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G982-G989,1989.-A number of physiological or pharmacolog- 
ical studies generate sigmoidal dose-response curves. Ideally, 
data analysis should provide numerical solutions for curve 
parameters. In addition, for curves obtained under different 
experimental conditions, testing for significant differences 
should be easily performed. We have reviewed the literature 
over the past 3 years in six journals publishing papers in the 
field of gastrointestinal physiology and established the curve 
analysis technique used in each. Using simulated experimental 
data of known error structure, we have compared these tech- 
niques with nonlinear regression analysis. In terms of their 
ability to provide accurate estimates of EDSO and maximal 
response, none approached the accuracy and precision of non- 
linear regression. This technique is as easily performed as the 
classic methods and additionally provides an opportunity for 
rigorous statistical analysis of data. We present a method of 
determining the significance of differences found in the EDSO 
and maximal response under different experimental conditions. 
The method is versatile and applicable to a variety of different 
physiological and pharmacological dose-response curves. 

thereby allowing the use of simple linear regression tech- 
niques or directly fitting data to the original relationship 
with nonlinear regression techniques. The relative merits 
of these two different approaches are not well established 
despite several publications suggesting that nonlinear 
regression analysis is the more useful technique for 
analysis of transport processes (2, 3). The problem be- 
comes even more complex when two curves are consid- 
ered, as the investigator invariably wishes to know if the 
curves are different from each other and, if so, is it the 
EDs0 or the T” that is significantly different. Once again 
it has been unclear how to approach this perplexing but 
common problem. It is common practice today to evalu- 
ate differences between curves by performing multiple 
comparisons of the response at different concentrations, 
a technique that cannot possibly take advantage of all 
the information contained within the curve (6). 

data analysis; curve fitting; drug dose-response; smooth muscle 
contractility; intestinal transport 

Therefore, the aims of this paper are 1) to review the 
methods currently utilized by gastrointestinal physiolo- 
gists to analyze dose-response curves, 2) determine the 
accuracy and precision of currently utilized linear and 
nonlinear methods for curve analysis, and 3) present a 
method to statistically evaluate differences between fam- 
ilies of dose-response data obtained under different ex- 
perimental conditions. 

IN THE FIELD of gastroenterology, physiological investi- 
gations of smooth muscle contractility, intestinal trans- 

METHODS 

port, and the effect of hormones generate sigmoidal dose- 
response curves. In the majority of cases these curves are 
assumed to follow a hyperbolic relationship; each curve 
can be described by two parameters, the maximal re- 
sponse (T”) and the concentration that produces a half- 
maximal response (EDso, Ref. 11). For the physiologist, 
accurately estimating these two parameters is often cru- 
cial; however, the most efficient means by which to 
perform this analysis is not readily apparent. It is now 
clear that simply inspecting such data and generating a 
subjective estimate of Tm and EDs0 is not adequate 
because no objective estimate of error can be made. In 
response to this, a wide variety of data analysis tech- 
niques have emerged (6, 11-13). These include transfor- 
mations that linearize the dose-response relationship, 
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A Medline search using the key words smooth muscle, 
contractile response, drug, and dose-response was per- 
formed covering the years 1986-1989. To ensure some 
uniformity of quality the search was limited to six jour- 
nals that commonly publish papers concerned with gas- 
trointestinal physiology. These were the American Jour- 
nal of Physiology, Canadian Journal of Physiology and 
Pharmacology, Digestive Diseases and Sciences, Gastro- 
enterology, Journal of Clinical Investigation, and the 
Journal of Pharmacology and Experimental Therapeutics. 
Papers were classified as to whether data were presented 
either 1) descriptively as a dose-response curve, 2) graph- 
ically with visual estimation of maximal response and 
EDs0, 3) transformed for linear regression analysis (lin- 
ear regression analysis of the linear portion of sigmoidal 
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curve, logit, probit, or the Lineweaver-Burk double recip- 
rocal plot), or 4) whether nonlinear regression analysis 
was employed. 

Second, to critically evaluate these techniques several 
sets of simulated experi .mental data were generated. Each 
set was derived from hypothetical values that closely 
approximated actual experimental data describing the 
tension produced in a strip of jejunal muscle under the 
stimulation of graded doses of carbachol. For the pur- 
poses of this experiment the tissue was assumed to 
generate tension as a hyperbolic function of the car- 
bachol dose, an assumption commonly employed in such 
studies. Therefore, the tension (T) at any dose of car- 
bachol (C) is given by 

T 
T”C - - 

EDs0 + C 
(1) 

In this equation T” represents the maximal tension 
developed and EDs0 represents the dose that produces 
half-maximal tension. The true maximal response was 
predefined as 140 g and the true EDs0 as 0.016 PM. For 
the hypothetical experiment, a dose range typical of those 
used in the literature was selected ranging from lo-’ to 
10e4 M. Nine concentrations were selected within this 
range and the tension of the tissue at each concentration 
calculated from Eq. 1. These nine perfect data points 
represented the basis of each data set, which were con- 
structed by generating 20 random numbers within a well- 
defined range (discussed below) around each perfect data 
point. Normal random numbers were generated using the 
statistical software package Systat (Systat, Evanston, 
IL). Therefore, each data set had 20 observations of 
tension at each of nine concentrations of carbachol. Six 
data sets were selected to evaluate the most common 
error structures seen in experimental data. These in- 
cluded fixed ranges of tension values at each concentra- 
tion of either 20 or 40% of the perfect point. A third data 
set was constructed with variable ranges that increased 
linearly from 20% at the lowest concentration to 40% at 
the highest. Because experimental data invariably in- 
cludes outliers, these three data sets served as starting 
material for a further three. These had the same data 
points, but for every concentration 10% of the tension 
values were randomly selected to be outliers. Outliers 
had a value three times the standard deviation of the 
sample, added or subtracted at random. Therefore, the 
six data sets used were 1) range = 20%, 2) range = 40%, 
3) range = variable, 4) range = 20% plus outliers, 5) 
range = 40% plus outliers, and 6) range = variable plus 
outliers. Each set contained 180 data points. 

Data sets were evaluated by four analytical methods. 
In each case the best estimates of Tm and EDso were 
obtained and 95% confidence intervals constructed for 
each parameter. For transformations in which the pa- 
rameter in question was a ratio of the coefficients, Fiell- 
er’s theorem (1, 8, 9) was used to construct 95% confi- 
dence intervals. All calculations were performed using a 

RESULTS 

Prevalent methods. The Medline search identified 74 
articles published since January 1986 in the journals 
selected. Of these, 27% presented dose-response data 
graphically. Most simply discussed the data in descrip- 
tive or qualitative terms; only 8 of 20 attempted to test 
for differences between curves. This attempt was always 
limited to testing individual data points in each curve by 
either a t test or the analysis of variance. 

Thirty-five percent of the papers cited visually deter- 
mined the EDs0 for each curve from a graphical presen- 
tation of the data. Of this group, ~25% attempted a 
statistical evaluation of differences between curves. In 
all cases this was once again performed by comparing 
the tension at a single constant concentration in the two 
curves and evaluating the difference with a t test. 

Only 24% of the papers quoted evaluated their data 
with an aim to establishing a T” and EDs0 utilizing one 
of the linear transformations. Of these approximately 
one quarter performed a regression on the linear portion 
of the sigmoid curve to establish the EDso. Another 
quarter utilized either probit or logit analysis, again to 
establish an EDs0. The remaining investigators used a 
double reciprocal transformation (Lineweaver-Burk), 
with most citing the methodology of Tallarida and Mur- 
ray (14). 

A minority, just 14% of authors, utilized nonlinear 
regression analysis to estimate curve parameters. 

Evaluation of methods. The six data sets outlined in 
the METHODS section were used to assess the ability of 
four techniques to establish precise and accurate esti- 
mates for both parameters in the presence of known 
error structures. Figure 1 illustrates the relationship 
between tension and carbachol dose for each data set. 
Figure 1A contains the data set named range = 20%. 
With an allowed range of t20% around each data point, 
it is the tightest of the data sets. Figure 1B contains 
range = 40% and is equivalent to Fig. 1A except that the 
allowed range on each side of the data point is now 40%. 
Range = var (Fig. 1C) represents a composite of the first 
two. At low concentrations of agonist the data points are 
tightly grouped but with increasing concentration the 
range increases, a pattern reminiscent of experimental 
data. Figure 1, D, E, and F, represent the same data 
points found in Fig. 1, A, B, and C, respectively, with the 
exception that 10% of the points at each concentration 
were randomly selected to be outliers and had a value of 
three times the standard deviation of the sample either 
added or subtracted at random. 

The techniques evaluated were selected to include the 
methods prevalent in the literature. 

1) Probit analysis as described by Tallarida and Jacob 
(13). In this analysis, data for tension are expressed as a 
percentage of maximum tension developed. Each point 
is then converted to the corresponding probit and 
graphed as a function of log C. Linear regression analysis 
of the linear portion of the curve (identified visually in 
most cases) yields an equation from which the concen- 

microcomputer and commercially available statistical tration that would produce a probit of 5.0 can be calcu- 
software (Systat and Minitab; Minitab, State College, lated. This value is taken to be the ED,,. It should be 
w . pointed out that implicit to this analysis is the acknowl- 
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edgment of a maximal response estimated visually or by 
averaging the tensions generated by the highest doses of 
carbachol. The latter route was followed in our analysis 
with the 40 tensions generated by the two highest doses 
being averaged to obtain the maximal response from 
which probits were calculated. Because the error involved 
in this calculation affects the resulting line but is not 
incorporated into the standard calculations that follow, 
it is not clear how to construct confidence intervals for 
the EDs0. Therefore, for this group of data no confidence 
intervals have been reported. 

2) Double reciprocal transformation. By taking the re- 
ciprocal of both sides of Eq. 1 the following relationship 
emerges 

(2) 

By plotting l/T vs. l/C a straight line is obtained with 
the y-intercept equaling l/T” and the slope represent- 
ing EDso/Tm. Linear regression analysis of the trans- 
formed data directly yields TM and its 95% confidence 
intervals. The EDs0 can be calculated from this value 
and the slope of the line, while confidence intervals may 
be constructed using Fieller’s theorem, as described in 
the METHODS section. One important point concerning 
this transformation should be appreciated. If the error 
in tension at each concentration is normally distributed 
to begin with, it cannot remain so in the transformed 
state. 

3) Modified Eadie-Hofstee transformation (4, 7). Al- 
though not used extensively in dose-response studies, 
this transformation is commonly used in the transport 

FIG. 1. Ranges for experimental data. 
In each case data were derived from a 
perfect data set where T” and EDS0 took 
the values of 140 g and 0.016 PM, re- 
spectively. The function described by the 
perfect data is represented by the solid 
line in each panel. A (range = 20%): the 
allowable range around each perfect 
point did not exceed t20% of the perfect 
value. The mean of each point is shown 
and the error bars represent standard 
deviations. B (range = 40%): similar to 
A except that the allowable range was 
240%. C (range = var): allowable range 
that increases from t20 to t40% in a 
linear fashion over the concentration 
range shown. D, E, and F: same data as 
A, B, and C, respectively, except that 
10% of the points at each concentration 
were changed to outliers by either ran- 
domly adding or subtracting a value 
equal to 3 standard deviations of the 
original data. 

literature. Equation 1 can be rearranged to give 

Plotting T/C vs. T, therefore, results in a line with slope 
equal to -l/ED50 and intercept of Tm/EDSO. Additionally, 
the axes are interchangeable and T is often plotted as a 
function of T/C. These parameters and their confidence 
intervals can then be calculated in a manner analogous 
to method 2. 

4) NonLinear regression. With the advent of powerful 
microcomputers and statistical software, the ability to 
fit experimental data directly to nonlinear equations is 
available to all investigators. For the purpose of this 
analysis data were fitted directly to Eq. 1 and the pro- 
gram allowed to converge on a solution that minimized 
the weighted sum of squared residuals. Data points were 
weighted in proportion to the reciprocal of the within 
concentration estimates of variance. In general, conver- 
gence occurred within 20 iterations using the nonlinear 
regression module of Systat. 

Analysis of auailabZe methods. Table 1 illustrates the 
results of the data analysis for each method on all six 
data sets. A perfect analysis would return the starting 
values for T” and ED50 of 140 and 0.016, respectively. 
Although probit analysis gave acceptable values for the 
EDs0 in all data sets, it had two serious drawbacks. First, 
the Tm has to be evaluated separately from visual in- 
spection of the data, which introduces subjective bias. In 
this analysis all 40 data points at the two highest con- 
centrations were averaged, which helped to overcome 
this problem. However, the 95% confidence intervals 
remained unacceptably large. Second, since the value of 
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TABLE 1. Parameter estimates by different analysis methods 

Data Set 

Method Parameter 
Range = 20% Range = 40% Range = Var Range = 20% 

+ outliers 
Range = 40% 

+ outliers 

G985 

Range = Var 
+ outliers 

Probit T” 138.7 137.3 134.1 138.7 133.2 139.1 
(131.1, 146.3) (124.4, 150.1) (120.1, 148.1) (128.2, 149.3) (114.7, 151.7) (118.9, 159.3) 

E&o 0.016 0.017 0.016 0.016 0.017 0.016 
Double reciprocal Trn 137.6 131.5 134.3 134.2 107.7 125.5 

(134.4, 141.1) (124.9, 138.8) (129.8, 139.1) (129.0, 139.8) (86.4, 143.0) (114.5, 138.7) 

Eadie-Hofstee 

Nonlinear 

EDso 0.017 
(0.016, 0.018) 

T” 143.3 
(140.3, 146.6) 

ED5o 0.021 
(0.019, 0.023) 

T” 138.8 
(136.1, 141.5) 

ED5o 0.016 
(0.015, 0.017) 

0.017 
(0.015, 0.019) 

157.1 
(148.8, 167.7) 

0.034 
(0.029, 0.041) 

138.2 
(134.1, 142.3) 

0.017 
(0.016, 0.018) 

0.016 
(0.015, 0.018 

151.4 
(145.6, 158.3 

0.028 
(0.025, 0.033 

140.2 
(134.5, 145.8 

0.017 
(0.016, 0.018 

0.016 0.017 
(0.014, 0.017) (0.009, 0.030 

147.6 179.8 
(142.8, 153.2) (161.4, 209.8 

0.024 0.058 
(0.022, 0.033) (0.045, 0.083 

136.5 135.2 
(133.1, 140.0) (127.9, 142.5 

0.015 0.017 
(0.014, 0.016) (0.013, 0.021 

0.016 
(0.012, 0.019) 

165.5 
(154.8, 179.6) 

0.042 
(0.035, 0.052) 

138.4 
(131.2, 145.6) 

0.017 
(0.016, 0.018) 

Values are parameter estimates calculated by 
the best estimate for each method. Underneath 
the data is discussed in the text. 

the 4 methods listed. In each case the starting values were T”, 140 and EDs0 = 0. 016. Values are 
each estimate in parentheses are the upper an .d lower 95% confide rice intervals. Sign ificance of 

T” is critical to the evaluation of the EDSO, it was unclear 
how to evaluate error in the determination of the EDso. 
Thus, although usefu .l to approximate parameter esti- 
mates, probit analysis is of little use for critical evalua- 
tion. 

The double-reciprocal transformation is one of the 
most commonly used transformations in the dose-re- 
sponse literature. From inspection of Table 1 it is evident 
that this technique was exquisitely sensitive to error in 
the data. With relatively tight data, such as presented 
with range = ZO%, this technique provided useful ap- 
proximations of the parameters. However, with increas- 
ing variability in the experimental data, especially with 
the addition of outliers, this technique became mislead- 
ing. 

The second linearizing transformation presented in 
Table 1, the modified Eadie-Hofstee plot, has the same 
drawbacks as the double-reciprocal transformation. In 
fact, estimates derived from this procedure were even 
more sensitive to experimental error. 

Of the four methods presented in Table 1 only nonlin- 
ear regression provided accurate and precise parameter 
estimates under all types of experimental error. In all 
cases the 95% confidence interval bracketed the known 
correct value for each parameter and in all cases the 
range was relatively narrow, allowing confidence in the 
result. 

Defining differences between curves. In most physiolog- 
ical studies, the ultimate goal of the investigator is not 
to determine an absolute value for T” and EDso but 
rather to tell if two curves are different from each other. 
Furthermore, given that two curves are different, the 
investigator would usually like to decide if either the T”s 
or the EDsos or both are different. In the literature 
surveyed, most authors have attempted to perform this 
analysis by looking at individual values for tension at 
well-defined concentrations and evaluating whether an 
experimental group has a different tension from controls. 
Although this method is valid for carefully picked con- 

centrations it clearly does not utilize all the information 
inherent in a well-performed dose-response curve. The 
previous section gives evidence that nonlinear regression 
analysis is an effective method of analysis for the type 
of data commonly encountered in physiological experi- 
ments. Next, we outline how this method lends itself to 
the construction of tests and confidence intervals for 
comparisons of parameter estimates. 

Consider the case of two experimental groups that 
differ in T” but have constant EDsOs. If all data points 
from these two experiments are grouped, we can fit the 
combined data to an equation containing either a single 
T” or one containing two T”s. Because the data contain 
two distinct T”s the model that allows for this will fit 
significantly better than the one that doesn’t. Conse- 
quently, the residual sum of squares will be far less for 
this model than for the one containing only one T”. A 
more rigorous approach can be stated as follows. 

Equation 1 describes the situation that exists when 
only one ED 5. and T” give rise to the observed data. 
Suppose two separate experiments (A and B) were per- 
formed and we wished to know if either the ED50 or T” 
calculated for experiment B was different from that cal- 
culated for experiment A. This question can be ap- 
proached in a simple manner. First, identify all pairs of 
T and C with the grouping variable 6 that takes the value 
of zero for data from experiment A and the value of one 
for experiment B. Then fit the combined data to an 
equation that offers the choice of a second ED,, or T”. 
With the appropriate use of 6 this option can be limited 
to only one of the data sets as follows 

T 
(T” + arG)C 

= ED50 + ,8S + C (4) 

Therefore, Eq. 4 now allows all possibilities. The T” for 
experiment A (where 6 = 0) becomes T” and differs from 
the T” assigned to experiment B by the factor cy. Of 
course a) can assume the value of zero, which would imply 
that a second T” is not required to adequately fit the 
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data. The same holds for the relationship between the 
two EDsOs, the difference between these is determined 
by the value of ,& 

Because this equation covers all eventualities, it will 
fit the data better than a relationship that does not 
contain one or more of the parameters. Importantly, if 
removing one of these options produces a relationship 
that does not adequately describe the data, the fit will be 
significantly impaired. This will manifest itself as a 
significant increase in the weighted sum of squared re- 
siduals. To test whether two ED50s or T”s are required 
to fit the data, these choices are sequentially removed 
and the significance of this judged by assessing the 
difference in the weighted sum of squared residuals with 
an F test 

F SSR2 - SSRl - - 
SSRl 

( ) 

(5) 

df 

In this case SSR, refers to the residuals generated by 
fitting to Eq. 4, which will always be the lowest because 
this represents the most general model. SSR2 refers to 
the residuals from the second model, and df represents 
the available degrees of freedom. If removing a parameter 
significantly impairs the fit of the data SSR2 will be 
much greater than SSRl and a significant F value will 
result. To examine the hypothesis that a second T” is 
not required the data would be fitted to 

V”C) 
T = [EDso + (PS) + C] (6) 

and to test the hypothesis that the second EDso is not 
required we would fit to 

T (T” + &)C - - 
EDs0 + C (7) 

How significant these parameters were to the overall fit 
is then judged by the appropriate F test. Next, the 
remaining parameter is removed by fitting the data to 
Eq. 1. Thus differences in both parameters can be tested 
for in a simple manner. The assumption underlying this 
testing process is that Eq. 5 has an F distribution. Recent 
statistical work suggests that this assumption is correct 
(5) and although with all nonlinear models the distribu- 
tional result is approximate, for this equation it does 
approximate an F distribution. 

To provide an example of this method and to demon- 
strate its power, two new data sets were generated. These 
are shown graphically in Fig. 2. Figure 2A represents a 
data set identical to that shown in Fig. 1F with the 
exception that for this case EDs0 was increased to 0.024. 
Therefore, this data set differs from the original only in 
one value used to generate the original true data points. 
In addition it still has an error structure common to 
physiological experiments, the one we have denoted 
range = variable + outliers. Figure 2B is analogous; 
however, in this case the EDso used to generate the true 
data points remained at 0.016 but the Tm was increased 
to 168 from 140. 

These new data sets were analyzed bv the nonlinear 

regression technique previously described and the results 
reported in Table 2 as data sets 2 and 3. Data set 1 
represents the original data reported in Fig. 1 and Table 
1. It is apparent that once again this technique gave 
accurate and precise parameter estimates with confi- 
dence intervals that bracketed the known true values. 
The problem is whether or not the values reported for 
the T” and EDs0 for data sets 2 and 3 are significantly 
different from those observed in data set 1. This question 
can be addressed by the technique just outlined. 

The statistical analysis of this data is presented in 
complete form as Table 3. First, considering the compar- 
ison of data set 2 with data set 1. Inspection of the results 
revealed that although the T”s may be different, it 
appeared unlikely that the ED50s were different. There- 
fore, the first step was to fit the combined data of sets 1 
and 2 to Eq. 4. As illustrated this resulted in the gener- 
ation of four parameter estimates. Importantly, cy, which 
represented the difference between the two Tms, was a 
positive number, and the 95% confidence intervals for 
this estimate did not include zero. ,& which represented 
the potential difference between EDsos, was small and 
the confidence intervals constructed for this parameter 
included zero, implying that it was unlikely to be differ- 
ent from zero. This could be tested in two ways. Either 
the parameter value and estimated error could be used 
or the overall fit of the data to models with and without 
the parameter measured. Statisticians have recently em- 
phasized that the latter technique is more appropriate, 
especially in nonlinear regression analysis (5). Because 
the sum of squared residuals is presented by most, if not 
all, nonlinear regression routines it is a simple matter to 
analyze the data in this manner. The weighted residual 
sum of squares for this analysis (SSR2) was 375.35, as 
shown in Table 3. Because a difference in EDs0 appeared 
unlikely from inspection of the data in Table 3, this was 
tested by fitting the data to Eq. 7. As shown, with removal 
of ,@, the parameter allowing a second EDso, the weighted 
residual sum of squares (SSR1) increased to only 375.44. 
From Eq. 5 the F statistic was calculated as 0.085, 
suggesting that a second ED50 was not required to model 
these data (P = 0.77). Next, to evaluate the possibility 
that two T”s were present we removed this option by 
fitting the data to Eq. 1. SSRZ from this analysis was 
478.17, the F statistic of 97.4 providing strong support 
for the presence of a second T” (P < 0.00001). 

Inspection of the calculated parameter estimates pre- 
sented in Table 2 for data sets 3 and 1 suggested that we 
would be unlikely to find a difference in T”s but the 
EDsOs of these two data sets might be different. The 
combined data was fit to Eq. 4 and the resultant param- 
eter estimates with their constructed 95% confidence 
intervals presented in Table 3. These data supported our 
original hypothesis because it appeared that ~1 would be 
unlikely to be different from zero. However, ,@ also had 
confidence intervals close to zero, making it unclear 
whether we would be able to statistically distinguish two 
EDsOs. The weighted residual sum of squares (SSR2) for 
this model was 365.84. Because a difference in Tm seemed 
so unlikely, the data was fit to Eq. 6, thus removing the 
choice of a second Tm. This fit was excellent. with SSR, 
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FIG. 2. Parameter estimation data. 
A: data set generated with the same con- 
straints as Fig. 1F except that EDs0 = 
0.024 and Tm = 140. B: similar to A 
except that EDbO = 0.016 and T” = 168. 

TABLE 2. Nonlinear regression parameter estimates 

Data 
Set 

Known 
Parameters 

Calculated 
Parameters 

1 Trn 140 138.4 (131.2, 145.6) 
E&o 0.016 0.017 (0.016, 0.018) 

2 T” 168 172.2 (167.6, 176.8) 
EDso 0.016 0.017 (0.015, 0.019) 

3 T” 140 140.4 (134.6, 146.2) 
E&o 0.024 0.023 (0.021, 0.025) 

Data set I refers to the data presented in panel F of Fig. 1. The 
column labeled known parameters refers to the starting values of T” 
and EDs0, respectively. Calculated parameters are the estimates pro- 
vided by nonlinear regression analysis and are accompanied by the 
upper and lower 95% confidence intervals in parentheses. Data sets 2 
and 3 represent two new data sets depicted in Fig. 2. Significance of 
the data is discussed in the text. 

equalling 366.07. The F statistic for this comparison was 
0.22, providing no support for a second T” (P = 0.64). 
To test for the presence of a second EDso the data was 
finally fit to Eq. 1 with a resultant SSR of 383.56 and 
the corresponding F value of 17. Therefore, the conclu- 
sion would be drawn that this data set was obtained 
under conditions different from those in effect when data 
set 1 was measured; the entire difference residing in the 
EDs0 (P c 0.00001). 

DISCUSSION 

sigmoidal fashion when plotted in a log-linear manner 
or as a hyperbolic function when plotted linearly. These 
relationships used to be particularly difficult to analyze 
efficiently; therefore, numerous methods evolved at- 
tempting to deal with the problem. Many of these meth- 
ods were described before microcomputers and statistical 
software became widely available; thus, emphasis was 
placed upon ease of use, often with a hand calculator, 
and ready availability. Because virtually all investigators 
now have access to microcomputers and powerful statis- 
tical software, this emphasis can be changed to include 
methods that are accurate, precise, and relatively insen- 
sitive to error structures commonly encountered in ex- 
perimental procedures. In practice it is often important 
for these techniques to establish both a maximal response 
(a Tm for the dose-response curve) and the concentration 
that produces a half-maximal response (the ED&. Fur- 
thermore, because most experiments compare two or 
more dose-response relationships, a method should be 
readily available to statistically evaluate the curves and 
come to a reasonable conclusion regarding differences. 
Ideally, this method should distinguish between differ- 
ences in either the T” or the EDso because this can have 
important physiological ramifications. 

Within the last 10 years several studies have docu- 
In physiological studies numerous techniques yield mented the shortcomings of traditional linearizing trans- 

data in which one variable varies with another in a formations in the field of membrane transport processes 

TABLE 3. Statistical comparison of data 

Data Sets 
Compared 

Fitted to 
Equation T” 

Parameter Estimate 

Q! EDso P 
SSR F 

4 138.7 
(133.3, 144.1 

2 vs. 1 7 138.3 
(133.0, 143.6 

1 152.3 
(145.3, 159.3 

4 140.4 
(134.6, 146.3 

3 vs. 1 6 139.4 
) 

33.5 0.017 -0.0004 375.35 
(27.1, 39.9) (0.015, 0.019) (-0.002, 0.002) 

34.4 0.017 375.44 0,085 
(27.7, 41.1) (0.015, 0.019) 

0.017 478.17 97.4 
(0.013, 0.021) 

-2.0 0.023 -0.005 365.84 
(-14.9, 10.9) (0.021, 0.025) (-0.009, -0.001) 

0.022 -0.005 366.07 0.22 
(135.2, 143.6) (0.020, 0.024) (-0.007, -0.003) 

1 139.5 0.02 1 383.56 17.0 
(135.4, 143.6) (0.019, 0.023) 

Data sets compared refers to the data set number presented in Table 2. Equation numbers refer to those in the text, and the parameter 
estimates are those obtained directly from the nonlinear regression routine. Confidence intervals (95%) are in parentheses for each estimate. 
Finally, the minimized weighted sum of squared residuals for each analysis is presented as the SSR. The F test was calculated as outlined. 
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(Z-4). In general these studies have emphasized the value 
of direct nonlinear regression analysis in cons tructing 
precise and accurate parameter estimates despite random 

The primary advantage of 
it allows accurate weighting 

error 
nonli 
of 
its 

the data points, in a 
variance. However 

manner inversely proportional to 
, the recommendations of these 

studies are not widely used in the field of pharmacological 
dose-response analysis, as emphasized by the literature 

in the observations. 
near regression is that 

analysis we present. Over the last 3 years less than one 
close to three- 
or some form 

study in five utilizes 
fourths still rely on 

these 
either 

techniques and 
visual analysis 

of linearizing transformation. Although the reason for 
this observation is unclear, one major drawback of the 
nonlinear regression techniques is that, until now, no 
readily apparent means of analyzing statistical differ- 

parameter estimates was available. This 
.itation from the physiological perspective 

ences between 
is a serious lim 
because most studies present two or more curves and 
conclusions are often based on knowledge of significant 
differences between these. 

In this communication we have attempted to perform 
two major tasks. First, we have evaluated the commonly 
used analysis techniques to obtain parameter estimates 
from six data sets. These data were selected to mimic a 
common physiological experiment; observing muscle ten- 
sion induced by graded doses of an agonist. After gener- 
ating a “perfect” data set of tension over a concentration 
range commonly employed, six different types of random 
error were introduced into the data. Although not appli- 
cable to all physiological data these error structures were 
similar to those observed in many experimental studies. 
These data were then evaluated by techniques utilized in 
the literature and by nonlinear regression analysis. The 
results suggest, that with the exception of nonlinear 
regression, all techniques perform poorly in the presence 
of these types of random error. Despite relatively large 
data ranges and the presence of a significant number of 
outliers, nonlinear regression analysis consistently gave 
precise and accurate estimates of both parameters with- 
out requiring removal of data points. These conclusions 
are not radically different from those reached by Atkins 
and Gardner (‘2, 3); however, we have used a different 

range simulated in our 
selected concentrations 

type of data. 
study was m 

The concentration 
.uch wider and the 

irregularly scattered compared with theirs. In many re- 
spects it would appear that the concentrations we chose 
were not optimal; however, this was by design because 
we expressly wished to simulate pharmacological dose- 
response studies in the literature. From the data we 
present it would appear that the majority of recently 
published studies have utilized data analysis techniques 
poorly suited for the task they were asked to perform. 

Because part of the reticence to switch to nonlinear 
regression techniques may be the lack of easily available 
statistical analysis of parameter estimates, the second 
task we set out to accomplish was the definition of a 
simple, yet rigorous, statistical evaluation of these esti- 
mates. The method we present in the RESULTS section 
clearly demonstrates statistically significant differences 
that were known to be present in simulated data. These 
differences were modest and of an order commonly en- 
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countered in physiological experiments. Despite large, 
random error inherent in the data, nonlinear regression 
analysis clearly identified each parameter, and further- 
more, the statistical method we present was powerful 
enough to convincingly demonstrate the differences. The 
technique, as outlined, is simple, straightforward, and 
represents an extension of the nonlinear regression tech- 
nique itself. It does not require extensive mathematical 
knowledge and can be performed by essentially any in- 
vestigator in this field with equipment that most, if not 
all, laboratories have routinely available. 

It should be pointed out that the method we suggest is 
of evident utility in the comparison of two curves. How- 
ever, it is often important to compare more than two 
groups, and this method has no clear solution for this 
problem. Standard methods of adjustment (such as the 
Bonferroni) might be used to handle multiple compari- 
sons, but more appropriate methods would involve the 
use of additional indicator variables to identify the other 
factors under consideration. Further work is required to 
define a simple and direct method to accomplish this. 

Finally, although our emphasis has been on the analy- 
sis of dose-response data, we hope the techniques out- 
lined will have a much broader appeal. Other investiga- 
tors have demonstrated that the inadequacies we describe 
are encountered in data analysis of intestinal transport 
(2, 3, 4, lo), enzyme kinetics, and radioligand binding 
(6). Although we have agreed with the recommendations 
that nonlinear regression analysis is optimal, we are now 
much stronger in our opinion because a reasonable sta- 
tistical approach to the evaluation of parameter esti- 
mates is available. The techniques outlined here are 
widely applicable to many types of study that have in 
common the analysis of data similar to the classic dose- 
response relationship. We hope that more investigators 
make use of what appears to us to be an extremely simple, 
rapid, convenient yet powerful analytical tool for phys- 
iological studies. 
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