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A dichotomous outcome linked to k explanatory 
variables

● The outcome is : 0 [absence of a condition]

                          : 1 [presence of a condition]
● The condition might be a negative characteristic 

like a diagnosis of cancer : D
● The condition might be a positive characteristic 

like a successful surgery : S
● This outcome is to be linked to potential 

modifiers, potential confounders and other 
explanatory variables



  

Negative or Positive : Log Link :
Two different models

x1 , x2 , x3 ... xn   are the explanatory variables :
exposure, age, gender, weight...

p=Pr (D)    log( p)=∑i=0

k
βi xi

q=Pr (not D)    log(q)=∑i=0

k
αi xi



  

Negative or Positive : Logit Link : One Model

x1 , x2 , x3 ... xn   are the explanatory variables :
exposure, age, gender, weight...

p=Pr (D)    log(
p

1− p
)=∑i=0

k
βi xi

q=Pr (not D)    log(
q

1−q
)=∑i=0

k
αi xi

q
1−q

=
1− p

p
=

1
p

1− p

  so αi=−βi



  

A 2x2 Table from a cohort study
When Probability is Risk

                             = Pr(D | E)
                             = Pr(D | not E)p0

p1

log( p)=β0+ β1 E
E=0  : log( p0)=β0

      E=1 : log( p1)=β0+ β1

β1=log( p1)−log( p0)=log
p1

p0

Risk Ratio=RR=
p1

p0

=exp(β1)



  

A 2x2 Table from a cohort study
When Probability is Health

                             = Pr(S | E)
                             = Pr(S | not E)q0

q1

log(q)=α0+ α1 E
E=0  : log( p0)=α0

      E=1 : log( p1)=α0+ α1

α1=log( p1)−log( p0)=log
q1

q0

Health Ratio=HR=
q1

q0

=exp(β1)



  

2 2x2 Tables from a cohort study
                             = P(D | E and Strata j)
                             = P(D | not E and Strata j)p0j

p1j

log( p)=β0+ β1 E+ β2 S+ β3 ES
S=0  : log ( p)=β0+ β1 E   S=1 : log( p)=β0+ β2+ (β1+ β3)E

β1=log ( p10)−log ( p00)=log
p10

p00

β1+ β3=log( p11)−log ( p01)=log
p11

p01

RR0=
p10

p00

=exp(β1)  RR1=
p11

p01

=exp(β1+ β3)



  

Compared with Logistic Regression

When constructing models with the log link, one 
uses the same processes as with models with the 
logit link. Now, with the log link, log odds are 
replaced with log probabilities and odds ratios are 
replaced with probability ratios. All of the 
interpretations are the same except the changes 
noted above.



  

Software Algorithm Trouble

● Error messages like:

 Failure to converge : yikes !

 Backing up : What's that ?

 Concave region : Who cares ?
● Fit gives nonsense like :

 Probabilities that are greater than one !



  

Likelihood Function Oddities?
Additive Model Incorrect?

● Williamson, Eliasziw and Fick (2013) say no to 
both questions.

● Newton-Raphson and Fisher Scoring will 
sometimes fail even though the likelihood 
function is 'reasonable'.

● Up until 2017 : R, Stata and SAS could give 
incorrect results

● Boundaries must be identified. 



  

Constrained Optimization offers a fix

● an adaptive barrier algorithm : 
Lange(1994,2004)

● implemented in R : constrOptim
● required conditions can be checked
● after the correct MLE is found, then 'standard' 

theory can be used to determine SE and Wald 
tests [sometimes]

● boundary check based on tolerance settings



  

lbreg and logbin

● lbreg : R package developed by Bernardo Andrade 
and Mateus Carbone Ananias (most recent version 1.2 
released in January 2018)

 : built around constrOptim

 : paper published in Communications in Statistics

● logbin : R package developed by Mark Donoghoe and 
Ian Marschner (most recent version 2.0.4 released in 
August 2018)

 : offers constrOptim as an option

 : paper published in Journal of Statistical Software



  

A mystery 

● A [possibly incomplete] work by 
Wedderburn[1976] was posthumously 
published. He left out the log link but discussed 
many other links in an important paper.

● He died from a reaction to a bee sting.
● In his doctoral dissertation, Gurbakhshash 

Singh [2017] makes an interesting contribution 
to this mystery. He also derives many closed 
form expressions that are rather surprising.

● We [Singh & Fick] hope to publish some of this 
material 'soon'.



  

An ordinal outcome linked to k 
explanatory variables

● The outcome has J ordered levels 

● There are J-1 ways to 'cut' the outcome

● One can order the levels from best(1) to worst(J)

   then Pr( of being below the jth cut ) is [sorta like]:

   the probability of doing better. 

● One can code the levels from worst(1) to best(J)

   then Pr ( of being below the jth cut ) is [sorta like]:

   the probability of doing worse.



  

Four Levels : Three Cuts : Two Orders

              Complete       Partial     No Change    Progression

             Remission   Remission                       Of Disease

B to W         1                 2                 3                      4

Cut                      1                 2                  3

              

              Progression   No Change     Partial        Complete

              Of Disease                        Remission    Remission

W to B          1                   2                   3                    4

Cut                        1                   2                  3

            



  

The Proportional Probability Model

● Analogous to the proportional odds model

   assumed common to cuts

   assumed common to the
● There are two [different] models based on the 

ordering [coding] of the levels  

p j=Pr (below the jth cut )

log( p j)=κ j+∑i=1

k
βi x i    j=1,2,... J −1

βi

βiκi

κi



  

4x2 table from a cohort study

                                                         Exposure

                              Cut                         Yes              No

Progression  4

                               3

No Change  3

                               2 

Partial           2

                               1

Complete     1

log( p3)     κ3+ β1         κ3

log( p1)     κ1+ β1         κ1

log( p2)     κ2+ β1         κ2



  

For each cut, compare exposed with 
unexposed. 

(κ j+ β1)−κ j=β1

The difference is always 

In other words, this difference is 
assumed common to the cuts.

The exponent is an assumed common 
probability ratio.

The probability of 'doing better' for those
exposed divided by the probability of 'doing
better' for those unexposed.



  

Reverse coding the ordinal outcome

● We again get the exponent being the assumed 
common probability ratio.

● Now - the probability of 'doing worse'.
● Here, many would call this ratio a 'risk ratio';

assumed common to the cuts.
● The two ratios are NOT the same and are not 

functionally related.



  

The Log Cumulative Probability Model

● Analogous to the Generalized Ordered Logit 
Model

Fits J-1 cut specific sets of regression 
coefficients

● Not quite the same as fitting J-1 marginal 
models

● Can be used to assess the proportional 
probability assumption

log( p j)=∑i=0

k
βij xi   j=1,2, ... J −1



  

4x2 table from a cohort study

                                                         Exposure

                              Cut                         Yes              No

Progression  4

                               3

No Change  3

                               2 

Partial           2

                               1

Complete     1

log( p3)     β03+ β13         β03

log( p1)     β01+ β11         β01

log( p2)     β02+ β12         β02



  

For each cut, compare exposed with 
unexposed. 

(β0j+ β1j)−β0j=β1j

The difference is now 

In other words, this difference is now cut specific.

The exponent is a cut specific probability ratio.

The probability of 'doing better' for those
exposed divided by the probability of 'doing
better' for those unexposed.



  

Reverse coding the ordinal outcome

● We again get the exponent being a probability 
ratio now specific to each cut.

● Now - the probability of 'doing worse'.
● Here, these ratios are a 'risk ratios'; one ratio 

for each cut
● The sets of ratios [based on the ordering of the 

outcome] are NOT the same and are not 
functionally related.



  

lcpm and ppm

● lcpm and ppm  : R package developed by 
Gurbakhshash Singh and Gordon Hilton Fick 
(first version released in January 2019)

 : built around constrOptim

cran.rproject.org/web/packages/lcpm/index.html

 : paper under review



  

Example with R : 
Proportional Odds Model

summary(polr(factor(outc)~gender+therapy,data=tumor))

Coefficients:

          Value Std. Error t value

gender  -0.5414     0.2872  -1.885

therapy -0.5807     0.2121  -2.737

Intercepts:

    Value   Std. Error t value

1|2 -1.3180  0.1798    -7.3315

2|3  0.2492  0.1614     1.5443

3|4  1.3001  0.1850     7.0276



  

The Two Proportional Probability 
Models

summary(ppm(outcr~gender+therapy,data=tumor))

         Estimate    StdErr  z.value       

cut_1   -1.705491  0.132597 -12.8623 

cut_2   -0.933873  0.081287 -11.4885 

cut_3   -0.231336  0.042972  -5.3834 

gender  -0.068861  0.112131  -0.6141      

therapy -0.198156  0.075178  -2.6358  

summary(ppm(outc~gender+therapy,data=tumor))

         Estimate    StdErr  z.value      

cut_1   -1.304604  0.096628 -13.5013 

cut_2   -0.484566  0.052475  -9.2342 

cut_3   -0.225795  0.039652  -5.6944 

gender   0.132104  0.047115   2.8039  

therapy  0.050464  0.047426   1.0641 
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