will tolerate such observations in a way similar to location-

scale.

We now consider

Y
y = XB + oz

Hl}\(zi)Hdzi

where A indexes the standardized Student family.

4-1
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Consider the data set displayed in Figure 4.1. The

context suggests the model

"
]

Byl + Byx ¥ oz

all//25 + agx//2x2 + oz

The latter represents the more canonical form specialized

from

so that

b(y) = T_la(y) where aly) = V'y .

Clearly s2(y) and d(y) do not depend on the basis

for L(X) .

The assessment of o and then f is based on the

~ ~

observed value of

~Z

-~

t = é(%)/sz = yn-2 ?(%)/S(E)

together with the conditional distribution given d as

computed for a selection of A wvalues. For all the distribu-

tions except the normal, computer calculations are used.



Discussion of these calculations is made in Section 4D.

Some preliminary calculations yield

a(y) = (101.746 , 32.278)"
1]
b(y) = (20.3492 , 0.8952)
s(y) = 8.6625
= 1.
5y 80626
d = (-0.1965 0.6627 =-0.1713 -0.2625 =-0.0406
-0.1411 0.0221 0.0215 -0.0186 0.0974
0.0649 0.0495 0.1111 0.0433  -0.0583

0.0228 -0.1061 -0.0048 -0.2710 0.0207

0.1867 -0.4329 0.0769 0.1397 0.1844})

The largest positive deviation is 0.6627 (corres-

ponding to ¥ = 1l6.2425 and X, 5 = -11.0) and the largest
T
negative deviation is =0.4329 (corresponding to
y = 24.6564 and x = 9,0) . These observations seem
22 2,22

to be the most influential in determining distributions for

a(z) .

We now examine the data using a Student analysis. As
with the location scale analysis of Chapter 3, we begin by
consulting the likelihood function for A , In particular we

examine



L(d|A) = A, _,hy(d) =4, h(d) .

23 he

Selected values of the likelihood function are

L(d | A) 138 302 166 82 45 27 10 1

This rather discriminating likelihood suggests A
values between 1 and 6 . For comparison, suppose we have

included the traditional normal analysis corresponding to

Contour plots for the distribution of t = a(z)/sZ

are in Figure 4.2 for A =1,3,6 and = .

Confidence regions for « or B are based on these

distributions. For * = o , the distribution of t 1is the

bivariate Student{23) distribution with density

25 2 2
F(—z“) 5 t1+t2
)

23 T(%2

23

or using the notation developed for (2.15)

t1 0 23 0 5
~ Student23 # on IR~ .,
t2 0 0 23
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As X tends to 1 , the distribution shifts and
becomes more concentrated. Note under normal analysis, the

distribution is independent of d and does not depend on V.

However, under non-normal analysis, the distribution
of t dramatically changes in shape, location and concentra-

tion, depending on the value of d and V .

To assess 81 and 82 individually, we examine the
component t statistics
& =alzl/s, t, = aylz)/s,
together with their distributions; the distributions are
plotted in Figures 4.3 and 4.4 for X =1,3,6 and = .

Under normal analysis, the distributions for both t1 and t2

are the ordinary Student(23) .

Note that the t1 densities are more concentrated for
A=1,3 and 6 and do not shift substantially; also note
that the t, densities are more concentrated and do shift
substantially to the left.

Confidence interwvals for 81 and BQ have the form

B, ® [bl(g) ~ By s¥/5 Sboy) -t s¥/5)
B, (b, (y) - tyy sg/»/1300 s boly) -t Sy v1300)
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where (tiL 'tiU) is a central interval for t1 and
(tQL’ tQU) is a central interval for t2 . For example, 95%
confidence intervals for 62 are

A Confidence Interval

1 (0.92 , 1.04)

3 (0.91 , 1.04)

6 (0.87 , 1.03)

o0 (0.79 , 0.99)

Note that we have included the normal theory least
squares line on the data plot. The line based on the

Student(2) analysis has the fcllowing values:

slope b2(y) - median(tQ)sy/fl300 = 0.9853

intercept = bi(y) - median(tl)sy/S = 20.45 .

Notice that the Student(2) line is steeper than the
least squares line and is resisting the effect of Y, and
Yoo »

The Student()) analysis provides a more robust and
resistant fitting procedure than the usual least squares pro-

cedure.

We find that with normal data the analyses are usually

similar for various X , and with non-normal data, the



Student analyses are usually quite different. The Student
analyses with smaller X values seem to have a very broad
based reliability in producing the approximately correct
analysis whatever the true value of A ; recall the

discussion in Section 2D.

The data set was generated using B1 = 20 , B2 =1,

g =1.1966 and A = 3 .

The likelihood functions and distributions were
obtained by three dimensional integration procedures on the
computer. Comments on this and other procedures are made in

Section D.



B. Resistance

In the last section, we saw how a Student analysis
led to inferences which were resistant to the two somewhat
extreme cbservations. In particular, the Student(2) line was
steeper than the least squares line and was resisting the
effect that Yo and Yoo had on the normal analysis line.
The resulting confidence intervals were tighter with the
Student analyses than with the normal analyses; correcting
for an overinflated residual sum of squares was alsoc affected

by those two observations.

We now determine the adjusted conditional distributions
similar to those presented in Section 3E. It is these dis-
tributions that provide a direct assessment of the resistance
of Student analysis to deviant observations. Let gR denote

the reference data set. Its summary statistics would be

We then contemplate moving one or more observations in

yR in some systematic way to obtain y ; with statistics

aly) = v'y s{y) and 4 .

The interpretation is similar to location-scale. We
imagine being faced with the analysis of y and wonder

whether the inferences derived are close to those that would



be obtained if yR were available,

Inference concerning o is based on

E = é(g)/sz N

Confidence regions for o would be derived from

based on central probability regions of the conditional dis-

tribution of +t .

To make direct comparisons, we can reexpress these

regions in terms of the original reference data set

We then inquire as to the stability of the distribution

for T where

[4}]
"~

[1}]
e

The variable T contains the appropriate corrections

to relate its conditional distribution to the reference data

set.

For inference concerning ¢ , we can consult the



adjusted conditional distribution for

Once again, if these distributions remain close, then
our inference concerning o is resistant to outlying observa-

tions.

We can note that with a normal analysis the distribu-

tion for T would be

Student (v,W) on R
n-r -

where
R, R R
v =[a"{y)-aly)] /s
- R - b4
2
R
W= (s /s I.
y’ %y
These distributions will shift and become inflated as
an observation is moved from the centre of yR . The degree
of shifting will depend on how the projection al(y) = v'y is

affected by the changing observation.

The distributicon for S will be a rescaled chi

variable

R
(sy//Sy)Xn_r .



These distributions will become progressively

concentrated as an observation is moved out.

We saw in the last section, that a Student analysis
appears to correct in a manner that would lead to stable

adjusted conditional distributions for T and S .



C. The Dependence on the Deviation Vector: Distributions

We saw in Sections 3F and 3H how scaled normal error
forms can be used in the study of the effect of the deviation
vector on the distributions with a location-scale model. In
Section 2G, the distributions for T and s were displayed

for the regression model with general symmetric matrix I .

We now specialize these results to the case where

It is convenient to display the matrix V as a column
of rows (this is a bit nonstandard, but the resulting formulae

can be displayed fairly compactly)

With the specialization of I to Zk , it will be
seen that the distributions depend on di r Yy and Ty

Several matrix identities are used to display the expressions.

only.

An excellent source for these and other identities is

Srivastava and Khatri (1978) (Chapter 1).



oL i__ 2
wita - 1o [Aoaal
1 2
[?‘1]dk
a'rRd =1 i
[l+ [L—l]v'v ]
Tk < ~K
i 1
:—"l]
T e A [Lk %
(vzkv) VL d = ] . Vi
~ 1+[—-1]vv &
Tk ~k~k
1o—1 _ _];__ '
Lk " Rl S [Tk v
— 1l 1
=1+ [Tk l]YkYk Y

It is of interest to note that these expressions reduce

to the expressions derived in Section 3F when

vV =1//n so that v, = 1/vn .

When the error form is fE (2z) , the conditional dis-
Kk ~

tribution for T given d is Student  (v,W) on ®R"  where



1
i—l_]dk
v o= - v
Y 1 ' Yk
1*’[?;"1]YkYk
[i-leQ
[ [ v .
W = - - 1ljv, v 1+ H
Ty Ykik ( 1 :
1+ L—-— l]v'v
L Ty “kik

call it g% (T |4)
L EAE

The conditional distribution for s given d can be

described as

call it g; (s|d) .
B g

Once again, we note that the familiar statistics would

be

o
Il
=
1
=
=

s, = s/vn-r .

~ ~

The distributions for tZ and s, are just rescaled

~ ~

versions of the above displayed distributions.

When the error form is Zcifz (z) , the distribution
i~



for T given d will be

I 3

L
ey (9% (T] @)
1 1l

i=1

Il &~

1 cihzi‘é’

i
and the distribution for s given d will be

S
eghy (@ (s | Q
1 1

Zcihz.(d)
i

where hZ (d) is the marginal probability for d when the

k
error form is fZ (z)
K~
-5
-1 il _ '
Tk [l*'[?‘ 1]Yk¥k]
h (d) = 1 ., k
Zk ~ An—r n-r
1 2 2
" 1)
k

1+

1 ]
l'+[?;"'l]YkYk]

Notice that the conditional densities are sums of densities

weighted by the probabilities hz (d) . Large values of di
i~

will lead to values of hZ (d) that will tend to dominate the

k
form of the conditional densities. In certain situations we

may find the use of a single fE leads to densities that
k

closely approximate the densities derived from HfA



In Figure 4.2 from Section A, we saw how the use of

a Student analysis leads to conditional distributions for t

that are nonellipsoidal and shifted from crigin., The distri-
butions gg shift along the vector v, and develop ellipsoidal

shapes as 1 is varied. The distributions derived from

k

EcifZ will have more complicated contours and will shift in
i

more general ways.

We now study the model for possible likelihood

functions when the error form is fz (z) .
K~

The marginal likelihood for is then

Tx

L{d |Tk) = ch, (d) .

by

We now choose the representative curve that allows

for direct comparisons with Ty = E

Ldirn) =24 _ h (d .
- o~

The likelihood function depends only on di and its

associated marginal distribution. If we can find the distribu-

tion for di for general T, , then we will have described

k

the model for possible likelihood functions.

Let f£5 (a7

Tk
Lk(di |Tk) denote the likelihood function as computed £from
2
k

) denote the distribution for di and let

d. . Then



k 2. _
ka(dk) f (d )Lk(dk] T) . (4.1)
To display the distribution fﬁ , all we redquire
k
is f? to complete the formula,
We now show that when Ty = 1
2
d
K ~ beta[l n—r—lJ %
3 -l 27 2
kxk
Let =z denote a sample from N(0, 1) . Replace z by new
variables x by means of an orthogonal transformation where
X, = a, (z)
X, = ar(z)
T (z ¥ §(§) v 1-v v, (verified in supplement
to this section)
Then
2
dk _ (zk—v a(z) /(l—vkk
1=-vvy s* (2)

which 1is



X2
r+i
n
xﬁ+1 + ) %2
i=r+2

which is distributed as a

2 2 2 v
X(l)//(x(l).+x(n—r—1)) variable

and which is

Notice that

S 1-v'v, <d s/ 1-v.v, .

~k~k k ~k-~-k

One can also show that d has a relocated and

k
[n—;—l . n—g—l] distribution on

rescaled symmetric beta

[—/l—y];yk ’ /l—y]'{yk] .

Using equation (4.1), we can now display the distribu-

2

tion for dk



2

n-r -4 1 ' %

w3 r[ 2 } K [1+ {T_-lJYkYkJ
= k
£ (d)) .
T k L n-r-1 n-r
k r(z) -1 =
2 2 1 5 2
—=-1]d
[Tk J k
1+
1 ]
1+ P——— l]v v
n-r-1 _ 1
1-viv,) * aZ ’
B -ww) 1 k
2 -
dg)/2 1- 'v
(dy YeVk
2 1
0 =< dk <1 - YkYk'

This distribution describes the sampling properties
of the marginal likelihood function when the error form is

f. (z) .
Zk z

This distribution can be displayed in terms of a beta

distribution also. 1In fact,

)
1 1
—— dk
T 1+ L —lJv' 1-v.v
k Ty ~k-k ~k-k . 5 mepsl
~ beta|z, .
1 2 2 2
—=1]4d
T k
k
1l - T .
L+ [}‘]:“ 1]Yk1’k

n
When the error form is ) c;£, (z) the marginal
i=1 i~



likelihood function will be

Supplement

We do have one detail to verify. We need to check

that
var (e, ~viatal) =1 - uu,
Here is one way to verify this. Let
== )'
5/k = (z1 peoe s By g r Bygg r e r By
and let
v _ ' ' ' 1)'
M= Wy e g Vg v Ty v om0 ¥y
and let
anfznd =VaZy -
Then
alz) = a,(z,) + vz,
so that

2, = vialz) = (L-vivpz -va,(z,) .



Now note that zk and %/k

= V'V - Vv v. =1 - v, V. '

1
VoY sk Yk Vi

var(a  (z,)) = I

and therefore

var (2 - v (2)]

Iy
s
1
<
<

as required.

are independent and since

- Vv,V

~k-k



D. Importance Sampling Monte Carlo

Monte carlo integration appears to be the most
promising device available for the integration of multi-
dimensional statistical functions. We now use the distribu-
tions derived in the last section as support densities for
importance sampling monte carlc. We suspect that these
densities will be quite similar to the actual densities for
t and s desired for a Student analysis. We can be guided

to the choice of the 's based on knowledge gained for

Tk
the work done with the location-scale model.

In Section 3G, quadrature rules were used to integrate
ocut the coordinate for s . Monte carlo work in all r+1
variables appears to have problems directly traceable to the
s coordinate and empirical work suggests that it is wise to
continue integrating out s using a simple quadrature rule

towards the construction of the distribution for t .

For inference concerning a or B , we desire
L
il a
but unfortunately all that is directly available is

L
hy @

where hk(d) is unknown.



Let g denote the distribution for t given d when

n
the error form is } ¢;f. (2} . If we sample
i=1 i
(Pl, & e Em) from g then
L
Ly hy (@ (ks | @)
m Lk
=1 gty |9

should be close to hA(d) with appropriate cheoice of g .

We may however be interested in the assessment of

components cf o . If we are interested in a, where
a = (ml ,aQ)' then an appropriate distribution for inference
would be the conditional for t2 given d where
' ri r2 - r
t=(t1,t2) on IR x R =R .

We have that

£ L
£ I = Jt fylty oty [ddde, .
1

Let g denote a support density for this integration. Then

£y fI)-\l(tl rEy | a)
s le = [ AELIE S g |y ey,
£, 9t [ £, Q)
If t11 5 Ea% ,tlm denotes a sample of size m from g , then

L
1 If Bty b | O
m o

S RTN P




should be close to f

Based on our earlier discussion, an appropriate

support density would be the conditional density for t1
o -

given t, and d derived from the error from ¥ CifZ (z) .
- - i=1 i~

The conditional distribution for T1 given T2 and

d derived from a N(0, Z) error form was displayed in

expression (2.17) in Section 2G. It is again just a relocated
x
and relocated Student density on IR 1 . To obtain a value

for the density for t, requires an r1~dimensional monte

carlo. This is assuming that fi(t | d) is available and

we should recall that its norming constant regquired an

r—dimensional monte carlo.

When the error form is fE (z} , +the conditional for

k
t1 given t2 and d would be computed as the specialization
of I to I, . Denote it g% (t, | t,,d) . Similarly the
k Ek ~1 ' <2 ~
marginal for t (given d) is obtained from expression

~2
(2.17) by specializing I to I, . Denote it g? (t2| a)
o~ "
We now display the distribution for t1 given t2

n
and d when the error form is ) «c.f; (z) . It would be
< i1 ARk

n
m C
izl eigzl(Ezl Doy (t 1L, D
n
; 9y (£ [ )
i=1 i

where



This distribution is a weighted sum of the conditional

densities derived from fE error forms. The weights are
k

based on the marginal densities for t2 when the error forms

All of these expressions can be fully displayed
analytically. The implementation of these support densities
for monte carlo and other comments concerning accuracy and

efficiency are made in the next section.



E. Computing Time and Accuracy

Many of the ideas and methods discussed in the last
two sections of this chapter and later sections of Chapter 3
have been implemented in the form of a computer program to
handle nonnormal regression analysis. The program is set up
to integrate using both quadrature and monte carlo to offer
confidence intervals and other percentage points, to plot
contours of sections of joint distributions and also to

examine prospective support densities.

Several examples involving both real and generated data
have been examined involving simple polynomial models and small
factorial experiments. The results to date are very

encouraging but there is still much work to be done.

We now give a brief illustration that gives a flavour
of the methods that have been discussed and the direction for
future work. The simple regression problem in Section A will

suffice for this purpose.

' The marginal likelihood and conditional distributions
were computed in Section A using a three dimensional numerical
quadrature technique. Over 6500 evaluations of the joint
density for (E, @) were made in determining the desired
quantities. The computer time needed to perform integration
higher than three dimensional becomes unrealistic at the

present time if these same techniques are used.

The type of accuracy required will of course depend



on the application. For marginal likelihood assessment of A,
we require a reasonable approximation to hk(é) . From
earlier comments in this and the last chapter, the likelihood
should be determined with an accuracy fine enough to indicate

a plausible range of ) values or perhaps just fine enough to

give an appropriate indication of nonnormality.

Next, one might wish to consult the joint distribution
for (g, s) or (E . 8) or t given g . Practically, this
will likely involve the plotting of sections of such densities
using contour plotting techniques. Such plots could be used
to gain information as to the form of confidence regions. It
is the shape of the contours that would be of primary interest

and in many situations only a course approximation to hA(d)

would be needed.

Quite often, interest is likely to centre on component
parameters. In determining the component distributions, (for
say, t1 or t2 given 4d) one useful direction involves

the use of fairly coarse monte carlo to evaluate the density

at a reasonable selection of points.

The resulting approximate density could then be
improved with the use of a smoothing algorithm. A one
dimensional quadrature of the resulting smoothed function will
give an idea of the accuracy of such a process. The most
important characteristic of such densities is the degree of

shifting relative to normal analysis. Detection of such



shifting at a preliminary stage of analysis might suggest
recalculation in a more precise manner. This detection would

be displaying the importance of the use of a Student analysis.

Methods for choosing an appropriate support density
are still under development. The choice of T values could
be based on a number of criteria. Studies with the location-
scale model in Section 3G offer some direction. It then seems

reasonable to compute hZ (d) for i=1,...,n . Recall
i~

that the conditional distributions for t and s are
weighted by these quantities. By consulting formula (4.1),

each value of hZ (d) is heavily influenced by
k -

(52 / [ -] -

It seems to be efficient to use a support density made
up of a sum of rescaled normals that involves only the dominating
coordinates. With the example in Section A, the most
influential coordinate is Y, - Consider now, the use of a
single rescaled normal error form as support density
[fZ (E)J . Although several monte carlo sample sizes were
coniidered, we illustrate here with a coarse one (m = 100)
Attention was centred on the A wvalues 6 , 3 and 2 . With

T, = 4 , we obtained



Estimates of hA(d)

Monte Carlo Quadrature
A (m = 100) (m > 6500)
2 348 302
3 143 166
6 24 27

These numbers are included only to give the indication
that there are obvious gains in efficiency even with this

rather coarse support density.

Measures of the variability of such estimates are
available with monte carlo. Once again, the most reasonable
choice here is not clear; the sample range would be the most
conservative and the standard error is also attractive. Tt

does not seem appropriate to include these values here.

It seems to me that most of these ideas can and will
be tightened up with future work. The results to date indicate
that this method will eventually lead to substantial gains in
the analysis of nonnormal data with even highly complex

regression models.



CHAPTER 5

ROBUSTNESS AND RESISTANCE: A GENERAL FORMULATION

A. Motivation

In Sections 3D and 4A we saw how the use of a Student
analysis appropriately handled nonnormal data by tolerating
extreme observations in the tails that are not characteristic
of normal data. At the same time, it was observed that a
Student analysis also handles normal data in a manner very

gsimilar to a normal analysis.

In Sections 3E and 4B, adjusted statistics T and S

were constructed that gave an accurate measure of how well

different analyses handle such extreme observations.

In each instance, we placed ourselves in the situation
of having to deal with a data set ¥ that contains observa-
tion(s) that could have a substantial effect on classical
normal analysis. Comparisons were made relative to a
reference data set XR that represented the data set for
which either form of analysis would lead to appropriate
inferences. The data sets labeled y were deliberately

flawed by moving an observation away from the centre of

data.

We now present these ideas in the general setting of a

general variation-based model.

5-1



B. Resistance

Consider the general setting of a structural model

Y
Y = 082 B e G

fA(Z)dZ Ae AL

The concern now is that this model may not be pre-
cisely appropriate for possibly several reasons. The distri-
bution form may not be adegquately displaying the error system
from which Y was obtained or Y may be made up of certain
members that simply do not belong. Particularly with complex
models such as regression, it may be an nontrivial problem to
detect the members mentioned above. 1In any case, the data
set Y 1is viewed as being flawed in that the formulated
model is not appropriate. Interest now is with whether an
analysis will tolerate such flaws and offer reasonably correct
inferences.

By correct, we mean to think of having some standard
reference data set, say ¥R . This data set could be viewed
as the data that we should have obtained (for the model as
presented to be correct), but instead Y was obtained (for

reasons that are usually not of direct statistical concern).

Following the standard notation summarized in Chapter 1

we, of course, have
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Y = [YID
[Y] = 8(z] g, ([2] : D)
D(Z) = D h, (D) > L(D | A) .

The central gquestion now is 'Does 9, adjust itself
accordingly to account for the flaw that is possibly still

reflected in [Y]?2°'

The point is that the analysis should have been based
on [YR] and inference concernirg € through [YR] . As we
have seen in Sections 3D and 4B, it can be very illuminating

to study the effect of the flaws in Y relative to [YR] .

We ask what variable w satisfies

ix®) = eu
when in fact

[¥] = e[z] .

-1, R

Multiplying on the right by [Y] " {Y ] we obtain

1R

1,,R ¥y

Y10yl " {¥™] = e[zlryl”

or

1R

") = erz1rv17t ¥Ry



so that

1R

w= [2][¥Y] (Y] .

The distribution that displays the effect of the flaws

relative to the correct [YR] is

-1

") eIl (Yt vl rw) .

gk(w[YR]_

Notice that if Y is in fact Y% then we obtain the
conditional distribution for [Z] . Otherwise, this distribu-
tion can be used to directly construct observed confidence
intervals or tests of significance computed Ffrom yR .

If we contemplate a study to investigate resistance
with a particular analysis, we might begin with YR and
gradually add perturbations of interest. It is closeness of

these adjusted conditional distributions that measure the

ability of analysis and resist the effect of the perturbations.

In this general setting we might begin with some
reference data set yR and alter one or more of coordinates
of YR in some systematic way and assess the adjusted dis-

tributions.



C. An Illustration

It is of interest to specialize the general formulae

displayed in Section B to the location-scale case. We have

y=1[u,o0lz
where [u,0clz = ul + oz (on S)
la, ye,1la,,c,]1 = [a, +c,a, , ¢, 0,] (on G) .

Accordingly we have

[y ,s(y)] = [1,0llz, s(2)]
and

d=1[z,s(2)1 "z .

Now yR denctes the reference data set, then

and



o R
_ y - s (y)
[z , s(z)] ’ =
- s (y) s (y)
[_ -3 s®(y) }
= [z + s(z) , “— s(2z)
s{y) - s (y} -
so that we have
- m _ ¥R-3 sR(y)
[y ,s (y)] = [u,0cljz + s(z) . — s(z)
N s(y) N s (y) -

and displaying the components, we have

_R -
_R _ -_— —
=y + 0z + %) s(z)
R
s (y)
sR(_g) =g — s (z)
s (y) -

Stability with respect to inference concerning u

would be based on

-R = R
_ Y -y s (y)
T = |z + s{(z) // — s(z2)
s (y) - s (y) -




s = =R -
1 ¥ z y -y
. +

s%//ﬁ SS//H

Yn/n-1\| s

I

The expression in parentheses is expression (3.1).

Similarly, stability with respect to inference concern-

ing ¢ would be based on

s (y)
8§ = = s(z)

s (y) N
R
s
Z

= n-1 -—s—‘ SZ .

¥ ~

The expression in parentheses is expression (3.2).



D. Robustness

We noted earlier that the central guestion is the

degree to which g5 adjusts to correct for the flaw in [Y] .

We are of course free tec choose any transformation
variable [ ] we wish since our inferences concerning ©

and A are not affected by such a choice.

It is of interest to note that, depending on the form
of the flaw in Y , [Y] may not reflect it. 1In other
words, although Y may become considerably different from

YR , [¥Y] may be very similar to [YR]

Many robustness studies are concerned with finding a
variable [ ] so that [Y] is only moderately affected by

bad coordinates in Y (Andrews et al [1971]).

From the point of view of this chapter, we observe
-1
that if such a [ ] were chosen, then [YR] [Y] would
likely be close to the identity of the group G and we could

consult the unadjusted conditicnal distributions for [Z]

to assess the resistance of the analysis.

Traditional resistance studies, in fact deal with the
marginal distributions of such statistics usually through the

extensive use of monte carlo (see Relles and Rogers (1977)).

The point of view here is overwhelmingly directed
towards the study of the appropriate conditional distributions.
Inferential statements of conditional confidence also have

the marginal confidence interpretation.
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