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 ABSTRACT

 In Sections 49 and 50 of the Design of Experiments, Fisher discusses an experiment designed to
 compare the effects of several types of manure on yield. Each type of manure is applied at three
 dosage levels: zero, single, and double doses. Fisher points out that the usual contrasts constructed
 for a factorial experiment are unsatisfactory in this setting. In particular, since the response curves

 necessarily meet at the zero dose, the usual notion of interaction as a lack of parallelism cannot
 apply. Fisher then gives an appropriate definition for interaction in this setting. This paper is
 concerned with a class of orthogonal polynomials that can be used as an aid in the detection of
 this modified definition of interaction.

 RESUME

 Dans les sections 49 et 50 de Design of Experiments, Fisher discute d'une experience conque
 afin de comparer les effets de plusieurs types d'engrais sur le rendement. Chaque type d'engrais

 est applique6 trois diff6rents dosages: pas d'engrais, dose simple et dose double. Fisher indique
 que les contrastes habituels pour une exp6rience factorielle ne sont pas satisfaisants dans ce cadre.
 En particulier, puisque les courbes de r6ponse se coupent forc6ment a la dose zero, la notion
 habituelle d'int&raction comme absence de parall61isme ne peut pas 8tre utilis6e. Fisher pr6sente
 alors une d6finition d'int6raction appropride a ce cadre. Cet article examine une classe de polyn6mes
 orthogonaux qui peuvent aider a detecter cette definition d'int6raction modifi6e.

 1. INTRODUCTION

 Consider the administration of a graded series of doses of some preparation and the
 measured responses to such a series. Suppose that this preparation is diluted with some
 inert material, so that a given dose now contains less of the active ingredient than the
 same dose of the original preparation. The dose-response curve of this diluted preparation
 will be the same as that of the original preparation except that it is plotted on a different
 dose scale.

 More generally, let us suppose that we wish to compare an unknown (or test) prepa-
 ration with a standard one. Suppose the doses of the standard are denoted xl, and of the

 unknown, x2. If a transformation of the form x2 = kxl, with k properly chosen, brings
 the response curves into coincidence, then one preparation can be viewed as a diluted
 version of the other. The value of k that accomplishes this is called the relative potency
 of the unknown (relative to the standard).

 If, in any instance, the curves cannot be brought into coincidence by the transformation

 x2 = kX1, the preparations are qualitatively different and we have, in Fisher's words, an
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 TABLE 1: Fisher's analysis.

 I Ylo Y20 Yll Y21 Y12 Y22
 Zi 1 1 1 1 1 1

 Z2 -1 -1 0 0 1 1

 Z3 -1 -1 2 2 -1 -1

 Z4 0 0 -1 1 -2 2
 Z5 0 0 2 -2 -1 1

 Z6 -1 1 0 0 0 0

 interaction of quantity and quality. Fisher gives an illustration of this notion in Section
 50 of Fisher (1935). Yates gives illustrations in Section 15 of Yates (1937) and Section
 6 of Yates (1933).
 With Fisher's illustration, the preparations are different types of nitrogeneous manure
 applied at three dosage levels: zero, single, and double doses. For discussion here, suppose

 there are two types of manure and the yields of sugar beets are denoted Yij, corresponding
 to the ith quality and the jth quantity. In this setting, there will be six combinations of
 type and dose applied. The structure of the experiment appears to be factorial. However,
 as is pointed out by Fisher, the usual contrasts constructed for a factorial experiment are
 unsatisfactory. In particular, since the response curves necessarily radiate from a point
 on the response axis, the interaction described above cannot be interpreted as a lack of
 parallelism.

 Fisher suggests that to check for this interaction one can consider whether the differ-

 ences dj = y2j- ylj are proportional to the quantities of nitrogen, i.e., d2 should be close
 to 2dl. If the comparison d2 - 2dl contains more than error, the curve in the differences
 has a nonlinear component.

 The appropriate contrasts in Fisher's analysis can be placed in an orthogonal trans-
 formation. Subject to suitable normalizing, the z's in Table 1 display the implied com-
 parisons. Notice that the component Z4 displays the linear component of the trend in the
 curve relating the differences to the dose, while the component z5 displays the quadratic
 (or nonlinear) component of the trend of the curve relating the differences to the dose.
 The curve in the differences is constrained to be zero, corresponding to a zero dose.
 The components have values which are proportional to the values of the orthogonal
 polynomials x and ax2 + bx for x = 1, 2, where a and b satisfy 9a + 5b = 0.

 The next section describes a model for Fisher's analysis and suggests how his analysis
 can be extended to more than two nonzero doses.

 2. MORE THAN TWO DOSES

 Let xla, a = 1,2,..., nl, be doses of the standard, yielding responses yl,, and let x2a,
 a = 1, 2,... n2, be doses of the unknown, yielding responses y2a. To describe two lines
 radiating from a point on the response axis, a regression equation will have

 Y = bo + b1x + b28x,

 where 8 = 0 in sample 1 and 8 = 1 in sample 2. See Finney (1978, Ch. 7) for an example
 and for an outline of Fieller's method applied to give confidence limits for the relative
 potency.

 To use the same doses for both preparations, xla = x2a = xa (say) and nl = nl = n
 (say), ensures that the arrangement is completely orthogonal. A rearrangement of the
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 TABLE 2: More than two doses: transformation.

 Yll Y21 Ya Y2ax Yin Yin
 Zi 1 1 1 1 1 1
 Z2 X1 -X X1 -X Xa -X Xoa -X Xn- -X Xn -x

 Orthogonal

 Zn al al aa ao an an
 Zn+1 -X 1 X -Xoa X -Xn Xn

 Zn+2

 Orthogonal

 Z2n -bl bl -ba bt -bn bn

 TABLE 3: More than two doses: analysis of variance.

 df ss df ss

 Among levels n- 1 z + + Z2 Average slope 1 z2
 Residual n - 2

 Within levels n Zn+1 n Preparations 1 z
 Levels x preparations n - 1

 regression equation to take advantage of the orthogonality is to replace

 Y = bo + bIx + b268

 by

 Y = Bo + BI(x - 2) + B268X, 6 = /

 The normal equations are then

 2nBo = 1(Yla +y2a),

 2 (xa - 2)2Bi = -(xa - )(yl + Y2a),

 1 = B2 xa(y2a - 1la).

 The first two equations represent an analysis of the sums (or averages), and indeed they
 constitute the fitting of a regression line to the average of the pairs of y's on the same
 dose. The third equation is a fitting of a regression to the differences of the same pair of
 y's, constrained to pass through the origin. The two questions about the straightness of
 the two response curves have been changed to one about the straightness of the average
 curve and one about the straightness of the curve relating differences to dose.

 The analysis thus far can be embedded in the orthogonal transformation, displayed in
 Table 2. The analysis-of-variance table corresponding to Table 2 is displayed in Table
 3. The components Z3,... , z, would be chosen to test the nature of the departures from
 linearity of the average points. Values of polynomials chosen to be orthogonal over the
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 doses used could be constructed. If we define

 Po = Xo,

 Pi = k10 + jllx,

 P2 = k20 + X21x + I22X2,

 with the V's chosen so that E PiPj = 0, i j, we could choose koo = 1, P1 = x - x,
 etc. Then Z3 = Z P2y is the quadratic component, and so on. If the doses are arranged
 to be equally spaced, Fisher's ?'-polynomials can be used.

 In the same way, we may wish to choose the coefficients in Zn+2,"-, Z2n to display the nature of the trend in the curve relating the differences to the dose. We could define
 polynomials

 Q1 = tllix,

 Q2 9 j21x + 922X2

 with the ig's chosen so that Z QiQj = 0, i $j. These polynomials would be suitable for
 fitting polynomial regressions constrained to pass through the origin.

 If we could arrange to have the doses not only equally spaced, but reducible to
 1, 2, 3, ... by a change of scale, then a fixed set of polynomials could be used in a similar
 way to Fisher's ?'-polynomials. These Q-polynomials are exhibited and illustrated in the
 next section.

 3. THE FIRST FIVE POLYNOMIALS AND THEIR SUMS OF SQUARES

 Now suppose that there are n doses, reducible to 1, 2, 3, ... , n by change of scale. The
 polynomials up to degree five are displayed in Table 4. Most standard references such
 as Snedecor and Cochran (1980) give Fisher's ?-polynomials to this degree. Tables of
 the values of these polynomials for n = 2 to 12 are included in the appendix. Following
 Fisher, the Q-polynomials are defined with the coefficient of the highest power being
 one. The sums of squares of the values of the polynomials in Table 4 are given in Table
 5.

 4. ILLUSTRATIONS AND COMMENTS

 To illustrate the use of these polynomials, suppose we have doses 1,2, 3, so that the
 polynomials with n = 3 can be used; then the transformation will be as displayed in
 Table 6. For this example, Z5 and Z6 display the interactions of doses and preparations.
 The example given in Section 1 has doses 0, 1,2, so that the polynomials with n = 2
 have been used.

 To compare three or more preparations, a familiar multiplicative rule can be used to
 obtain the interaction components. For example, suppose there is a standard preparation
 and two unknown preparations, each applied at three doses: 1,2,3. The transformation

 in Table 7 will suffice. The components z4 and zs display the quality components, i.e.,
 the differences between preparations. The components Z6 to Z9 record the interactions
 between doses and preparations.
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 TABLE 4: The Q-polynomials.

 Q1(x) = x
 c22Q2(x) = C22X2 + C21X

 c33Q3(x) = C33x3 + C32x2 + C31x

 c44Q4(x) = C44x4 + C43x3 + C42x2 + C41X

 c55Q5(x) = cs5x5 + C54X4 + C53X3 + C52X2 + C51X

 c22 = 2(2n + 1)

 C21 = -3n(n + 1)

 c33 = 5(3n2 + 3n + 2)

 c32 = -10n(n + 1)(2n + 1)

 c31 = 6n4 + 12n3 + 3n2 - 3n + 2

 c44 = 28(2n + 1)(n2 + n + 3)

 C43 = - 105n(n + 1)(n2 + n + 2)

 C42 = 10(2n + 1)(3n4 + 6n3 + 5n2 + 2n + 6)

 c41 = -5n(n + 1)(2n4 + 4n3 + n2 - n + 18)

 c55 = 42(5n4 + 10n3 + 55n2 + 50n + 24)

 c54 = -252n(n + 1)(2n + 1)(n2 + n + 8)

 c53 = 70(6n6 + 18n5 + 55n4 + 80n3 + 71n2 + 34n + 24)

 c52 = -70n(n + 1)(2n + 1)(n4 + 2n3 + 5n2 + 4n + 24)

 c51 = 15n8 + 60n7 + 120n6 + 150n5 + 1145n4 + 2110n3 + 640n2 - 400n + 192

 TABLE 5: The sums of the squares of the Q-polynomials.

 zQ = (n+ k)(2n + 1)/6
 k=O

 2

 ,c2 2 = 11(n + k)(2n + 1)(3n2 + 3n + 2)/30
 k=-l

 3

 c33 Q3= (n + k)(2n + 1)(n2 + n + 3)(3n2 + 3n + 2)/42
 k=-2

 4

 ,c4 Q= (n + k)(2n + 1)(n2 + n + 3)(5n4 + 1On3+ 55n2 + 50n + 24)/90
 k=-3

 5

 c5 Q2 (n + k)(2n + 1)(3n4 + 6n3 + 77n2 + 74n + 120)(5n4 + 10n3 + 55n2 + 50n + 24)/330
 k=-4

 If a priori comparisons between preparations are not available, then incomplete subdi-
 visions of sums of squares can be obtained. See, for example, Cochran and Cox (1957).
 Notice that if

 ri = -l1yil - 8yi2 + 9yi3,

 si = 3yil - 3yi2 + Yi3,
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 TABLE 6: Example with n = 3.

 Yll Y21 Y12 Y22 Y13 Y23

 Zi 1 1 1 1 1 1

 Z2 -1 -1 0 0 1 1
 Z3 -1 -1 2 2 -1 -1
 Z4 -1 1 -2 2 -3 3
 Z5 -11 11 -8 8 9 -9
 Z6 -3 3 3 -3 -1 1

 TABLE 7: Three doses.

 Yl1 Y21 Y31 Y12 Y22 Y32 Y13 Y23 Y33

 Zi 1 1 1 1 1 1 1 1 1

 Z2 -1 -1 -1 0 0 0 1 1 1
 Z3 1 1 1 -2 -2 -2 1 1 1
 Z4 0 -1 1 0 -2 2 0 -3 3
 z5 -2 1 1 -4 2 2 -6 3 3
 Z6 0 -11 11 0 -8 8 0 9 -9
 Z7 0 -3 3 0 3 -3 0 -1 1
 Z8 -22 11 11 -16 8 8 18 -9 -9

 z9 -6 3 3 6 -3 -3 -2 1 1

 then z2 + z2 is proportional to

 S(ri - T)2,

 and z2 + z2 is proportional to

 (si - )2.
 We are supposing that the experiment furnishes a suitable estimate of experimental

 error. Indeed, each of the illustrations discussed here requires that each yij be a sum (or
 average) of the same number of observations. If the number of doses is large, it may
 not be acceptable to carry out a repetition (or replication) of the experiment. In such a
 case, the polynomials (P's and Q's) could be fitted to a degree high enough to remove
 all trends. With caution and qualification, the remaining components could then be used
 to estimate error.

 Suppose that each of the nonzero doses is repeated the same number of times, but
 the zero dose is not. Fisher's ?'-polynomials are no longer suitable for the components
 between levels, but the Q-polynomials will still be appropriate for the components within
 levels. See Section 111.3 of Claringbold (1959) for an illustration with two nonzero doses
 and the zero dose repeated with half the frequency of the nonzero doses. In this reference,
 the terms slope and blank are used for the linear and quadratic components between levels.
 In addition, this paper gives a collection of orthogonal contrasts derived using a technique
 due to Lorraine (1952). These contrasts could be useful in determining the doses where
 linearity might be an acceptable assumption.

 The concepts associated with the fitting of response curves radiating from a point have
 also been studied by Bliss (1952, Chs. 7, 8), Williams (1959, Ch. 8), and Kempthorne
 (1952, Ch. 18).
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 TABLE 8: n = 2.

 Qi Q2

 1 -2

 2 1

 5 5 5 s 5 5

 TABLE 9: n = 3.

 Qi Q2 Q3

 1 -11 3

 2 -8 -3

 3 9 1

 1 7 15

 S 14 266 19

 TABLE 10: n = 4.

 Qi Q2 Q3 Q4

 1 -7 71 -4

 2 -8 -3 6

 3 -3 -67 -4

 4 8 34 1

 S 1 3 155 23

 S 30 186 10,695 69

 APPENDIX: THE VALUES OF THE POLYNOMIALS

 The values in Tables 8 through 18 are given as integers with no common factors. The
 necessary proportionality constants are given as X's, along with sums of squares of the
 tabulated values, given as S's.
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 TABLE 11: n = 5.

 Qi Q2 Q3 Q4 Q5

 1 -17 103 -379 5

 2 -23 46 256 -10

 3 -18 -56 246 10

 4 -2 -88 -374 -5

 5 25 65 125 1

 I I 11 115 847 251 2 6 12 120

 S 55 1771 27,830 425,194 251

 TABLE 12: n = 6.

 Qi Q2 Q3 Q4 Q5

 1 -25 47 -99 1,849
 2 -37 35 17 -2,315
 3 -36 -4 82 10

 4 -22 -38 12 2,300
 5 5 -35 -95 -1,843
 6 45 37 41 461

 S 1 13 16 91 798
 2 91 5 12 1

 S 91 5824 7488 27,664 17,677,296

 TABLE 13: n = 7.

 Qi Q2 Q3 Q4 Q5

 1 -23 37 -879 3,043
 2 -36 35 -149 -2,272
 3 -39 11 587 -1,945
 4 -32 -18 552 1,980

 5 -15 -35 -205 2,209
 6 12 -23 -809 -3,008
 7 49 35 441 917

 1 5 17 413 1799 6 12 20

 S 140 7140 6018 2,335,102 36,893,892

 TABLE 14: n = 8.

 Qi Q2 Q3 Q4 Q5

 1 -91 329 -2,177 4,747
 2 -148 359 -907 -1,808
 3 -171 199 933 -3,793
 4 -160 -42 1,656 60
 5 -115 -255 765 3,801
 6 -36 -331 -1,047 1,648
 7 77 -161 -1,897 -4,627
 8 224 364 1,288 1,688

 S17 109 595 1231 S 204 123,790 81,615,3 20

 S 204 155,652 611,490 16,113,790 81,615,300
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 TABLE 15: n = 9.

 Qi Q2 Q3 Q4 Q5

 1 -58 1,358 -3,398 2,026
 2 -97 1,631 -2,053 -209
 3 -117 1,159 627 -1,549
 4 -118 282 2,412 -804
 5 -100 -660 2,250 858
 6 -63 -1,327 267 1,519
 7 -7 -1,379 -2,233 119
 8 68 -476 2,768 -1,936
 9 162 1,722 2,322 834

 S 1 19 170 589 67

 S 285 85,272 13,217,160 45,145,672 14,695,512

 TABLE 16: n = 10.

 Ql Q2 Q3 Q4 Q5

 1 -24 2,118 -966 876
 2 -41 2,726 -726 101
 3 -51 2,239 -41 -569
 4 -54 1,072 554 -539
 5 -50 -360 750 18

 6 -39 -1,642 464 554
 7 -21 -2,359 -161 539
 8 4 -2,096 -756 -146
 9 36 -438 -726 -816

 10 75 3,030 750 411

 S 1 7 415 113 131
 S 38 61 12 40

 S 385 19,173 40,235,910 4,233,658 2,845,713

 TABLE 17: n = 11.

 Qi Q2 Q3 Q4 Q5

 1 -175 1,263 -417 3,063
 2 -304 1,713 -363 894
 3 -387 1,549 -103 -1,541
 4 -424 970 167 -2,156
 5 -415 175 320 -908

 6 -360 -637 298 1,040
 7 -259 -1,267 112 2,156
 8 -112 -1,516 -158 1,376
 9 81 -1,185 -363 -1,059
 10 320 -75 -285 -2,766
 11 605 2,013 363 1,617

 S23199 23 279
 S 506 1,309,022 17,671,797 8 4
 S 506 1,309,022 17,671,797 917,631 37,038,924
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 TABLE 18: n = 12.

 Qi Q2 Q3 Q4 Q5

 1 -209 363 -15,279 7,656
 2 -368 513 -14,799 3,351
 3 -477 497 -6,561 -2,662
 4 -536 362 3,289 -5,427
 5 -545 155 10,460 -3,936
 6 -504 -77 12,516 220
 7 -413 -287 8,876 4,200
 8 -272 -428 814 5,262
 9 -81 -453 -8,541 2,112
 10 160 -315 -14,205 -3,747
 11 451 33 -9,339 -6,666
 12 792 638 14,751 4,499

 S 1 25 47 1855 1349
 6 24 120

 S 650 2,352,350 1,781,065 1,431,369,936 250,428,360
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