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SUMMARY

A patient treated for infectious syphilis is cured when serologic tests become non-reactive, which may take
years to achieve. Our objective is to develop a method to determine, within months, whether the patient has
responded adequately to treatment. Previous research and our exploratory graphical analysis suggested that
treatment response is linear when we applied logarithmic transformations of the axes. If the response to
treatment is linear, titres recorded within the first few months of treatment will determine the slope of the line
and one can develop an action line in future research. We used a non-parametric method to assess whether
the logarithmic transformation improved the linearity and then we applied three different methods of testing
lack of fit in linear regression. Based upon a sample size that reflects a clinically reasonable number of data
points, the results of these tests provided no evidence against linearity.

1. INTRODUCTION

Patients treated for infectious syphilis have periodic follow-up by their physicians, often for more
than two years, to assess whether they have adequately responded to treatment. There are two
general types of serologic tests for syphilis: treponemal and non-treponemal. Assessment of
serologic response to treatment entails non-treponemal tests. Non-treponemal tests provide
a quantitative measure of antibody response to a substance, reagin, formed in the sera of patients
with syphilis. The non-treponemal test is reported as non-reactive, reactive or weakly reactive. If
the result is reactive, serial dilutions are carried out to quantitate the result. The result of the test,
the titre, is reported as 1:n where n is the highest dilution at which the test remains reactive.
A return to the non-reactive state is referred to as seroreversion.

A patient is considered cured when he/she reaches the non-reactive state, but this may take
years to achieve, depending upon the stage of the disease and the magnitude of the initial titre.! =’
Our overall objective was to develop a method to determine within a few months after treatment
whether the patient had responded adequately to treatment or whether he/she needs to be
retreated. Previous research has suggested that serologic response to treatment for syphilis, for
patients classified as clinically cured, follows an exponential path.® Our initial exploratory
graphical analysis suggested that with logarithmic transformations of the axes we could describe
this response with a straight line. Assuming that the response to treatment is linear, titres
recorded within the first few months of treatment determine the slope of the treatment response

CCC 0277-6715/97/040373-12 Received September 1995
© 1997 by John Wiley & Sons, Ltd. Revised February 1996



374 M. ROSE AND G. FICK

line. This suggests the development of an action line which could be used to determine, with high
probability, the need for retreatment based on the early response. Since the development of such
an action line depends upon the assumption that the decline of titre is linear on a log-time scale,
the first stage in the analysis is to assess this assumption. Thus, the objective of the analysis
presented here is to provide a rigorous test of this assumption.

2. DATA

We used a subset of data from a study described by Romanowski et al.! In Alberta, during the
years 1983-1985, there was a sudden sustained epidemic of infectious syphilis. Data were
collected on all cases of syphilis and their contacts who were treated in Alberta during the years
1981-1987 inclusive. Each patient with infectious syphilis was treated and advised to return for
follow-up serologic testing at varying intervals, usually at 3, 6 and 12 months, until either
achievement of seroreversion or the physician’s satisfaction with the patient’s response. At each
visit, the patient had one non-treponemal test, the rapid plasma reagin (RPR) test, and two
treponemal tests. The study sample included patients at each stage of infectious syphilis (primary,
secondary or early latent syphilis) either with a first or a repeat episode. Further details of the
study sample and a descriptive analysis appear in Romanowski et al.! This prior analysis used life
table methods to provide cumulative seroreversion rates by stage of disease, initial RPR titre and
disease episode.

3. METHODS
For each individual with N pairs of observations, (x;, y;), i = 1, ..., N, we fitted the simple linear
regression model
Yi=Po+ Bixi + & (i=1,...,N) (1)

where y; is the response variable measured on the ith occasion as the logarithm to base 2 of the
RPR titre, x; is the logarithm (to base 10) of time since treatment on the ith occasion, and ¢; is the
model error. We assume that the ¢; are random with mean zero and constant variance ¢2. We
wish to assess whether this model provides an appropriate description of the response to
treatment.

We generated two exploratory plots for each individual, the first plotted the logarithm (to
base 2) of the titre against time, the second, log titre against the logarithm (to base 10) of time.
Visual inspection of these plots suggested that there was indeed evidence of non-linearity for the
plot of titre against time but that the logarithmic transformation of the time variable rectified this.
To assess whether the logarithmic transform did in fact improve the linearity of the fit, we used an
approximate F-test of linearity described by Hastie and Tibshirani and which involves the use of
scatter plot smoothers.® As these authors pointed out, the exact distributional results are as yet
unavailable for these tests, but they claim that simulation studies have suggested that these
approximations are useful ‘at least as rough guides’ (p. 65). Because of these approximations and
because the type of scatter plot smoother also affects the F-statistics, we chose to use this method
to assess whether the linearity of the plot improved with the use of the logarithmic transformation
(by comparing F-statistics) rather than to use it as an objective statistical test of non-linearity. We
describe this test in Section 3.1.

In addition to assessment of this potential improvement we also wished to test in an objective
way whether the linear model was an adequate representation of the response to treatment with
use of the logarithmic transformation. Determination of the adequacy of a fitted regression model
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is called a test for lack of fit (LOF).1%-1! Joglekar et al.!? provide a review of recent developments
in this field. To test whether the apparent linearity of the response stands up to objective
statistical testing, we chose three different methods to compare for LOF in the hypothesized
model: the near-neighbour approach of Neill and Johnson;!3:1# the groupwise regression ap-
proach of Breiman and Meisal;'® and the test of Utts.'® We describe these methods in Sections 3.2
to 3.5. The advantage of the tests we describe here is that each employs standard statistical
software packages.

3.1. Assessment of the improvement in linearity using the logarithmic transformation of time

A scatter plot smoother is a tool to summarize the trend of a response measurement Y as
a function of an explanatory variable X. Unlike simple linear regression, the scatter plot smoother
does not assume a rigid form for the dependence of Y on X, thus it is often referred to as
a non-parametric regression.’ Using the same notation as for the linear regression in (1) we
describe the model using the scatter plot smoother as

yi=f(x;) + & (i=1,...,N) (2

where f is some unknown and arbitrary function of the predictor variable X and the ¢;
represent zero mean, independently distributed errors. A detailed account of scatter plot
smoothers appears in Hastie and Tibshirani.® We used a cubic smoothing spline to test
whether the linearity of the plot improved with the use of the logarithmic transformation.
Generally speaking, the cubic spline is a composite function that is a piecewise cubic polynomial
defined on several regions joined by a sequence of knots (or breakpoints). These cubic poly-
nomials are constrained to be continuous and to join smoothly at the knots. A natural cubic
spline is a cubic spline with the additional constraint that the function is linear beyond the
boundary points.

Specifically, the cubic smoothing spline fit to our data is that function f(x), with continuous
first and integrable second derivatives, that minimizes the penalized residual sum of squares

N b
S (i —f () + 7 f () de

i=1 a

where A is a fixed constant (the smoothing parameter) and a < x; < ... < x,, < b. The para-
meter A controls the amount of smoothing which is applied to the fit; the smaller the
value of A, the more wiggly the resulting function is. Conversely, larger values of A
result in smoother functions and as A— oo the solution is the least-squares line. There
exists an explicit unique solution to this minimization, which is a natural spline with
interior and boundary knots at the values of x;; i=1,...,N. The equivalent degrees
of freedom for a smooth fit are inversely related to the smoothing parameter,
and should always be greater than 1 with 1 implying a linear fit. The smoothers
(dashed line) applied to the data in Figures 1 and 2 are examples of the cubic smoothing
spline.

To test the hypothesis that the regression is linear, we can use an approximate F-test that
compares two smoothers by thinking of the least square regression line as an ‘infinitely smooth’
function where f(x;) = Bo + B1x; in (2).

Suppose we wish to compare two smooths f; (x) and f,(x) where f; (x) is the linear regression
function and f5(x) is a non-parametric smooth. Let RSS; and RSS, be the residual sum-of-squares
for the two models, and y, and y, the degrees of freedom in the linear and smooth fits,
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Figure 1. Serologic response to treatment as a function of time (linear) for four patients treated for infectious syphilis. The

linear regression line is indicated by the solid line and the fitted scatter plot smoother (cubic spline) is indicated by the

dashed line. The number in the upper right hand corner refers to the study number for comparison with Figure 2 and
Tables I and II

respectively. We can test the hypothesis that the regression is linear by comparing the residual
sum-of-squares for the two models. The statistic for this approximate F-test® is

(RSS; — RSS,)/(y2 — 1)
RSS; /(N —7v3)

with y, — 9, and N — y, degrees of freedom.

3.2. Assessment of the lack of fit of the linear regression model

The classical LOF procedure!®'! described below is well known in situations where samples
have replicate measurements in the space of predictor variables. If the regression model is
incorrect, the residual mean square will tend to be inflated and will not provide a satisfactory
measure of the random variation in the observations. If there is a prior estimate of ¢ available
and the residual mean square is significantly greater than this prior estimate, then this provides
evidence of a lack of fit of the model to the data. Alternatively, when there are replicate
measurements of Y available, one can use these to obtain an estimate of ¢2.1°

Joglekar et al.'? and Neill and Johnson'? provided detailed reviews of methods developed in
recent years to test for LOF when neither of these two options is available. Joglekar et al.
classified the different approaches to testing for LOF as follows: the near-neighbour approach;
the groupwise-regression approach; the checkpoint method; and ‘others’.!? As explained by
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Figure 2. Serologic response to treatment as a function of time (logarithmic) for four patients treated for infectious

syphilis. The linear regression line is indicated by the solid line and the fitted scatter plot smoother (cubic spline) is

indicated by the dashed line. The number in the upper right hand corner refers to the study number for comparison with
Figure 1 and Tables I and 11

Joglekar et al., in the near-neighbour approach one obtains an estimate of ¢ by grouping the
‘near’ observations in the space of predictor variables (pseudoreplicates or near neighbours). The
rationale of the groupwise regression approach is one can well approximate the true relationship
between Y and the predictor variables by piecewise polynomial approximation and thus use
piecewise or groupwise regression to obtain an estimate of ¢2.

By the nature of our data, replication was not possible and our sample sizes were very small
(N < 13 for any one individual) so that we were limited in our choice of methods. We chose from
the near-neighbour category a test developed by Neill and Johnson,'* from the groupwise-
regression approach a method developed by Breiman and Meisal,'® and from the other category
a test suggested by Utts!® that does not require replicates or near-replicates. For a full review of
tests for LOF, we refer the reader to Neill and Johnson and Joglekar et al.'?:!3

The checkpoint approach concerns a testing of the predictive ability of the regression model.
We did not use the checkpoint method to assess the fit of our model, since we took care not to
extend the estimated regression coefficients beyond the range of the observed data. In this article
we assess the LOF of the straight line over the time interval for data collection. In a subsequent
analysis'” we assess the usefulness of the ‘first year slope’ (that is, the slope of the serologic
response for the first year post-treatment) by including this as a predictor variable in a propor-
tional hazards model whose dependent variable was time to seroreversion. For patients who
seroreverted, we recorded the time to seroreversion as the midpoint of the interval between the
last reactive and the first non-reactive test results.
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3.3. The method of Neill and Johnson

Neill and Johnson provide a review of procedures to assess the adequacy of a proposed regression
model in the case of non-replication.!® They indicate that the power of tests based on a pseudo
pure error estimator of the error variance (including Utts'®) may be adversely affected since the
proposed estimators are biased under the hypothesis and/or the alternatives.

Neill and Johnson generalized the pure error lack of fit test to accommodate the case of
non-replication.!* Using a pseudo pure error estimator, which is consistent whether or not the
specified model is correct, they developed a test statistic for model adequacy. They showed that
this test statistic is asymptotically equivalent to the pure error LOF test with replication. The test
is general in the sense that one need not specify the alternative except for power calculations. In
this paper we describe this test as presented by Neill and Johnson, but in terms of the simple linear
model. It is helpful to first recall the classical LOF test. A representation of simple linear
regression with replication is

Vik = Bo + B1xi + a (3)
where i=1,2,...,M, k=1,2, ... ,n; and n; > 1 for at least one i. For simplicity we limit our
discussion to the case when n; = nfor all i = 1, ..., M. Thus the total number of observations in

the sample is N = Mn. We assume that the random errors ¢; are independent and identically
distributed with E(e;) = 0 and E(s%) = ¢ The ratio

_ MS,or _ SSpor/M — 2

F )
where MS; or is the lack of fit mean square and MSpg is the pure error mean square, follows an
F-distribution with M —2 and N —M degrees of freedom.

A representation of simple linear regression without replication is

Vie = Po + Bixu + e (5)

where i=1,2, ... ,M, k=1,2, ... ,n;. As above, we consider only the case where n; = n for
i=1, ..., M. Note that the only difference between the two models (3) and (5) is the additional
subscript k in model (5) that allows for non-replication, that is, we group the data into
M mutually exclusive (near-neighbour) groups.

Let x;; denote the regressor variable for the kth observation in the ith group. We consider that
X 1s of the form x; + 6;; where x; and 0, are fixed observable real numbers. We can think of d;, as
the perturbation of the regressor variable for the kth observation in the ith group.

Let X = (x4, ...,xy) and A = (§;). We naturally chose x; as the mean of the ith group and
hence A = (x;;, — X) is the vector of deviations of the kth observation in the ith group from the
mean of the group. Suppose model (5) is correct and let Y* = Y — Ap. If Y * were observable, it
would conform to the model with replication as given in (3). Then we could assess model
adequacy of the usual LOF test with Y replaced by Y *. Since Y * is not observable, Neill and
Johnson suggest its replacement with an observable vector

Y*=Y —Ap

where f is the least squares estimate of B under model (5). Neill and Johnson show that under
certain conditions Y * is asymptotically equivalent to Y. We replace Y in (5) by Y *, compute
a lack of fit F-statistic as in (4), and denote this F*. We claim evidence against model adequacy if
the observed value of F* exceeds F, CuN—pN— M-
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Neill and Johnson show that F* is asymptotically equivalent, under general alternatives, to the
test statistic obtained when replication actually exists.'* Neill and Johnson claim that a simula-
tion study suggests that this test is useful for small sample sizes. The simulation study included
extreme cases in which the points were not near replicates but were uniformly separated. We
implemented this test by grouping the regressor variable into adjacent pairs and by letting x; be
the mean of the ith group.

3.4. The method of Breiman and Meisal

Breiman and Meisal proposed a groupwise regression approach in which they developed
a data-splitting algorithm to form the groups.'®> We adapted this method to deal with our small
sample sizes and we review it here, using the terminology of Joglekar et al.,'? in terms of simple
linear regression.

Given the data set R that consists of N points (x;,y;), i = 1, ..., N, we fit the simple linear
regression model for which we wish to test lack of fit. Let SSE denote the residual sum of squares
for this regression model. We then subdivide R into two subregions R; and R,. In each of these
two subregions we fit a separate linear least squares regression and let SSE; denote the residual
sum of squares for subregion j; j = 1, 2. The idea behind this test is that if the true relationship is
strongly non-linear in R, then we obtain a much better fit by conducting a separate linear
regression model in each of the two subregions. Breiman and Meisal suggest using the test statistic

(SSE — SSE, — SSE,)/3
F =
(SSE, + SSE,)/N — 6

to test the significance of the reduction in the residual sum of squares due to the splitting, and
which follows an F-distribution with (3, N —6) d.f. when the true relationship is linear in R. They
point out, however, that even if the true relationship is strongly non-linear over R, the random
subdivision of R into R; and R, does not necessarily produce a significantly better fit. Hence, they
recommend repetition of this process, at most K times, each time randomly choosing a new vector
to split R. In their simulation work they used a significance level of 0-01 and K equal to 5.

Breiman and Meisal recommend no further splitting of a subregion if it contains 6 or fewer
points for simple linear regression. They also recommend division in half for points in any one
region, or as close as possible to one half. We decided to investigate lack of fit in the linear model
only for those cases where there were 8 or more data points and when our splitting of these
subregions would yield subregions of 4 or more data points. Although we should have conducted
the subdivision by choosing a random vector, we had severe limitations of our sample sizes. The
maximum number of points for any one individual was 13. Because of the above restrictions this
meant that the maximum number of possible vectors, m, was no more than 5. For each individual
we therefore used all of the m possible vectors. If we find any one of the tests significant, then we
will consider this evidence of lack of fit of the line for this individual.

Although our analysis stopped at this point, the Breiman and Meisal procedure extends the
above procedure by splitting the above region into the two subregions if any one of the tests is
significant. One then repeats the procedure within the subregions until one produces k ‘terminal’
subregions Ry, ..., R;. A region becomes terminal if it either has (i) six or fewer points or
(i) more than six points but none of the attempted splittings produces a significant reduction in
the residual sum of squares. If SSE; is the residual sum of squares for subregion j, Breiman and
Meisal suggest use of

k
BM,, = (1/k) ¥ SSE;
j=1
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as an estimate of ¢2, which we can then compare to the estimate of ¢ obtained from the fitted
model. As pointed out by Breiman and Meisal'® and by Joglekar et al.,'> however, ‘the goodness
of fit of the fitted model will have to be decided by a subjective decision on the part of the
experimenter’ since the distributional properties of the test statistic are hard to obtain.

3.5. The Rainbow test for lack of fit in regression

Utts'® suggests an LOF test, that does not require replicates or a prior estimate of error. This
‘rainbow’ test is based on comparison of a fit over low leverage points with the fit over the entire
data set. As before, we describe the test with the author’s notation but in terms of simple linear
regression.

Suppose that we fit the model as in (1) but that the correct model includes additional terms that
can be expressed as

q
yi=Po+ fixi + Z Opwhi + &
h=1
where the 8 = (0,) is a ¢ x 1 vector of unknown parameters and the wy; are fixed observable real
numbers. We can write the rainbow test for lack of fit as the test of Hy:0 = 0 versus H;:0 # 0. The
test is general since one need not specify either w = (w,;) or 0 to carry out the test.

Let SSEgy; ., be the error sum of squares from fitting model (1) to the entire data set. We then
form a subset of the data that consists only of the data points that have low leverage. Let m be the
number of points in the central region. Let SSEcgntrar be the residual sum of squares obtained
from fitting model (1) to these m observations. The numerator for the test is based on the
difference between these, that is, SSE; or = SSEryrr — SSEcentraL. Utts defined the test statistic
as

Fo SSE; or/N — m
SSEcenTrRAL/M — 2

Utts!® showed that this test statistic has a double non-central F-distribution under H; and
a central F-distribution under H,.

Utts recommends using about half the data points in the central region, since this will
approximately minimize the variance of F under H, and will provide some robustness if a few
outliers are present in either region. To implement this test, we took points with leverage less than
or equal to the median of the diagonal elements of the hat matrix to form the central region. Utts
recommends that for larger data sets, points with leverage less than 2/n could be used. She also
recommends that evidence of non-linearity should be followed by a more detailed investigation of
the data, since rejection of the null hypothesis could also be caused by incorrect assumptions
(such as normally distributed errors and homoscedasticity) rather than lack of fit. In particular
she presents the results of a simulation study which show that the rainbow test has an inflated
o level when the errors are N(0, x?) (extreme heteroscedasticity) or when they are log-normally
distributed. The test, however, behaves well when the errors are normally distributed (N(0, 1)) or
mildly contaminated (N (0, 1) with probability 0-9 and N(0, 9) with probability 0-1.)

4. RESULTS AND DISCUSSION

We have provided in Figure 1 an illustration of the serologic response to treatment for syphilis for
four patients, as a function of time, and in Figure 2 as a function of the logarithm of time. We
chose these four patients simply because they had the maximum number (13) of data points. The
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Table I. Approximate F-statistics to compare linearity before and after transformation

Study Number Untransformed data Transformed data

number of points F P F P
1 13 13-81 0-002 1-37 0-320
105 13 2-00 0-193 0-99 0-445
130 13 28-55 < 0-001 3-56 0-067
261 13 4-86 0-033 2:66 0-119
11 10 4.52 0-046 520 0-034
231 10 9-97 0-01 1176 0-006
27 10 18-39 0-004 1-10 0-430
34 10 13-02 0-008 363 0-100
70 10 804 0-023 2-81 0-148
264 10 2376 0-002 15-39 0-006
364 10 2:79 0-149 297-79 < 0-001
17 9 7-63 0-039 1-19 0-419
104 9 21-77 0-006 361 0-124
133 9 11-90 0-018 852 0-033
151 9 4-38 0-094 2-02 0-254
193 9 4-89 0-080 1-52 0-339
228 9 1274 0-016 1-20 0-416
253 9 192 0-268 312 0-150
255 9 1-08 0-452 1-23 0-408
96 8 3-84 0-149 4-20 0-135
2 8 119-37 0-001 3175 0-009
9 8 2043 0-017 2:79 0-211
12 8 148-63 < 0-001 29021 < 0-001
14 8 893 0-051 1-04 0-488
24 8 1-69 0-338 1-28 0-422
30 8 1-86 0-311 0-52 0-696
75 8 7-60 0-065 228 0-258
92 8 7-33 0-068 2:43 0-242
100 8 313 0-187 1-84 0314
134 8 12-95 0-032 272 0-216
225 8 3-57 0-162 507 0-108
251 8 643 0-080 2:98 0-197
259 8 4-27 0-132 0-30 0-824
283 8 9-22 0-050 331 0-176
311 8 4-69 0-118 575 0-092
318 8 13-82 0-029 0-66 0-627
330 8 4-74 0-117 0-55 0-682

linear regression line is the solid line and the fitted scatter plot smoother (cubic spline) the dashed
line.

As noted above, we felt it necessary that an individual have at least N = 8 data points before we
could realistically assess whether or not the regression line was linear. There were 37 individuals
who met this criterion.

Table I shows comparisons of the approximate F-ratios for the linearity of the regression lines
before and after the log transformation. The F-statistic has 3 and N —5 degrees of freedom,
where N is the number of points for that individual. We have presented the p-values associated
with these approximate tests but we emphasize that our use of these tests is to compare the
evidence of non-linearity before and after application of the log transformation rather than to
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assess significance per se. Our reasons for this are three-fold: (i) the tests are approximate and as
yet the distributional results of the tests are unavailable; (i) the degree of significance depends
upon the type of smoother chosen, and (iii) the significance also depends upon the degree of
smoothing used. By keeping the type of smoother used and the amount of smoothing the same,
we can compare the tests for linearity before and after the logarithmic transformation of time
within individuals. In 28 out of the 37 cases, the size of the F-ratio was smaller with the
logarithmic transform of time. This indicates that the difference between the linear regression
line and the non-linear spline is smaller (that is, the linear regression line provides a closer fit to
the data) with the use of the logarithmic transformation of time. Using the 0-05 level of
significance as a baseline for comparisons, rather than an absolute level to declare significant
evidence against the hypothesis of linearity, we can see that in six cases there was evidence of
non-linearity both before and after the transformation. In 17 cases there was no evidence of
non-linearity either before or after. In one case, there was evidence of non-linearity after but not
before and in 14 cases there was evidence of non-linearity before but not after. On the basis of
these comparisons it appears that the logarithmic transformation does improve the linearity of
the fit.

Having decided that the logarithmic transformation does not provide a better fit, in terms of
linearity, we wished to assess whether this fit was adequate. Table II contains the results of the
three tests described above to assess lack of fit after application of the logarithmic transformation.
For the Breiman and Meisal test, subjects who had eight points had only one test performed in
which the data were split into two groups of four points each. In this case the F-statistic and
p-value for these tests are given. For subjects with more than eight points, however, we performed
more than one test using a different split of the data each time. For example, if an individual had
13 points, we performed four different tests with the following four splits (5 + 8), (6 + 7) (7 + 6)
(8 + 5). In this case, to be conservative we present the maximum F-statistic obtained. Breiman
and Meisal recommend use of an adjusted significance level of o/m in the case of m different splits.
In this case, however, we caution against such formal adjustment procedures, especially since
these tests are not independent.

Perusal of Table II indicates that we have very little evidence of lack of fit of the straight line
response. None of the cases provided consistently small p-values (that is < 0-05) across all three
tests and only two cases (264 and 12) provided small p-values for two out of the three tests. For
both of these cases, visual inspection alone of the plots casts aspersions on our hypothesis. It is
important, however, to view these two cases in the context of our multiple testing of the
hypothesis either with our use of multiple comparison procedures or recognition of our expected
error rate. We can view our data here as an opportunity to examine the null hypothesis that
a straight line adequately describes the serologic response to treatment for syphilis in 37
independent sets of data. Thus, for each of the tests we have performed we can either impose
a p-value of 0-05/37 = 0-00135 to claim evidence of lack of fit for any one individual or recognize
the expected error rate. That is, if the relationship is truly linear we can expect to find two cases
that produce ‘significant’ evidence against the null hypothesis at the 5 per cent level. This is
exactly our observation for both the Utts and Breiman and Meisal tests. For the Neill and
Johnson test, we observed four cases with a p-value less than 0-05. None of these p-values,
however, was below the 0-00135 Bonferroni-adjusted level.

Conversely, in the light of the small sample sizes typical with data of this type, we would find it
helpful to consider whether we had the power to detect evidence against the null hypothesis.
Unfortunately, this is not possible since, for each of the three tests used to assess lack of fit, we
need to specify the alternative hypothesis to assess the power of the test and we lack an alternative
hypothesis any more specific than the vague ‘non-linear’. With our data, it is not feasible to
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Table II. F-statistics and p-values for each of the three lack of fit tests (transformed data)

Study Number Neill and Johnson  Breiman and Meisal Utts
number of points F P F p F p
1 13 2-46 0-152 0-86 0-506 1-13 0-456
105 13 273 1-127 0-37 0-780 0-54 0-766
130 13 0-79 0-593 1-24 0-366 4-33 0-065
261 13 675 0-019 0-89 0-502 1-94 0-242
11 10 1-42 0-334 3-06 0-113 1-98 0-265
231 10 13-00 0-008 3-08 0-129 366 0-116
27 10 1-07 0-441 0-34 0-800 1-72 0-347
34 10 1-70 0-282 4-80 0-082 1-85 0-325
70 10 1-58 0-306 1-09 0-451 7-81 0-061
264 10 393 0-087 10-57 0-023 19-04 0-018
364 10 0-32 0-812 1-26 0-401 —* —*
17 9 0-54 0-682 2-20 0-267 1-04 0-508
104 9 7-89 0-037 223 0-263 0-26 0-887
133 9 5-86 0-060 505 0-108 1-93 0-309
151 9 1-86 0-278 0-30 0-823 1-57 0-371
193 9 304 0-156 2:45 0-240 1-31 0-428
228 9 1-78 0-291 0-53 0-690 9-39 0-048
253 9 2:03 0-253 2:33 0-253 352 0-164
255 9 3-04 0-158 2-01 0-290 1-28 0-438
96 8 0-92 0-470 1-34 0-454 1-67 0-407
2 8 4-60 0-092 29-70 0-033 1-21 0-500
9 8 2:05 0-244 2:03 0-347 2:42 0-313
12 8 36:74 0-003 821 0-111 2061 0-047
14 8 0-63 0-579 013 0-935 361 0-229
24 8 0-27 0-773 0-26 0-854 0-88 0-595
30 8 0-50 0-639 1-57 0-413 0-07 0-987
75 8 0-70 0-549 0-52 0-713 314 0-256
92 8 0-20 0-198 0-30 0-829 394 0-213
100 8 177 0-282 1-06 0-518 0-41 0-798
134 8 0-35 0-724 1-28 0-469 275 0-284
225 8 2:64 0-186 276 0-277 2-72 0-287
251 8 1-15 0-404 0-37 0-789 2:43 0-312
259 8 0-24 0-800 0-36 0-792 0-95 0-570
283 8 0-64 0-576 0-19 0-894 2-32 0-323
311 8 1-09 0-420 424 0-197 2-85 0-276
318 8 197 0-254 0-39 0-774 1-38 0-462
330 8 0-90 0-476 0-20 0-889 0-91 0-585

* Nine points had the same y-values, which made the calculation of the Utts statistic impossible

increase the number of data points for any one individual since it is unreasonable to request more
frequent follow-up of patients for serology.

We acknowledge that our data are serial observations on each patient and therefore do not
satisfy the independence assumption. The tests that we employed, however, are all approxima-
tions to varying (unknown) degrees, especially in the light of our small sample sizes. In particular,
we used the Hastie and Tibshirani test primarily to compare the lack of fit before and after the log
transformation. Although we cannot view the results of this test as ‘accurate’ in terms of the
p-values, they did provide evidence of a change in the lack of fit of the straight line model with
application of the log transformation.
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In summary, based upon a sample size that reflects a clinically feasible number of data points,
the results of these lack of fit tests provide no evidence to contradict our assumption that the
decline of RPR titre in patients treated for syphilis is linear on a log-time scale.
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