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Summary
We present here a study of ordinal outcomes with a cumulative probability
model. In particular, we consider the log link with the assumption of proportion-
ality. The logit link is currently the most widely used link with ordinal outcomes
in the health research literature. With the logit link, one obtains regression
coefficients that are functions of odds. When the log link is used, one obtains
regression coefficients that are functions of probabilities. While odds might be
preferred with certain studies that are retrospective, many health researchers
may prefer to have direct statements about probabilities. There are two classes
of models with the log link analogous to those with the logit link. We will call
these two classes the Proportional Probability Model (PPM) and the Log Cumu-
lative Probability Model (LCPM). These models introduce a challenge not seen
with the logit link models. The log link models have constraints on the param-
eter space. We must insist that the maximum likelihood estimate (MLE) satisfy
these constraints. We present conditions for the uniqueness of the MLE and we
present other features of the MLE. Several examples and several closed form
expressions for the MLE are presented. While this paper is primarily about the
PPM, our R packagelcpm contains functions to fit both the PPM and the LCPM.

K E Y W O R D S
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1 INTRODUCTION

Models for an ordinal outcome were presented by Aitchison and Silvey1 and later by McCullagh.2 They studied Gener-
alized Linear Models with the probit link and the logit link, respectively. Recently, Blizzard et al3 have used the log link.
Blizzard suggests the use of the log link for many different models. In these models, we will show that the use of the log
link is now realistically available for health researchers in many settings. We will see that the log link introduces linear
constraints upon the parameter space.

Let the outcome variable y be a categorical response with J ordered categories. With the covariate vector x′
i , the Log

cumulative probability model (LCPM) is log[P(y ≤ j|xi)] = 𝛼j + x′
i𝜷 j for cuts j = 1,… , (J − 1) and subjects i = 1,… ,n.

Abbreviations: PPM, Proportional Probability Model; LCPM, Log Cumulative Probability Model; MLE, Maximum Likelihood Estimate; CFE, Closed
Form Expression
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There are parameters 𝛼j and 𝜷 j for each cut j. The proportional probability model (PPM) is an LCPM which assumes the
same 𝜷 j = 𝜷 for all cuts j. The PPM assumes that P(y ≤ j) and P(y ≤ j′) are proportional. The constant of proportionality
is e𝛼j−𝛼j′ for j ≠ j′. The linear inequality constraints in the PPM are

1. from the log link: 𝛼j + x′
i𝜷 ≤ 0 for i = 1,… ,n and j = 1,… , (J − 1) which ensures 0 ≤ P(y ≤ j|xi) ≤ 1 and

2. from the cumulative probability: 𝛼j ≤ 𝛼j+1 ≤ 0 which ensures the cumulative probability is monotonic increasing.

Computation of the maximum likelihood estimate (MLE) for the PPM requires optimization methods that can manage
the linear inequality constraints. Blizzard et al3 developed methods using PROC CATMOD in SAS but their proposed MLE
might not satisfy the constraints. Prior to the models formulated by Blizzard, Williams4 developed oglm in Stata for
ordinal regression models. This methodology permitted the use of a log link, but we regard it as preliminary to our work.
Indeed, Williams noted “that link(log) is considered experimental and possibly wrong"5 in a help file. To our knowledge,
this early work had not been implemented in R.6 TheVGAM7 package using functionvglm does not manage the inequality
constraints on the parameter space. Without the constraints, incorrect parameter estimates can result in clearly incorrect
probability estimates that are larger than one, see Appendix A.2 for an example. We have introduced the R package lcpm8

which contains preliminary function ppm to determine the MLE for a PPM with linear inequality constraints on the
parameter space.

There is a lengthy history9-29 of proposed MLE and non-MLE methods for estimating functions of probabilities (like
ratios of probabilities, risk ratios, and other forms). Maximum likelihood estimation with a Log Binomial Model9 (LBM)
subject to constraints x′

i𝜷 ≤ 0,∀i is a similar problem to the MLE determination with the PPM. Recent developments in
the LBM,25,29 have used the function constrOptim in R. This function uses an adaptive barrier algorithm of Lange30,31

which manages the linear inequality constraints of the LBM. We useconstrOptim in our packagelcpm for determining
the MLE of the PPM with the linear inequality constraints given above.

This article provides results for the MLE with the PPM . In Sections 3.3 and A.1, the conditions for the uniqueness of
the MLE are developed. Section 3.4 develops closed form expressions (CFEs) for the MLE in certain settings. These will
be used in Section 4 to assess the use of the function ppm in determining the MLE. A brief discussion of conditions for an
MLE on a boundary is presented in Section 5.

2 NOTATION

In this section, we introduce some notation that will be used throughout the article. Let j denote the ordinal (ordered) cat-
egories of an outcome variable y. Let y′

i = (yi1, yi2,… , yiJ) have components yij which denote the indicator for observation
unit i and category j, where i = 1,… ,n. For the categories, let the cumulative probability be P(y ≤ j|xi) = 𝜋1(xi) +… +
𝜋j(xi) where P(y = j|xi) = 𝜋j(xi), x′

i is ith row of covariates of the n × p covariate matrix X and
∑

j𝜋j(xi) = 1. The y′
i are

then each categorical distributions with probabilities (𝜋1(xi),… , 𝜋J(xi))where {𝜋1(xi) = P(y = 1|xi),𝜋j(xi) = P(y ≤ j|xi) −
P(y ≤ j − 1|xi) for j = 2,… J − 1 and 𝜋J(xi) = 1 − P(y ≤ J − 1|xi)}. The y′

i are assumed to be statistically independent. We
then have:

X =
⎡⎢⎢⎢⎣

x11 x12 … x1p
x21 x22 … x2p
… … … …
xn1 xn2 … xnp

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣

x′
1

x′
2
⋮

x′
n

⎤⎥⎥⎥⎦ and corresponding outcomes
⎡⎢⎢⎢⎣

y′
1

y′
2
⋮

y′
n

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣

y11 y12 … y1J
y21 y22 … y2J
… … … …
yn1 … … ynJ

⎤⎥⎥⎥⎦ .
We will now see that we can group by distinct covariate patterns. Let us define a second set of matrices C and N. C

contains the distinct covariate rows of X . We suppose that C is full column rank with m ≤ n different groups or covariate
sets. For each row of C, let nkj denote the count of the number of outcomes for group k and category j. Let N denote a
matrix of the (nkj) counts of the number of outcomes for each group k and ordinal categories j. Also let N (j) be jth column
of N and let N (−j) be N without the jth column. The matrices C and N are

C =
⎡⎢⎢⎢⎣

c11 c12 … c1p
c21 c22 … c2p
… … … …
cm1 … … cmp

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣

c′1
c′2
⋮

c′m

⎤⎥⎥⎥⎦ and corresponding counts N =
⎡⎢⎢⎢⎣

n11 n12 … n1J
n21 n22 … n2J
… … … …

nm1 … … nmJ

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣

n′
1

n′
2
⋮

n′
m

⎤⎥⎥⎥⎦ .
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Denote the sum of column j of N as n(j) =
∑m

k=1 nkj and denote the sum of row k of N as n(k) =
∑J

j=1 nkj. Note that n(j) > 0
and n(k) > 0, otherwise the respective information for the column (category) or row (group) can be removed from the
matrix N. We can also note that n′

k is multinomial with the number of trials n(k) and probabilities (𝜋1(ck),… , 𝜋J(ck)))
where the n′

k are statistically independent.

3 THE PROPORTIONAL PROBABILITY MODEL

If we now assume that 𝛽 is the same for each cut (j), we will call this model the PPM:

log[P(y ≤ j|xi)] = 𝛼j + x′
i𝜷.

As is the case with the proportional odds model, the 𝛽 are said to be assumed common to the cuts (j) and the 𝛼j are
assumed common to the 𝜷. The estimation involves (J − 1) components of𝜶 and p components of 𝜷. We note that there are
restrictions on the parameter space ΩPPM . The log of a probability is negative and so 𝛼j1 + X𝜷 ≤ 0 for all j. The cumulative
probability must increase with each successive cut and so 𝛼j+1 ≥ 𝛼j, ∀j. The parameter space has constraints: ΩPPM =
{(𝜶,𝜷)|𝛼j + x′

i𝜷 ≤ 0, 𝛼j+1 ≥ 𝛼j, j = 1,… , (J − 1),∀i} , where 𝜶 = (𝛼1,… , 𝛼J−1)′, 𝜷 = (𝛽1,… , 𝛽p)′. In Section 5 we provide
consideration to the boundary of ΩPPM which is {(𝜶, 𝜷)|𝛼j + x′

i𝜷 = 0} ∪ {𝜶|𝛼j+1 = 𝛼j}.
The likelihood function can be expressed as

L(𝜶 , 𝜷) = c
n∏

i=1

[ J∏
j=1

𝜋j(xi)yij

]
.

The log-likelihood function is

𝓁(𝜶 , 𝜷) =
n∑

i=1
yi1 log

(
exp(𝛼1 + x′

i𝜷)
)
+

n∑
i=1

J−1∑
j=2

yij log
(
exp(𝛼j + x′

i𝜷) − exp(𝛼j−1 + x′
i𝜷)

)
+

n∑
i=1

yiJ log
(
1 − exp(𝛼J−1 + x′

i𝜷)
)
+ a.

The log-likelihood can be rewritten using the groups introduced in the previous section:

𝓁(𝜶 , 𝜷) =
m∑

k=1
nk1

(
𝛼1 + c′k𝜷

)
+

m∑
k=1

J−1∑
j=2

nkj
(

c′k𝜷 + log(exp(𝛼j) − exp(𝛼j−1))
)
+

m∑
k=1

nkJ log
(
1 − exp(𝛼J−1 + c′k𝜷)

)
+ a,

3.1 lcpm R package

Determining the MLE requires finding (𝜶̂ , 𝜷̂) that maximizes 𝓁(𝜶, 𝜷), subject to the constraints on the parameter space
ΩPPM . Our R package lcpm contains a function ppm which determines the MLE for the PPM using the R function
constrOptim.

constrOptim is a part of the stats package in R. It provides an adaptive barrier optimization algorithm30 for
the minimization of a function subject to equality and inequality constraints. This adaptive barrier approach turns
out to be precisely what we need to determine the MLE. To briefly introduce these details, we note that this min-
imization can be accomplished by constructing a surrogate function 𝓁∗(𝜶, 𝜷), which consists of a barrier function
b(𝜶, 𝜷) and a positive tuning parameter 𝜇. The surrogate function 𝓁∗(𝜶, 𝜷) = −𝓁(𝜶, 𝜷) + 𝜇b(𝜶, 𝜷) is then minimized
over decreasing values of 𝜇 (that is as 𝜇 → 0, 𝓁∗ → −𝓁). The algorithm addresses the minimization problem of a
convex function subject to the concave inequality constraints. The PPM inequality constraints in constrOptim
must be expressed as −𝛼j − x′

i𝜷 ≥ 0 and 𝛼j+1 − 𝛼j ≥ 0. This algorithm requires the specification of inequality con-
straints, the selection of feasible starting values, and the monitoring of circumstances when the MLE is on or near
the boundary.
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3.2 Score and Hessian

The score function S(𝜶 , 𝜷) = (S′
𝛼,S′

𝛽)
′ is a (J − 1 + p) × 1 vector consisting of (J − 1) × 1 vector S′

𝛼 of derivatives of the
log-likelihood with respect to 𝛼j for j = 1,… , (J − 1) and p × 1 vector S′

𝛽 of derivatives of the log-likelihood with respect
to 𝛽l for l = 1,… , p. The elements of S𝛽 are given by:

𝜕𝓁(𝜶 , 𝜷)
𝜕𝛽l

=
m∑

k=1

J−1∑
j=1

nkjckl −
m∑

k=1
nkJckl

exp(𝛼J−1 + c′k𝜷)
1 − exp(𝛼J−1 + c′k𝜷)

,

which is defined for {(𝛼J−1, 𝜷)|𝛼J−1 + c′k𝜷 < 0}. The elements of S𝛼 are given by:

𝜕𝓁(𝜶 , 𝜷)
𝜕𝛼1

= n(1) − n(2) exp(𝛼1)
exp(𝛼2) − exp(𝛼1)

, (1)

𝜕𝓁(𝜶 , 𝜷)
𝜕𝛼J−1

= n(J−1) exp(𝛼J−1)
exp(𝛼J−1) − exp(𝛼J−2)

−
m∑

k=1
nkJ

exp(𝛼J−1 + c′k𝜷)
1 − exp(𝛼J−1 + c′k𝜷)

,

and for 1 < j < J − 1

𝜕𝓁(𝜶 , 𝜷)
𝜕𝛼j

= −n(j+1) exp(𝛼j)
exp(𝛼j+1) − exp(𝛼j)

+ n(j) exp(𝛼j)
exp(𝛼j) − exp(𝛼j−1)

, (2)

which is defined for {(𝜶, 𝜷)| −∞ < 𝛼J−1 + c′k𝜷 < 0, 𝛼j+1 > 𝛼j}. As noted by Liu et al,32 the Hessian (H) will be a patterned
matrix. The observed Fisher Information matrix (−H) is used in the estimation of the variance of the parameters.33

H =
[

H𝜶𝜶 H𝜶𝜷

H′
𝜶𝜷

H𝜷𝜷

]
.

In assessing the terms of the Hessian, denote

𝛿k = nkJ
exp(𝛼J−1 + c′k𝜷)

(1 − exp(𝛼J−1 + c′k𝜷))2
and 𝛾k,j+1 = nk(j+1)

exp(𝛼j+1 + 𝛼j)
(exp(𝛼j+1) − exp(𝛼j))2 .

H𝜶𝜶 is a (J − 1) × (J − 1) triband matrix of the associated second partial derivatives with respect to 𝜶 which has
components

Ast =
𝜕2𝓁

𝜕𝛼s𝜕𝛼t
and is H𝜶𝜶 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

A11 A12 0 0 … 0 0 0
A12 A22 A23 0 … 0 0 0
0 A23 A33 A34 … 0 0 0
0 0 A34 A44 … 0 0 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮
0 0 0 0 … AJ−3,J−3 AJ−2,J−3 0
0 0 0 0 … AJ−2,J−3 AJ−2,J−2 AJ−2,J−1
0 0 0 0 … 0 AJ−2,J−1 AJ−1,J−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The second derivatives are as follows: A11 = −
∑m

k=1 𝛾k2, AJ−1,J−1 =
∑m

k=1(−𝛿k − 𝛾k(J−1)), A12 =
∑m

k=1 𝛾k2, AJ−2,J−1 =∑m
k=1 𝛾k(J−1), and for 1 < j < J − 1: Ajj =

∑m
k=1(−𝛾k(j+1) − 𝛾kj) and Aj+1,j =

∑m
k=1 𝛾k(j+1).

H𝜶𝜷 is a (J − 1) × p matrix of zeros with one row consisting of the mixed partial derivatives with respect to 𝜶 and 𝜷

which has components

Ml =
𝜕2𝓁(𝜶, 𝜷)
𝜕𝛼J−1𝜕𝛽l

= −
m∑

k=1
ckl𝛿k and is H𝜶𝜷 =

⎡⎢⎢⎢⎢⎢⎣

0 0 0 0 … 0 0 0
0 0 0 0 … 0 0 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮
0 0 0 0 … 0 0 0
0 0 0 0 … 0 0 0

M1 M2 M3 M4 … Mp−2 Mp−1 Mp

⎤⎥⎥⎥⎥⎥⎦
.

H𝜷𝜷 is a p × p matrix of the second partial derivatives with respect to 𝜷 which has components
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Bol =
𝜕2𝓁(𝜶, 𝜷)
𝜕𝛽o𝜕𝛽l

= −
m∑

k=1
cklcko𝛿k and is H𝜷𝜷 =

⎡⎢⎢⎢⎢⎣
B11 B12 … B1(p−1) B1p
B21 B22 … B2(p−1) B2p
⋮ ⋮ ⋱ ⋮ ⋮

B(p−1)1 B(p−1)2 … B(p−1)(p−1) B(p−1)p
Bp1 Bp2 … Bp(p−1) Bpp

⎤⎥⎥⎥⎥⎦
.

3.3 Uniqueness of the MLE for the PPM

An MLE will be unique if there is only one maximum of the log-likelihood function. For generalized linear models,
Wedderburn34 used strict concavity35 of the log-likelihood function to determine conditions for which there is at most one
maximum of the log-likelihood function. This section contains the conditions for the uniqueness of the MLE for a PPM.

Recall the partitioning of the Hessian from Section 3.2. Let C∗ = [1⋮C] be a m × (p + 1) matrix which attaches the
m × 1 vector of ones to the m × p matrix C. Also let I = {k|nkJ = 0} be an index set and C∗

−I be a (m − |I|) × (p + 1) matrix
of C∗ without rows given by I.

Theorem 1. For the PPM and for {(𝜶, 𝜷)| −∞ < 𝛼J−1 + c′k𝜷 < 0, 𝛼j+1 > 𝛼j}:

1. If C∗
−I is full column rank then H is negative definite and the log-likelihood is strictly concave.

2. If C∗
−I is not full column rank then H is negative semi-definite and the log-likelihood is concave.

The details and the proof of Theorem 1 is presented in Appendix A.1. Theorem 1 shows that the log-likelihood for the
PPM is concave with restrictions for strict concavity based on counts in N and if C∗

−I is full column rank. These conditions
are assessed using tools in R.

3.4 Closed form expressions

We now offer some CFEs for the MLE. These expressions enable the comparison of MLEs determined by numerical
methods against the CFE. Let J be the total possible ordinal values for response y and let k be the total number of possible
covariate sets and that n(j) > 0, ∀j. The score function from Section 3.2 is used to determine critical points.

Since n(1) > 0 and n(2) > 0, setting 𝜕𝓁
𝜕𝛼1

= 0 from Equation (1) and rearranging gives: exp(𝛼2 − 𝛼1) = ( n(2)

n(1) + 1) and for 1 <

j < J − 1, since n(j+1) > 0 and n(j) > 0, setting 𝜕𝓁
𝜕𝛼j

= 0 from Equation (2) and rearranging gives: exp(𝛼j+1 − 𝛼j) =
(∑j+1

q=1 n(q)∑j
q=1 n(q)

)
and exp(𝛼J−1 − 𝛼J−2) =

(∑J−1
q=1 n(q)∑J−2
q=1 n(q)

)
. Apply these expressions in the following derivative:

𝜕𝓁(𝜶, 𝜷)
𝜕𝛼J−1

= n(J−1) exp(𝛼J−1)
exp(𝛼J−1) − exp(𝛼J−2)

−
m∑

k=1
nkJ

exp(𝛼J−1 + c′k𝜷)
1 − exp(𝛼J−1 + c′k𝜷)

=
J−1∑
q=1

n(q) −
m∑

k=1
nkJ

exp(𝛼J−1 + c′k𝜷)
1 − exp(𝛼J−1 + c′k𝜷)

. (3)

Note that
∑J−1

q=1 n(q) can be rewritten as
∑m

k=1
∑J−1

j=1 nkj. Now the remaining derivatives with respect to 𝛼J−1 and 𝛽l are written
as

⎡⎢⎢⎢⎢⎢⎣

𝜕𝓁
𝜕𝛼J−1
𝜕𝓁
𝜕𝛽1
⋮
𝜕𝓁
𝜕𝛽p

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m∑
k=1

J−1∑
j=1

nkj −
m∑

k=1
nkJ

exp(𝛼J−1 + c′k𝜷)
1 − exp(𝛼J−1 + c′k𝜷)

m∑
k=1

J−1∑
j=1

nkjck1 −
m∑

k=1
nkJck1

exp(𝛼J−1 + c′k𝜷)
1 − exp(𝛼J−1 + c′k𝜷)

⋮
m∑

k=1

J−1∑
j=1

nkjckp −
m∑

k=1
nkJckp

exp(𝛼J−1 + c′k𝜷)
1 − exp(𝛼J−1 + c′k𝜷)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= C∗′N (−J)1 − 𝚲′diag(N (J)

−I )𝚫−I (4)
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where C∗ = [1⋮C] denotes a ones vector attached to the C matrix, N(−J) is a m × (J − 1) matrix of the N
matrix without the Jth column, 1 is a (J − 1) × 1 vector of ones, 𝚲 = C∗

−I is a (m − |I|) × (p + 1) matrix of C∗

without the rows given by index set I, N (J)
−I is a (m − |I|) × 1 vector of the Jth column of the N matrix with-

out the elements indexed by I, diag(N (J)
−I ) is a (m − |I|) × (m − |I|) identity matrix with diagonal N (J)

−I and Δ−I
is a (m − |I|) × 1 vector of the Δ vector without the elements indexed by I where Δm×1 = (Δ1,… ,Δm)′ and
Δk = exp(𝛼J−1+c′k𝜷)

1−exp(𝛼J−1+c′k𝜷)
.

The critical points are obtained by solving the system: C∗ ′N (−J)1 − 𝚲′diag(N (J)
−I )𝚫−I = 0(p+1)×1. A special case is if

nkJ > 0 for all k then critical points are obtained by solving C∗ ′ [N (−J)1 − diag(N (J))𝚫
]
= 0(p+1)×1.

Theorem 2. For the system of equations given above:

1. if C∗ is invertible and nkJ > 0 for all k then a closed form of MLE is given by

(𝛼J−1, 𝜷
′)′ = (C∗)−1 log(𝚫∕(1+𝚫)),

where 𝚫 = diag(N (J))−1 [N (−J)1
]

and the estimates of (𝛼1, 𝛼2,… , 𝛼J−2) are given by solving the following

𝛼J−2 = 𝛼J−1 − log

(∑J−1
l=1 n(l)∑J−2
l=1 n(l)

)
and then backward recursively using 𝛼j = 𝛼j+1 − log

(∑j+1
l=1 n(l)∑j
l=1 n(l)

)
.

2. if (m − |I|) = (p + 1) and 𝚲 is invertible then a closed form of MLE is given by

(𝛼J−1, 𝜷
′)′ = (𝚲)−1 log(𝚫−I∕(1+𝚫−I)),

where 𝚫−I = diag(N (J)
−I )

−1𝚲′−1
[

C∗′N (−J)1
]

and the estimates of (𝛼1, 𝛼2,… , 𝛼J−2) are given by solving the following

𝛼J−2 = 𝛼J−1 − log

(∑J−1
l=1 n(l)∑J−2
l=1 n(l)

)
and then backward recursively using 𝛼j = 𝛼j+1 − log

(∑j+1
l=1 n(l)∑j
l=1 n(l)

)
.

Proof of Theorem 2. The proof is constructed by solving the systems, given prior to the theorem, to determine the crit-
ical points. Then apply Theorem 1 to determine that the log-likelihood is strictly concave and the critical point is a
maximum. ▪

Now notice that the CFEs are based on critical points. If the expression gives a maximum that is outside the parameter
space then the MLE is on a boundary of the parameter space since the log-likelihood is strictly concave.

4 EXAMPLES

This section contains several examples. Example 4.1 demonstrates the use of CFEs from Section 3.4 compared with the
MLE found by using ppm. Example 4.2 demonstrates the use of the CFEs in comparison with MLE found by ppm for
datasets found in the literature. Examples 4.3 and 4.4 provide additional applications of ppm. Finally, Example 4.5 shows
that ppm can determine an MLE on a boundary.

4.1 Simulation

This example applies the CFE from Theorem 2 where C∗
−I = C∗ is invertible and nkJ > 0 for all k. Suppose there are J = 3

ordinal categories and a single binary covariate x = {0, 1} with m = 2 unique covariate vectors. The PPM is:

log[P(y ≤ j|x)] = 𝛼j + 𝛽1x,



SINGH and FICK 7

for cuts j = 1, 2. For the PPM, 𝛼j+1 ≥ 𝛼j for all j and {(𝜶, 𝜷)|𝛼j + 𝛽1x ≤ 0} for all j. Let N denote a matrix of the number of
individuals in each of the m groups with J = 3 ordinal values.

N =
[

n11 n12 n13
n21 n22 n23

]
, and C∗ =

[
1 0
1 1

]
.

Note that C∗ is full column rank and invertible. Applying Theorem 1, the log-likelihood is strictly concave with at most
one MLE in the interior of the parameter space (ΩPPM).

From Theorem 2, C∗ ′ [N (−J)1 − diag(N (J))𝚫
]
= 0 gives the following:

(𝛼J−1, 𝜷)′ = (C∗)−1 log(𝚫∕(1+𝚫)),

[
𝛼2
𝛽1

]
=
[

1 0
−1 1

] [
log(Δ1∕(1 + Δ1))
log(Δ2∕(1 + Δ2))

]
=
[

log(Δ1∕(1 + Δ1))
log(Δ2∕(1 + Δ2)) − log(Δ1∕(1 + Δ1))

]
,

where 𝚫 = diag(N (J))−1 [N (−J)1
]
, giving Δ1 = n11+n12

n13
and Δ2 = n21+n22

n23
. The MLE is:

𝛼2 = log
(

n11 + n12

n11 + n12 + n13

)
, (5)

𝛽1 = log
(

n21 + n22

n21 + n22 + n23

)
− log

(
n11 + n12

n11 + n12 + n13

)
, (6)

and the estimates of (𝛼1, 𝛼2,… , 𝛼J−2) are given by solving the following expression using 𝛼J−2 = 𝛼J−1 − log
(∑J−1

l=1 n(l)∑J−2
l=1 n(l)

)
giving

𝛼1 = log
(

n11 + n12

n11 + n12 + n13

)
− log

(
n11 + n21 + n12 + n22

n11 + n21

)
. (7)

The CFEs are compared with the MLE determined by using ppm in R. Table 1 displays the MLE results for the
closed form and ppm. 15 625 datasets were constructed from n11, n12, n13, n21, n22 and n23 by taking values from vec-
tor (1, 2, 5, 10, 100)′. For each dataset, the MLE was computed by formula and ppm (using default controls in ppm).
The absolute difference in ppm and CFE MLE for each parameter was on average (7.2297e-07, 4.0111e-07, 6.7437e-07)
with minimum absolute difference (4.2402e-11, 4.9759e-12, 5.0844e-12) and maximum absolute difference (8.6504e-06,
7.1547e-06, 1.2319e-05). This example compared the closed form MLE with the MLE from ppm.

4.2 Application 1: Tonsil Dataset

In this example, we consider the Tonsil dataset in McCullagh,2 which is given in Table 2. There are 1398 observations
pertaining to the outcome of the size of tonsils: 1 - not enlarged, 2 - enlarged, and 3 - greatly enlarged. The covariate here
is an indicator variable for carrier (x = {0, 1}) for noncarriers and carriers of Streptococcus pyogenes. Using this data, the
following model is assumed: log[P(y ≤ j|x] = 𝛼j + 𝛽1x, where C|N is

C|N =
[

0 497 560 269
1 19 29 24

]
,

and where J = 3 and j = 1, 2. The CFEs (5) to (7) can be applied. The MLE from CFE and ppm are compared in the left
portion of Table 3.
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(n11,n12,n13)

(n21,n22,n23) MLE CFE ppm

(1, 1, 1) 𝛼1 −1.09861 −1.09861

(1, 1, 1) 𝛼2 −0.40547 −0.40546

𝛽1 0 −6.58e-07

(1, 1, 1) 𝛼1 −1.32176 −1.32175

(1, 2, 10) 𝛼2 −0.40547 −0.40546

𝛽1 −1.06087 −1.06087

(1, 1, 5) 𝛼1 −1.94591 −1.94591

(2, 2, 100) 𝛼2 −1.25276 −1.25276

𝛽1 −2.00533 −2.00533

(1, 1, 2) 𝛼1 −1.73460 −1.73460

(5, 10, 100) 𝛼2 −0.69315 −0.69314

𝛽1 −1.34373 −1.34374

(1, 1, 1) 𝛼1 −1.09861 −1.09861

(10, 10, 100) 𝛼2 −0.40547 −0.40547

𝛽1 −1.38629 −1.38629

(1, 1, 5) 𝛼1 −1.94591 −1.94591

(100, 100, 10) 𝛼2 −1.25276 −1.25276

𝛽1 1.20397 1.20397

(1, 5, 100) 𝛼1 −4.66344 −4.66344

(1, 5, 100) 𝛼2 −2.87168 −2.87168

𝛽1 0 2.94e-07

(100, 1, 5) 𝛼1 −0.07523 −0.07523

(10, 2, 100) 𝛼2 −0.04832 −0.04832

𝛽1 −2.18527 −2.18527

(100, 100, 100) 𝛼1 −1.09861 −1.09861

(100, 100, 100) 𝛼2 −0.40547 −0.40547

𝛽1 0 6.19e-08

T A B L E 1 MLE by CFE and ppm for Example 4.1

Carrier Not Greatly
status enlarged enlarged enlarged Total

Noncarrier 497 560 269 1326

Carrier 19 29 24 72

Total 516 589 293 1398

T A B L E 2 Tonsil Dataset2 for Example 4.2

For the model log[P(y ≤ j|x)] = 𝛼j + 𝛽1x, the interpretation of 𝛽1 is common to both cuts (j = 1, 2) with 𝛽1 = log[P(y ≤

j|x = 1)∕P(y ≤ j|x = 0)]. 𝛽1 estimates the log of the ratio of cumulative probabilities for carriers relative to noncarriers.
This is an estimate of the log of a probability ratio. e−0.178732 = 0.83633 is the estimate of the ratio from the PPM.

We also note that if the outcome was reversely coded: 3—not enlarged, 2—enlarged and 1—greatly enlarged, the
CFEs (5)-(7) can still be applied. The model could be rewritten as log[1 − P(y ≤ j|x)] = 𝜅j + 𝛾1x and 𝛾1 = log[(1 − P(y ≤

j|x = 1))∕(1 − P(y ≤ j|x = 0))]. The MLE from CFE and ppm are compared in the right portion of Table 3. For the logit and
probit links, the relationship between the MLE for the forward and reversely coded outcome is a sign change. However,
for the log link there is no simple relationship between the MLE for the forward and reversely coded outcome.
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T A B L E 3 Maximum likelihood estimate (MLE) by
closed form expression (CFE) and ppm or Example 4.2

MLE CFE ppm MLE CFE ppm

𝛼1 −0.988226 −0.988226 𝜅1 −1.571721 −1.571721

𝛼2 −0.226732 −0.226732 𝜅1 −0.469702 −0.469703

𝛽1 −0.178733 −0.178732 𝛾1 0.163328 0.163327

T A B L E 4 Maximum likelihood estimate (MLE) by ppm
for Example 4.3

MLE ppm SE MLE ppm SE

𝛼1 -1.53817 0.14259 𝜅1 −0.82768 0.08097

𝛼2 −0.44587 0.08829 𝜅2 −0.22867 0.05510

𝛽1 0.11979 0.11098 𝛾1 −0.11682 0.07908

𝛽2 −0.39158 0.12255 𝛾2 0.10010 0.06128

4.3 Application 2: Endometrial cancer data

We now consider data collected from a study of endometrial cancer by Hill et al.36 The study involves 288 women diag-
nosed with endometrial cancer. Explanatory variables include: Race (x1: coded as 0 – white and 1 – black) and Estrogen
(x2: coded as 0 - not used and 1 - used). Ordinal outcomes are tumor grade (coded 2 - well differentiated, 1 - moder-
ately differentiated, and 0 - poorly differentiated). Using this data, we will explore the following model: P[y ≤ j|x1, x2] =
𝛼j + 𝛽1x1 + 𝛽2x2.

C|N =
⎡⎢⎢⎢⎣

0 0 15 31 24
0 1 16 41 79
1 0 18 28 19
1 1 4 5 6

⎤⎥⎥⎥⎦ .
For the model log[P(y ≤ j|x1, x2)] = 𝛼j + 𝛽1x1 + 𝛽2x2, the interpretation of 𝛽2 is assumed common to both cuts and

assumed common to blacks and whites with 𝛽2 = log[P(y ≤ j|x2 = 1)∕P(y ≤ j|x2 = 0)]. 𝛽2 estimates the log of the ratio of
cumulative probabilities for those receiving Estrogen and those not receiving Estrogen assumed common to race and cuts.
e−0.39158 = 0.67599 is the estimate of the ratio from the PPM.

We also note that if the outcome was reversely coded: 0 - well differentiated, 1 - moderately differentiated, and 2 -
poorly differentiated. The model could be rewritten as log[1 − P(y ≤ j|x1, x2)] = 𝜅j + 𝛾1x1 + 𝛾2x2. The MLE is presented
in the right portion of Table 4. Not only do the MLEs change but the estimated standard errors are all smaller for the
reversely coded outcome model.

4.4 Application 3: Neuropsychiatric disturbance

Now consider an example from Hosmer et al37 and the dataset Adolescent Placement data found in R packageaplor3e.38

The study involves 508 subjects. The explanatory variables include: centered age (x1), the square of centered age (x2),
state custody (x3: coded as 0 - No, 1 - Yes), race (x4: coded as 0 - white and 1 - non-white), and emotional disturbance (x5:
coded as 0 - not severe and 1 - severe). The ordinal outcome is neuropsychiatric disturbance (coded 0 - none, 1 - mild,
2 - moderate and 3 - severe). Using this data, we will explore the following model: P[y ≤ j|x1, x2, x3, x4, x5] = 𝛼j + 𝛽1x1 +
𝛽2x2 + 𝛽3x3 + 𝛽4x4 + 𝛽5x5 + 𝛽6x4x5. The MLE can be found in the left portion of Table 5. The MLE is identified to be on a
boundary. The position on the boundary can be identified by two subjects (one male and one female) with the following
covariates: x1 = −1.73759, x2 = 3.01923, x3 = 1, x4 = 0, x5 = 0.

We also note that if the outcome is reversely coded: 0 - severe, 1 - moderate, 2 - mild and 3 - none and if the model is
rewritten as log[1 − P(y ≤ j|x1, x2, x3, x4, x5 )] = 𝜅j + 𝛾1x1 + 𝛾2x2 + 𝛾3x3 + 𝛾4x4 + 𝛾5x5 + 𝛾6x4x5 then the MLE is presented in
the right portion of Table 5 and it is not on a boundary. Not only do the MLEs from the forward coding change for the
reverse coded outcome but the estimated standard errors are all larger for the reversely coded outcome model. Interest-
ingly, the P-value associated with the interaction term is .3125 in the first model but for the reverse coded outcome the
P-value is .01971. As noted earlier, the results of forward and reverse coded outcomes can lead to different estimates, SEs
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MLE ppm SE MLE ppm SE

𝛼1 −0.33664 0.03853 𝜅1 −2.732709 0.196857

𝛼2 −0.12841 0.03078 𝜅2 −2.26011 0.17580

𝛼3 −0.06323 0.02830 𝜅3 −1.54132 0.15572

𝛽1 0.00215 0.01015 𝛾1 −0.01914 0.03492

𝛽2 −0.00915 0.00482 𝛾2 0.04075 0.01798

𝛽3 0.09460 0.03338 𝛾3 −0.34234 0.14195

𝛽4 −0.06811 0.03850 𝛾4 0.45315 0.17028

𝛽5 −0.07810 0.05148 𝛾5 0.72040 0.20844

𝛽6 0.070018 0.06933 𝛾6 −0.63781 0.27353

𝓁(MLE) −467.25 −463.7662

T A B L E 5 Maximum likelihood estimate
(MLE) by ppm for Example 4.4

MLE ppm SE MLE ppm SE

𝛼1 −0.33172 0.03760 𝜅1 −2.73868 0.19815

𝛼2 −0.12300 0.02957 𝜅2 −2.27915 0.17772

𝛼3 −0.05992 0.02706 𝜅3 −1.55364 0.15747

𝛽1 0.00028 0.00987 𝛾1 −0.01757 0.03504

𝛽2 −0.00913 0.00461 𝛾2 0.04061 0.01799

𝛽3 0.10509 0.03370 𝛾3 −0.35545 0.14311

𝛽4 −0.08044 0.03841 𝛾4 0.47034 0.17204

𝛽5 −0.08981 0.05089 𝛾5 0.73605 0.20977

𝛽6 0.08464 0.06810 𝛾6 −0.65454 0.27431

𝓁(MLE) −464.1204 −460.1224

T A B L E 6 Maximum likelihood estimate
(MLE) by ppm for Example 4.4

and in this example, significance. Clearly, in practice, the outcome order should be determined prior to beginning any
analysis.

We now briefly explore the implications of certain data removals. We removed the individuals (230 and 348) with the
following covariates: x1 = −1.73759, x2 = 3.01923, x3 = 1, x4 = 0, x5 = 0. The analysis conducted before is repeated and
the MLEs are in Table6. Of note is that the MLEs in Tables 5 and 6 are very similar. However, once individuals 230 and 348
are removed the MLEs for both the reverse and not reverse coded are now both in the interior. By removing the data points
associated with the boundary MLE, we find that the MLE is now in the interior of the parameter space. While such data
deletion would not be done in practice, we use it here to demonstrate that the MLE can move from the boundary to the
interior of the parameter space. In the next Section 5, we continue the exploration of characteristics that may determine
the MLE to be on a boundary.

4.5 Application 4: Mental impairment dataset

We now consider an example where the MLE is considered on a boundary. Consider the Mental Impairment data
presented in table 7.5 of Agresti.39 This involves 40 subjects with outcome ordinal variable Mental Impairment
(1 - impaired, 2 - moderate, 3 - mild, 4 - well) and binary covariates : Socioeconomic status (x2: high=1,low=0)
and Life Event (x1) a composite score over the last 3 years. Using this data, we will explore the following
model: P[y ≤ j|x1, x2] = 𝛼j + 𝛽1x1 + 𝛽2x2. ppm estimates the maximum likelihood to occur at (𝛼̂1, 𝛼̂2, 𝛼̂3, 𝛽1, 𝛽2)′ =
(−1.68422,−1.10888,−0.54929, 0.09155,−0.42750)′. The determination of an MLE on a boundary is using the rule that if
at least one fitted cumulative probability is greater than 0.9999. ppm determines that for j = 3 individuals with x1 = 6 and
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T A B L E 7 Fraction of boundary maximum likelihood estimate (MLE) for certain
nkj = 0 for Example 5.1

Only one nkj = 0 Boundary MLE %

n11 = 0 0 %

n12 = 0 0 %

n13 = 0 100 %

n21 = 0 0%

n22 = 0 0 %

n23 = 0 100%

Two nkj = 0 Boundary MLE %

n12 = 0 0 %

n13 = 0

n22 = 0 100 %

n23 = 0

x2 = 0 have a fitted cumulative probability (P̂[y ≤ 3|x1 = 6, x2 = 0]) close to 1. Since the MLE is then assumed to be on a
boundary, the estimates of the SEs are not directly available.

We also note that if the outcome was reversely coded: 4 - impaired, 3 - moderate, 2 - mild, 1 - well). The model
could be rewritten as log[1 − P(y ≤ j|x1, x2)] = 𝜅j + 𝛾1x1 + 𝛾2x2. ppm estimates the maximum likelihood to occur at
(𝜅̂1, 𝜅̂2, 𝜅̂3, 𝛾̂1, 𝛾̂2)′ = (−0.94908,−0.25593,−2.1611e − 12,−0.07441, 0.07620)′. The determination of an MLE on a bound-
ary is using the rule that if at least one fitted cumulative probability is greater than 0.9999. ppm determines that for j = 3
individuals with x1 = 0 and x2 = 0 have a fitted cumulative probability (P̂[y ≤ 3|x1 = 0, x2 = 0]) close to 1. Since the MLE
is then assumed to be on a boundary, the estimates of the SEs are not directly available. Interestingly, the MLE is still on
a boundary regardless of the outcome coding order. In the next Section 5, MLE on a boundary will be explored further.

5 MLE ON THE BOUNDARY

This section provides a conjecture about the location of an MLE on a boundary for a PPM. A boundary for a PPM is
{(𝜶,𝜷)|𝛼j + x′

i𝜷 = 0} ∪ {𝜶|𝛼j+1 = 𝛼j}.
The following examples presented are based on the second expression for CFE in Theorem 2 when nkJ = 0 for some k.

The first Example 5.1, demonstrates that a boundary MLE can occur when nkJ = 0. Then a second Example 5.2 demon-
strates the CFE expressions. In simulating several conditions based on values of nkj, it is noted that if nkJ = 0 for a particular
group k then the MLE is sometimes on a boundary. This has the intuition that there is no additional information for group
k having category value J, that is P(yk ≤ (J − 1)) = 1. The exact conditions for a boundary MLE are not known to us at
this time, but the examples presented in this section focus on settings when nkJ = 0.

5.1 Example 1: Simulation with nkj = 0

Recall Example 4.1, a model with log[P(y ≤ j|x)] = 𝛼j + 𝛽1x where x = {0, 1} having two cuts. Datasets were constructed
by taking nkl from vector (0, 1, 2, 5, 10, 100)′ for k = {1, 2} and l = {1, 2, 3}. For each dataset, the MLE were computed by
ppm (using default controls in ppm) and the determination of an MLE on a boundary was done by noting if the fitted
probabilities were greater than 0.9999. The percentage of scenarios with boundary MLE was determined for scenarios
with only one nkl = 0 and two nkl = 0. The results are presented in Table 7. Initially, it would appear that when nkJ = 0
for only one k, there is always a boundary MLE (see n13 = 0 and n23 = 0). However, when both n12 = 0 and n13 = 0, there
are no boundary MLE, but for both n22 = 0 and n23 = 0 there is always a boundary MLE.

5.2 Example 2: Simulation with nkJ = 0

Suppose a model where log[P(y ≤ j|x, z)] = 𝛼j + 𝛽1x + 𝛽2z where x = {0, 1}, z = {0, 1} and j = {1, 2} cuts. Datasets were
constructed by taking nkl and n43 from vector (10, 100)′ for k = {1, 2, 3, 4} and l = {1, 2} and drawing nk3 from vector



12 SINGH and FICK

Number on Number of Percent on
which nk3 = 0 boundary scenarios boundary (%)

only n13 = 0 362 512 70.70

only n23 = 0 415 512 81.05

only n33 = 0 415 512 81.05

only n13 = n23 = 0 512 512 100.00

only n13 = n33 = 0 512 512 100.00

only n23 = n33 = 0 320 512 62.50

n13 = n23 = n33 = 0 512 512 100.00

n13,n23,n33 ≠ 0 0 512 0.00

T A B L E 8 Fraction of Boundary maximum
likelihood estimate (MLE) for certain nk3 = 0 for
Example 5.2

{0, 100} for k = {1, 2, 3}. For each dataset, the MLE were computed by ppm (using default controls in ppm) and the
determination of an MLE on a boundary was done by noting if the fitted probabilities were greater than 0.9999.

C|N =
⎡⎢⎢⎢⎣

0 0 n11 n12 n13
1 0 n21 n22 n23
0 1 n31 n32 n33
1 1 n41 n42 n43

⎤⎥⎥⎥⎦ .
The percentage of scenarios with boundary MLE was determined for scenarios with only one nk3 = 0, only two nk3 = 0

and only three nk3 = 0 are found in Table 8. Unlike Example 5.1, the datasets here have the fraction of the MLE on the
boundary between 0% and 100%. This implies that it is not just nkJ = 0 that induces an MLE to be on a boundary. The
simulations suggest that if nkJ ≠ 0 then an MLE will not be on a boundary. However, additional investigation is required.

As a final note from this example, CFE from 2 in Theorem 2 can be compared with ppm for MLE in the interior. In the
setting when only n13 = 0, there are 150 scenarios of values for nkj for which the MLE is in the interior. All 150 datasets
were constructed and the MLE using CFE and ppm were calculated. The absolute difference in ppm and CFE MLE for
each parameter was on average (9.060e-07, 7.889e-07, 5.984e-07, 6.611e-07) with minimum absolute difference (6.626e-08,
1.069e-08, 6.561e-08, 1.565e-08) and maximum absolute difference (2.844e-06, 3.243e-06, 2.206e-06, 2.607e-06). Several
results are presented in Table 9. Note that CFE used:

C∗ =
⎡⎢⎢⎢⎣
1 0 0
1 1 0
1 0 1
1 1 1

⎤⎥⎥⎥⎦ and C∗
−I = 𝚲 =

[1 1 0
1 0 1
1 1 1

]
.

The MLEs are given by

𝛼̂1 = 𝛼̂2 − log
(

n11 + n21 + n31 + n41 + n12 + n22 + n32 + n42

n11 + n21 + n31 + n41

)
(8)

𝛼̂2 = log
(

n11 + n12 + n21 + n22

n11 + n12 + n21 + n22 + n23

)
+ log

(
n11 + n12 + n31 + n32

n11 + n12 + n31 + n32 + n33

)
− log

(
n41 + n42 − n11 − n12

n43 + n41 + n42 − n11 − n12

)
(9)

𝛽1 = log
(

n41 + n42 − n11 − n12

n43 + n41 + n42 − n11 − n12

)
− log

(
n11 + n12 + n31 + n32

n11 + n12 + n31 + n32 + n33

)
(10)

𝛽2 = log
(

n41 + n42 − n11 − n12

n43 + n41 + n42 − n11 − n12

)
− log

(
n11 + n12 + n21 + n22

n11 + n12 + n21 + n22 + n23

)
(11)
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T A B L E 9 Maximum likelihood estimate (MLE) by closed form
expression (CFE) and ppm for Example 5.2

(n11,n12,n13)

(n21,n22,n23)

(n31,n32,n33)

(n41,n42,n43) MLE CFE ppm

(100, 10, 0) 𝛼1 −1.02761 −1.02761

(100, 100, 100) 𝛼2 −0.45381 −0.45381

(100, 100, 100) 𝛽1 0.17422 0.17423

(100, 100, 10) 𝛽2 0.17422 0.17423

(10, 10, 0) 𝛼1 −3.58975 −3.58975

(10, 10, 100) 𝛼2 −1.71795 −1.71795

(10, 100, 100) 𝛽1 0.46518 0.46519

(10, 100, 10) 𝛽2 1.14740 1.14740

(10, 10, 0) 𝛼1 −1.87877 −1.87877

(10, 10, 100) 𝛼2 −1.18562 −1.18562

(100, 100, 100) 𝛽1 −0.06714 −0.06714

(100, 100, 100) 𝛽2 0.81093 0.81093

(10, 100, 0) 𝛼1 −2.02613 −2.02613

(10, 10, 100) 𝛼2 −1.03573 −1.03573

(10, 10, 100) 𝛽1 0.46518 0.46518

(100, 100, 10) 𝛽2 0.46518 0.46518

6 CONCLUDING REMARKS

This manuscript expands the understanding and methodology of the PPM for use by a data analyst. The condition for the
strict concavity of the log-likelihood requires assessment of the rank of C∗

−I . An analyst should consider the potential of
multicollinearity and an approach to its resolution.

While the proportional odds model is commonly used, the resulting estimates have interpretations in terms of func-
tions of the log odds such as odds ratios. There has been significant discussion in the literature on misinterpretations of
odds as probabilities. The PPM gives estimates of the log probability (like rate ratios, risk ratios, and health ratios). These
estimates are typically of interest to analysts in the health sciences. The trade off for the PPM providing such estimates is
that the log link implicitly introduces linear inequality constraints on the parameter space. We feel that since the function
ppm uses a constrained optimization methodology of constrOptim, the MLE can be determined reliably in the interior
and on the boundary of the parameter space. This was shown through several examples. Having CFEs for the MLE also
permitted the comparison with the MLE determined by ppm.

As is noted, additional investigation is required for the exact conditions for an MLE on a boundary. However, having
groups for which nkJ = 0 appears to play a role for an MLE on a boundary. The use of measured explanatory variables may
introduce some groups with nkJ = 0. Another consideration is the use of the covariance matrix from the inverse of the
negative observed Hessian when an MLE is on a boundary. The analyst should assess the behavior of the Hessian near a
boundary. In any case, the interpretation of such a covariance matrix may be limited and its utility might be misleading.
We present the assessment of the proportionality assumption using the score test. Additional exploration of likelihood
and Wald-type tests of proportionality is required.

For ordinal outcomes, the choice to use the log link is now available, and this choice can be based on the study
design, the measure of association and the interpretation(s) desired. We have shown the utility of the function ppm in our
preliminary version of the R package lcpm.
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APPENDIX A

A.1 PPM proof of uniqueness of the MLE
The proof of the conditions for strict concavity for the log-likelihood function for the PPM is as follows:
Proof of Theorem 1. Begin by noting that ΩPPM is a convex set. This is easily established noting for the PPM, the parameter
space is ΩPPM = {(𝜶, 𝜷)|𝛼j + x′

i𝜷 ≤ 0, 𝛼j+1 ≥ 𝛼j}. Suppose 𝝐1 ∈ ΩPPM , 𝝐2 ∈ ΩPPM and constant 𝛾 ∈ [0, 1]. Let 𝝐∗ = 𝛾𝝐1 +
(1 − 𝛾)𝝐2 and

X𝝐∗ = X(𝛾𝝐1 + (1 − 𝛾)𝝐2)
= 𝛾 X𝝐1

⏟⏟⏟
≤0

+ (1 − 𝛾) X𝝐2
⏟⏟⏟

≤0

≤ 0 ,

𝝐∗ ∈ ΩPPM and ΩPPM is a convex set.
To establish the strictly concave in the interior of the parameter space, it suffices to show that the Hessian is negative

definite z′Hz < 0 for all z ≠ 0. Define z′ = (𝝃′ , 𝜻 ′) = (𝜉1, 𝜉2,… , 𝜉J−1
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

𝝃′

, 𝜁1, 𝜁2,… , 𝜁p
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

𝜻 ′

) and

z′Hz = [𝝃′𝜻 ′]
[

H𝜶𝜶 H𝜶𝜷

H′
𝜶𝜷

H𝜷𝜷

] [
𝝃
𝜻

]
= 𝝃′H𝜶𝜶𝝃
⏟⏟⏟

(1)

+ 𝝃′H𝜶𝜷𝜻
⏟⏟⏟

(2)

+ 𝜻 ′H′
𝜶𝜷
𝝃

⏟⏟⏟
(3)

+ 𝜻 ′H𝜷𝜷𝜻
⏟⏟⏟

(4)

. (A1)

Now assess each term and recall that 𝛿k = nkJ
exp(𝛼J−1+c′k𝜷)

(1−exp(𝛼J−1+c′k𝜷))
2 and 𝛾k,j+1 = nk(j+1)

exp(𝛼j+1+𝛼j)
(exp(𝛼j+1)−exp(𝛼j))2

:

(1) Assessment of the first term in (A1):

𝝃′H𝜶𝜶𝝃 =
J−1∑
l=1

All𝜉
2
l + 2

J−2∑
q=1

A(q+1)q𝜉q+1𝜉q

= −
J−2∑
l=2

m∑
k=1

(𝛾k,l+1 + 𝛾k,l)𝜉2
l −

m∑
k=1

(𝛿k + 𝛾k,J−1)𝜉2
J−1 −

m∑
k=1

𝛾k,2𝜉
2
1 + 2

J−2∑
q=1

m∑
k=1

𝛾k(q+1)𝜉q+1𝜉q

= −
m∑

k=1
𝛿k𝜉

2
J−1 −

m∑
k=1

[J−2∑
l=2

(𝛾k,l+1 + 𝛾k,l)𝜉2
l + 𝛾k,J−1𝜉

2
J−1 + 𝛾k,2𝜉

2
1 − 2

J−2∑
q=1

𝛾k(q+1)𝜉q+1𝜉q

]

https://cran.r-project.org/package=aplore3
https://support.sas.com/documentation/cdl/en/statug/63962/HTML/default/viewer.htm#statug_logistic_sect039.htm
https://support.sas.com/documentation/cdl/en/statug/63962/HTML/default/viewer.htm#statug_logistic_sect039.htm
https://doi.org/10.1002/sim.8479


16 SINGH and FICK

= −
m∑

k=1
𝛿k𝜉

2
J−1 −

m∑
k=1

[J−2∑
r=1

𝛾k,r+1(𝜉r − 𝜉r+1)2

]

= −
m∑

k=1
nkJ𝜉

2
J−1

exp(𝛼J−1 + c′k𝜷)
(1 − exp(𝛼J−1 + c′k𝜷))2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
>0

−
m∑

k=1

J−2∑
r=1

nk(r+1)
exp(𝛼r+1 + 𝛼r)

(exp(𝛼r+1) − exp(𝛼r))2
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

>0

(𝜉r − 𝜉r+1)2. (A2)

(2) Assessment of the second and third terms in (A1):

𝝃′H𝜶𝜷𝜻 = 𝜻 ′H′
𝜶𝜷
𝝃

= −𝜉J−1

p∑
l=1

m∑
k=1

nkJckl𝜁l
exp(𝛼J−1 + c′k𝜷)

(1 − exp(𝛼J−1 + c′k𝜷))2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
>0

. (A3)

(3) For the last term in (A1), denote 𝛿k = nkJ
exp(𝛼J−1+c′k𝜷)

(1−exp(𝛼J−1+c′k𝜷))
2 gives:

𝜻 ′H𝜷𝜷𝜻 =
p∑

l=1
Bll𝜁

2
l + 2

∑
l<q

p∑
q=1

Blq𝜁l𝜁q

= −
m∑

k=1
𝛿k

[ p∑
l=1

c2
kl𝜁

2
l + 2

∑
l<q

p∑
q=1

cklckq𝜁l𝜁q

]

= −
m∑

k=1
𝛿k

[ p∑
l=1

ckl ⋅ 𝜁l

]2

= −
m∑

k=1
nkJ

exp(𝛼J−1 + c′k𝜷)
(1 − exp(𝛼J−1 + c′k𝜷))2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
>0

( p∑
l=1

ckl ⋅ 𝜁l

)2

. (A4)

Now recombine the terms (A2), (A3), and (A4) and rearrange them as

z′Hz = −
m∑

k=1

[J−2∑
r=1

nk(r+1)
exp(𝛼r+1 + 𝛼r)

(exp(𝛼r+1) − exp(𝛼r))2 (𝜉r − 𝜉r+1)2

]

−
m∑

k=1
nkJ

exp(𝛼J−1 + c′k𝜷)
(1 − exp(𝛼J−1 + c′k𝜷))2

⎡⎢⎢⎣𝜉2
J−1 + 2𝜉J−1

p∑
l=1

ckl𝜁l +

( p∑
l=1

ckl ⋅ 𝜁l

)2⎤⎥⎥⎦ .

Factoring this gives:

z′Hz = −
m∑

k=1

[J−2∑
r=1

nk(r+1)
exp(𝛼r+1 + 𝛼r)

(exp(𝛼r+1) − exp(𝛼r))2 (𝜉r − 𝜉r+1)2

]

−
m∑

k=1
nkJ

exp(𝛼J−1 + c′k𝜷)
(1 − exp(𝛼J−1 + c′k𝜷))2

(
𝜉J−1 +

p∑
l=1

ckl𝜁l

)2

. (A5)

From (A5), z′Hz ≤ 0 for all z and H is negative semidefinite and the log-likelihood is concave.40 However, additional
conditions can be provided for which the log-likelihood is strictly concave. Recall that N (−J) has n(j) > 0 for j = 1,… , J − 1.
Let z′Hz = T1 + T2 where T1 ≤ 0, T2 ≤ 0,
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T1 = −
m∑

k=1

⎡⎢⎢⎢⎢⎣
J−2∑
r=1

nk(r+1)
⏟⏟⏟

≥0

exp(𝛼r+1 + 𝛼r)
(exp(𝛼r+1) − exp(𝛼r))2
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

>0

(𝜉r − 𝜉r+1)2

⏟⏞⏞⏞⏟⏞⏞⏞⏟
≥0

⎤⎥⎥⎥⎥⎦
,

and

T2 = −
m∑

k=1
nkJ

⏟⏟⏟
≥0

exp(𝛼J−1 + c′k𝜷)
(1 − exp(𝛼J−1 + c′k𝜷))2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
>0

(
𝜉J−1 +

p∑
l=1

ckl𝜁l

)2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
≥0

.

1. Suppose nkJ = 0 for k ∈ I where m − |I| ≥ (p + 1) and suppose C∗
−I is full column rank. For z′Hz = T1 + T2 to sum to

0, both T1 and T2 must be zero.

T2 = −
∑
k∉I

nkJ
⏟⏟⏟

>0

exp(𝛼J−1 + c′k𝜷)
(1 − exp(𝛼J−1 + c′k𝜷))2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
>0

(
𝜉J−1 +

p∑
l=1

ckl𝜁l

)2

For T2 to be zero for k ∉ I, 𝜉J−1 +
∑p

l=1 ckl𝜁l = 0. This represents rows of the system C∗
−I𝝐 = 0, where 𝝐′ = (𝜉J−1, 𝜻

′). C∗
−I

is full column rank and the solution to the system is 𝝐 = 0.

T1 = −
m∑

k=1

⎡⎢⎢⎢⎢⎣
J−2∑
r=1

nk(r+1)
⏟⏟⏟

≥0

exp(𝛼r+1 + 𝛼r)
(exp(𝛼r+1) − exp(𝛼r))2
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

>0

(𝜉r − 𝜉r+1)2

⏟⏞⏞⏞⏟⏞⏞⏞⏟
≥0

⎤⎥⎥⎥⎥⎦
For T1 to be zero, nk(r+1) = 0 or (𝜉r − 𝜉r+1)2 = 0 or both. From the construction of N, the row total (n(k) > 0) and column
totals (n(j) > 0) are nonzero. Thus, for each j = 1,… , J − 2, there is a k for which nk(j+1) > 0. For these k, 𝜉r − 𝜉r+1 = 0
for r = 1,… , J − 2 and 𝜉r = 𝜉r+1. From T2 = 0, 𝜉J−1 = 0 and working backward recursively, 𝜉r = 0 for r = 1,… , J − 1.
Finally, 𝝃 = 0 and T1 = 0.

𝝃′H𝜶𝜶𝝃 + 𝝃′H𝜶𝜷𝜻 + 𝜻 ′H′
𝜶𝜷
𝝃 + 𝜻 ′H𝜷𝜷𝜻 < 0 with equality when 𝝃 = 0 and 𝜻 = 0. Combining all the information,

it is clear that z′Hz < 0 with equality when z = 0. H is negative definite and the log-likelihood function is strictly
concave.40

2. Suppose nkJ = 0 for k ∈ I and m − |I| < (p + 1). For z′Hz = T1 + T2 to sum to 0, both T1 and T2 must be zero.

T2 = −
∑
k∉I

nkJ
⏟⏟⏟

>0

exp(𝛼J−1 + c′k𝜷)
(1 − exp(𝛼J−1 + c′k𝜷))2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
>0

(
𝜉J−1 +

p∑
l=1

ckl𝜁l

)2

For T2 to be zero for k ∉ I, 𝜉J−1 +
∑p

l=1 ckl𝜁l = 0. However, the number of rows of the system C∗
−I𝝐 = 0 are fewer than

the number of columns. There is a nontrivial solution to the system and 𝝐 ≠ 0. Combining all the information, it is
clear that z′Hz ≤ 0 for all z. H is negative semi-definite and the log-likelihood function is concave.40

▪

A.2 Appendix vglm
vglm is a function that is part of the VGAM package in R. This function attempts to determine the MLE with
a cumulative probability model for ordinal outcomes with or without a proportionality assumption and with sev-
eral different links. This function uses an unconstrained iteratively reweighted least squares algorithm to try to
determine the MLE. This algorithm may yield incorrect supposed MLE outside of ΩPPM. vglm function suboption
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(n11,n12,n13)

(n21,n22,n23) MLE CFE ppm vglm

(1, 1, 1) 𝛼1 −1.32176 −1.32175 −1.32176

(1, 2, 10) 𝛼2 −0.40547 −0.40546 −0.40547

𝛽1 −1.06087 −1.06087 −1.06087

(1, 1, 5) 𝛼1 −1.94591 −1.94591 0.674796a

(2, 2, 100) 𝛼2 −1.25276 −1.25276 1.36794a

𝛽1 −2.00533 −2.00533 −4.57417a

(1, 1, 2) 𝛼1 −1.73460 −1.73460 −0.48736a

(5, 10, 100) 𝛼2 −0.69315 −0.69314 0.55409a

𝛽1 −1.34373 −1.34374 −2.58696a

(1, 1, 1) 𝛼1 −1.09861 −1.09861 0.31298a

(10, 10, 100) 𝛼2 −0.40547 −0.40547 1.00613a

𝛽1 −1.38629 −1.38629 −2.79545a

(1, 1, 5) 𝛼1 −1.94591 −1.94591 −1.94591

(100, 100, 10) 𝛼2 −1.25276 −1.25276 −1.25276

𝛽1 1.20397 1.20397 1.20397

(100, 1, 5) 𝛼1 −0.07523 −0.07523 0.15419a

(10, 2, 100) 𝛼2 −0.04832 −0.04832 0.18110a

𝛽1 −2.18527 −2.18527 −1.63150a

(100, 100, 100) 𝛼1 −1.09861 −1.09861 −1.09861

(100, 100, 100) 𝛼2 −0.40547 −0.40547 −0.40547

𝛽1 0 6.19e-08 −3.4613e-16

aMLE from vglm is outside parameter space.

T A B L E A1 Maximum likelihood estimate
(MLE) by closed form expression (CFE) and ppm and
the apparent maximum by vglm for Example 4.1

cumulative(parallel=TRUE,link=“loge”) can be used to try to estimate the MLE for a PPM but we cannot
recommend its use.

Recall Example 4.1. For many scenarios, the absolute difference in vglm and CFE MLE were comparable to the
results comparing ppm and CFE MLE. However, for vglm, 35 of the first 381 datasets had large differences. Often with
an incorrect maximum [that is not the MLE] being outside the constrained parameter space. Some examples of this are
presented in scenarios in Table A1.

This example compared the closed form MLE with the MLE from ppm. The differences were very small. However,
vglm converged outside the constrained parameter space even though the MLE is in the interior of the constrained
parameter space. At present, the conditions have not been determined for which vglm finds a maximum (that is not the
MLE) outside of the constrained parameter space but ppm finds the actual MLE within the constrained parameter space.

A.3 Appendix Score Test of Proportionality
In ordinal logistic regression, the assessment of the proportional odds assumption can be performed with the likelihood
ratio test,41 the Wald (or Brant) test,42 or the score test.43 In this section, we use a score test that is analogous to the test
used with ordinal logistic regression.43 Additional information for this test can be found in Blizzard et al.3

The PPM from Section 2 makes the assumption that different levels of the ordinal outcomes share a common slope 𝛽.
This can be tested using the hypothesis: Ho ∶ 𝜷1 = 𝜷2 = … = 𝜷J−1 for the general model LCPM which does not make an
assumption of a common 𝛽.

For j = 1,… J − 1. Let the parameter vector for LCPM be Φ = (𝛼1, 𝛼2,… , 𝛼J−1, 𝜷
′
1, 𝜷

′
2,… , 𝜷′

J−1)′ Denote the score
statistic SR:

SR = S′
LCPM(𝚽̂0)(−HLCPM)−1SLCPM(𝚽̂0),
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where SLCPM is the score function and −HLCPM is the negative Hessian function for the LCPM, Φ̂0 is the MLE from PPM.
The score test in ordinal logistic regression43 to test the proportional odds assumption provides that SR is 𝜒2 distributed
with df = (J − 2)p. We anticipate a similar result for the log link here.

Recall the example in Section 4.2, which was about patient tonsil size and status as carriers of Streptococcus pyogene.
The MLEs for a PPM are found in Table 3. The assessment of proportionality gives test statistic SR = 0.9055, df = 1 and P
value = 0.3413. Here there is no evidence against the proportionality assumption.

Recall the example in Section 4.3, which included a dataset for women with endometrial cancer. The MLEs for a PPM
are found in Table 4. The assessment of proportionality gives test statistic SR = 12.38101, df = 2 and P value = 0.00205.
Here there is evidence against the proportionality assumption and the MLE from the LCPM seems more appropriate here.


