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Abstract

Background

Relative risk is a summary metric that is commonly used in epidemiological investigatimcreas-

ingly, epidemiologists are using log-binomial models to study the impact of a petdictor variables

on a single binary outcome, as they naturally offer relative risks. Howstendard statistical soff

ware may report failed convergence when attempting to fit log-binomial modeksriain settings.

The methods that have been proposed in the literature for dealing with failegrgence use aj
proximate solutions to avoid the issue. This research looks directly at tHié&dpood function for
the simplest log-binomial model where failed convergence has beerveldsermodel with a sing|
linear predictor with three levels. The possible causes of failed conveegae explored and potent
solutions are presented for some cases.

Results

Among the principal causes is a failure of the fitting algorithm to converggitgethe log-likelihood
function having a single finite maximum. Despite these limitations, log-binomial modets\aable
option for epidemiologists wishing to describe the relationship between ajsetdi€tors and a binar
outcome where relative risk is the desired summary measure.

Conclusions

Epidemiologists are encouraged to continue to use log-binomial models aadadelfor improve;
ments to the fitting algorithms to promote the widespread use of log-binomial models.
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Introduction

One of the most basic epidemiological tenets is risk. It is intuitive and easikgratobd and explained
to a wide audience. It is the conditional probability of an individual havirgaiitcome of interest given
a particular set of risk factors. Usually, it is of interest to frame risk asaparison between two groups
and one method for summarizing this comparison is the relative risk (RR) oisthetio. The relative
risk, in its simplest form, is the ratio of two conditional probabilities,

RR="1
Po
wherep; is the probability of the outcome for those exposured anid the probability of the outcome
for those unexposed. The simplicity of this definition makes it easily convieyadvide audience that
may include clinicians, policy makers, or the general public. More genethi$ratio can be framed to
reflect the presence and absence of an exposure either as anédssummeon RR, after consideration
of potential confounders, or as a set of stratum specific RRs aftsidaration of modifiers.

Yet, in spite of this, odds ratios (ORs) rather than RRs are the most frigjugported summary metric
for reporting binary outcomes in modern epidemiological investigations Ji¢.ddds ratio, is a ratio of
two conditional odds,

p1/(1—p1)

po/(1 — po)

wherep; andpg are defined as above. ORs are frequently reported in a variety of settingase-control
studies, ORs remain definitive [2]. But ORs are also reported in settingsewhost epidemiologists
would regard the RR as the preferred measure of association [1pamee to criticism of this practice,
some would cite the well known fact that probability and odds are very cldwm the probability is
itself small, the so-called rare-disease assumption [3]. However, ametigem that ORs are reported in
inappropriate settings is the current perception that there is not a viabisadilte to logistic regression
(which provides ORs) for modelling risk, particularly one that offers Rétler than ORs.

OR =

The majority of work to-date on log-binomial models has been focused omtryifind solutions to the
observed problem of failed convergence. Some of the that work bailpd reasonable approximations
to the RR. However, unlike other papers on the subject, this work expores possible reasons for
failed convergence and provides potential solutions without resorting &paroximate solution.

Generalized linear models

Modelling ORs is done through the use of logistic regression, a type ofgéesa linear model that
uses the logistic function to link a dichotomous outcome (assumed to follow a Whirdestribution)
to a set of explanatory variables (called the linear predictor when theblesiare included in a linear
way).

J
log <1€p> = Zﬂil‘z’ (1)
i=0

A log-binomial model is a cousin to the logistic model. Everything is common betwedmthmodels
except for the link function. Log-binomial models use a log link function,eathan a logit link, to



connect the dichotomous outcome to the linear predictor.

J
logp =Y it 2
i=0

One immediate consequence of this change is the interpretation of the cagdfitieequation 1 thg;’s
refer to differences in the log odds while in equation 2 fie refer to differences in log risks. Except
in some very special cases, there are no easy ways to link the coeffit@nta logistic regression to
those in a log-binomial unless one references the rare-disease assumeititoned above.

If the intention is to report relative risks, then a log-binomial model allowyg aasess to an estimate of
the relative risks, compared to logistic regression. However, this petgain comes at a cost. Both the
logistic and log-binomial models are attempting to describe the relationship bedvge¢of explanatory
variables and the probability of a specific outcome. Probabilities are stridityedebetween zero and
one. The logit link maps the probability of the individual having the diseasectertire real line. The
log-link function maps the probability of disease onto the negative real Bogijting the constraint that
a linear predictor must be negative. This must hold true for all viable combirsatibthe explanatory
variables to ensure that the implied probability is between zero and one. imfpgesconstraint is
one of the costs of choosing to model relative risk and is implicated in the estinctadienges for
log-binomial models. That is, for log-binomial models, the parameter spadbdaset of regression
coefficients is bounded, introducing the opportunity for estimation chaltenge

The boundedness of the parameter space means that the likelihood futfeidanction that is max-
imized to estimate the model parameters, is only defined within that parameter $patteer, trying
to maximize these likelihood functions acknowledging these boundaries ifrdgproblematic when
using standard methodologies. The next section outlines some of the mo&impoethods that have
been developed to deal with these problems.

Recently there was a paper published in Stroke [4], where in the statistidtabdsesection the authors
indicated that: “As a first approach to the multivariable analysis, we used-hit@mmial model, but
owing to the sparseness of data, this failed to converge. Thereforepted for a Poisson regression
with robust variance estimator according to the SAS GENMOD procediifeTHis type of statement
is becoming increasingly common in top-tier medical journals. Researcleers@gnizing the value
of employing log-binomial models to represent their data. However, in tleedafailed convergence,
feel compelled to adopt one of the many workarounds, or resort to logggfiession, to even obtain any
estimates at all. However, we submit that there may be circumstances wbeaecteers may not have
to abandon their log-binomial model, as a proper solution may be accessible.

Existing workaround methods

Several papers have been published summarizing the methods curreiitplavfor the “approximate
modelling of RRs” [6,7]. These papers all characterize the merits and deméthe workarounds

that have been suggested. The emphasis of this article is not to detail asefriiethods; however, it
is worth noting that, to date, almost all research on log-binomial models camdoenscribed to this

category.

Wacholder was one of the first to articulate the estimation challenges inlesstitmating log-binomial
models and was one of the first to propose a work around [8]. His stiggevas to evaluate the current
fitted values at a given stage in the likelihood maximizing process [after eaalidtein the search]
and if any fitted values were outside the boundary space to set the fittexb valvalues known to be



inside the space. A few years later, Lee and Chia [9] advocated thategoassion could be adapted
to approximate the solution if one built a dataset where every person hadsatpand fixed follow-up
time. Schouten [10] proposed the duplication of each case with the outcoimie@fst and suggested
that modelling the log of the odds for the modified data might be the same as thmtogi#l model for
the unmodified data. Zhang and Yu [11] make use of a well-known methatbforerting odds ratios
to relative risks using a baseline prevalence and then encouragecetbtlagistic regression followed
by the conversion of the OR to a RR using that conversion method. Anothpdkas come to be
called the COPY method [12]. With the COPY method, a large number of coptas ofiginal dataset
are appended to the original single copy of the data. Then, the for ahe obpies of the dataset, the
outcome is switched for every observation in that copy and the model is therttie enlarged dataset
with the necessary adjustments to the standard errors.

Yet another method for approximating the solution is the modified Poisson methpdsed by Zou
[13]. The modified Poisson regression method has gained the most attentian litethture and is
growing in use. Advocates of the method suggest that the key advantihge ike failed convergence
issues are practically non-existent [14]. This is due, in part, to the fatfisson regression is con-
cerned with the log of expected counts and not the log of probabilities.eRénere is no requirement
that the linear predictor be constrained to be negative with a Poissorssegre Consequently, it is
common that some positive fitted values are offered by the modified Poispomagh. Some authors
have suggested that these can safely be ignored and that this shoulsdhéycase when the estimate
is near a boundary [14]. However, presumably, the near boundagsare some of the circumstances
where one might expect failed convergence from a log-binomial modeisisg a Poisson model here
is likely to give probabilities outside the allowable space. While this method seemiegyves the
convergence issues, we cannot be satisfied with a method that givegpfitebilities that are larger
than one.

As previously mentioned, others have published work comparing the exiatitigods for approximat-
ing log-binomial models. This work takes a different approach to the pmabldat is, that the problem
is not the model itself but rather the limitations of the estimating algorithms to properimiza the
likelihood function. We submit that failed convergence does not imply thatrtbael is inestimable.
In fact, with a careful examination of the problem many non-convergeabioomial models can be
estimated after a simple reparametrization of the model or by using a differeirhiration technique,
or perhaps the solution may be as simple as using a different softwarageack

Analysis
Simple models and failed convergence

To understand the mechanism of failed convergence, the simplest passihlarios where failed con-
vergence could occur were sought. The simplest of all log-binomial magigie model with a single
binary predictor, as it effectively reproduceg & 2 table. It is not surprising or interesting to observe
failed convergence when there are zero cells in2the2 table as failed convergence could reasonably
be expected from logistic regression for the same data. Therefory, @vigue2 x 2 table, with non-
zero cells, for the fixed sample sizesrof= 20, 25, ..., 70, were fit using a log-binomial model with a
single binary predictor in both R (version 2.12.1) [15] and STATA (versid.1) [16] and not a single
case of failed convergence was observed. The next simplest modlel b®one with a single predictor
that takes on three levels. Specifically, we explored models with a predictoghich was assumed
to be linearly related to the log of the probability of the outcome and had only possble values,
X =-1,0,1.

log(p) = Bo + 51X 3)



The data could then be summarized using a siAgie2 table. Again, every possiblke x 2 table, for
samples of sizes = 20,25, ..., 60, was fit using the log-binomial model in equation 3 in R [15] and
STATA [16]. In total, more that 7.6 million unigugx 2 tables were examined. In R [15], approximately
3% (=~ 225 000) of these tables failed to converge after 100 iterations. It is from tBese tables
that the examples used below are drawn. Certainly, there are countiaaples that could be chosen
of the non-convergent log-binomial models, many of which have beehspeld in top-tier medical
journals. However, by choosing to use the simplest log-binomial modelsehatmstrate the point, two
advantages are gained. First, using a model with only two parameters, #tlewssualization of the
log-likelihood function and the relevant parameter space. Second, tlesisénon-convergence are not
masked by the complexity of the model. The intention of what is presented namtegploration of
the fundamental concepts underpinning the estimation of log-binomial modetscdn be adequately
demonstrated with simple models and extensions to the more general setting fatioadly.

It is also important to mention that the majority of this work was done in R and STA®#ever, failed
convergence is not a problem isolated to these two software packagésd €onvergence was also
observed in SAS (version 9.2) [17] and SPSS (version 19) [18]dadpus datasets. Software specific
differences are discussed in Appendix 1.

Failed convergence

In general, generalized linear models are fit by maximizing the log-likelihooctifum where the re-

sultant maximum is referred to as the maximum likelihood estimate (MLE). Faileccopence occurs

whenever the maximizing process fails to find the MLE. Further, estimation olgakecan be grouped
based on the location of the true maximum of the log-likelihood function, relttitree parameter space.
Specifically, the maximum of the function can reside in one of three difféseations: on the boundary
of the parameter space (i.e., where the linear predictor equatsthe limit (i.e., as the linear predictor
heads towards-oo); or inside the parameter space. These three regions span the ergireeparspace

and are mutually exclusive. Below are three sections that examine eaasefdbenarios individually
including possible causes for the observed failed convergence éentipbsolutions if one can identify
which of the three scenarios they are encountering.

Maximum on a finite boundary

It is not surprising that if the log-likelihood function is maximized on the bouyndd the parameter
space then an iterative method may have problems finding it as the algorithm atweitently step

into an illegal space. Therefore, boundary issues are often assurnectdault when observing failed
convergence with a log-binomial model. While this is the case occasionallyhihigdsnot be regarded
as the only cause of failed convergence. Further, if one can posiitkehify the situations where
the true maximum does lie on the boundary of the parameter space then ttte feedhe maximum

can be restricted to the boundary and, through a simple reparametrizattmmbdel, a solution may
frequently be found. Consider Table 1.

Table 1 Example dataset where the log-likelihood is maximized on the bagary of the parameter
space

xX=-1) X=0) X=1)
(Y =1) Disease 10 18 5 33
(Y =0) No Disease 8 9 0 17

18 27 5 50




Although the data is relatively simple, when model 3 is fit to this data using R §IB}TA [16], and
SPSS [18] the model fails to converge. Perhaps not all that surprigiag that for all subjects with
X =1 only the outcome of interest was observed. Interestingly, when this datasiny SAS [17] the
algorithm converges to the proper solution but reports that the comarge questionable given that it
appears to be on the boundary.

To visualize the problem, the contours of the log-relative likelihood functiengiven in Figure 1.
When viewing the log-likelihood function in this way, the observer can makenmghul statements
about the shape of the function. For example, values inside the 14.7%ediglihood region corre-
spond approximately to the familiar 95% confidence interval [19]. The eholid0%, 95% and 99%
relative likelihood levels is somewhat arbitrary but, nevertheless, proh@eslative plausibility of the
parameter estimates inscribed by their respective regions. Estimates insii@thelative likelihood
region are at least half as plausible as the MLE, while values inside the 88%9&6 relative likelihood
regions are nearly and very nearly as plausible as the MLE. Additionadlygdhameter space boundary
is also indicated on the figure.

Figure 1 Log-relative likelihood contours for a log-binomial model with data in Table 1.

It is clear from Figure 1 that the log-likelihood is maximized on the boundath@fparameter space.
Accordingly, it is not surprising that many software packages fail toteottee maximum as the iterative
methods used in fitting the model may inadvertently iterate to an illegal place asd tteualgorithm
to fail. Curiously, the SAS algorithm iterates to the MLE. However, as digtussAppendix 1, while
SAS finds this example correctly, there are other examples where it fails.

Nevertheless, if an analyst can properly identify situations where thé@ols on the boundary, as is
the case in the example, another, more reliable solution, can be employed. |& sipgrameterization
of the model makes the MLE readily available to all the software packageghiBgarticular dataset,
the boundary of interest is the set of all points for whigh+ 5, = 0, or equivalentlyg, = —pf;.
Therefore, along this boundary the model can be rewritten as

log(p) = Bo+ X1
= —p1+ 51Xy
= Ai(X1-1)
= BV,

(4)

whereV; is a new variable defined 4X; — 1). If this model is fit, where the constant term is excluded
and the single predictor ig;, then the model converges quickly to provide an estimate of the MLE using
standard statistical software. The reparameterization has incorporat&ddwledge that the solution
resides on the boundary and the estimation becomes routine.

Maximum in the limit

In contrast to the situations where the estimate is on the finite boundary argutht@®ss where the
maximum is attained in the limit. These types of estimation problems are not, howeiggreuo log-
binomial models. It is not uncommon for a logistic regression model to repoblgms if the data are
such that for a particular subgroup only the outcome of interest is addenvif perhaps no outcomes
are observed. With respect to log-binomial models, this usually occura Weemodel attempts to
estimate a risk of zero. For example, one could consider the situation wieeeentbre no observations
for Y = 1, such as the data given by Table 2. Observing failed convergenceyahadel in this
circumstance would not be noteworthy and, as expected, the same isrtthe fog-binomial model.
Essentially, the log-likelihood function is increasing asymptotically towardsagf, — —oo. The flat
region this creates is problematic for the iterative fitting algorithm and the gsdeds.



Table 2 Example dataset where the log-likelihood function is maximized ithe limit

(X=-1) (X=0) X=1)
(Y =1) Disease 0 0 0 0
(Y =0) No Disease 17 21 12 50
17 21 12 50

Maximum inside the parameter space

Observing failed convergence in the limiting or boundary cases is, in & spredictable. However,
if the solution resides inside the parameter space (i.e., not on a boundartherlimit) then observ-
ing failed convergence, when a finite maximum exists, should be propgdyded as a failure of the
numerical method. Consider the data presented in Table 3.

Table 3 Example dataset where the log-likelihood is maximized inside thegpameter space

(X=-1) (X=0) (X=1)
(Y =1) Disease 2 14 2 18
(Y =0) No Disease 2 3 17 22
4 17 19 40

Fitting a log-binomial model to this data ends in failed convergence in R [1FIST16], and SPSS
[18] after 100 iterations. Yet, SAS [17] manages to report converyafter only a few steps. Also,
the corresponding logistic regression model routinely converges inualkfaftware packages. Naively,
one might assume that the solution resides on a boundary given that thie legsession models were
so easily estimable; however, looking at the log-relative likelihood contgivesy in Figure 2, this is
clearly not the case.

Figure 2 Log-relative likelihood contours for a log-binomial model with data in Table 3.

It can be shown that this function is unimodal and concave down in therrggar the MLE, yet
for some reason this model fails to converge in three of the mainstream sthfistot@mges. Also,
as previously mentioned, this type of data is not a peculiar dataset. In the simwark described
above, more than 200 000 similar datasets were found that, when fit usisgnteslog-binomial model,
would cause one or all of the software packages to fail to convergatencfhaving a finite maximum
inside the allowable space. Further, while these datasets came from tglsitnadl samples, all of them
could be considered plausible data coming from real-world settings. Retide are interested in the
technical details of this example are directed to Appendix 2 where the log-lkeljtscore and Hessian
are explicitly provided. A more complete detailing of the general form of thdikadihood function for
all log-binomial models is outside the scope of this manuscript.

Certainly, the issues of failed convergence are software depenaatrmore complete detailing of the
software specific differences is included in Appendix 1. As previouslgtioeed, in SAS this model
converges rather routinely. However, there are other circumstarme\BAS may converge to a place
outside the parameter space (see Appendx 1).

Figure 2 clearly demonstrates that the log-likelihood function for this modatimadal and concave
down. Presumably, any numerical optimization algorithm ought to be able tahHenchaximum of a
function that is strictly decreasing away from the maximum. However, in R edlsas in STATA, and

SPSS, the fitting process iterates through hundreds of steps withoutimgadanvergence. Looking
closely at the fitting process for R demonstrates the problem. Oddly, therogatal fitting process has



the iterations move quickly towards the MLE but then progressively movieeaand farther from the
MLE (see Figure 3). Even when starting values inside the 14.7% relativinbkel region are supplied,
which are analogous to values drawn from within the respective 95%demtie intervals, the problem
persists.

Figure 3 Log-relative likelihood contours for a log-binomial model with data in Table 3, with
iteration steps.

The reason that the model fails to report convergence is that the estimgtinigien enters what appears
to be an infinite loop. The iterative process moves progressively fuatherfurther from the MLE.
Eventually the next step would be to an illegal place and the algorithm seHatsrto land quite close
to the MLE. Then resumes moving progressively away from the MLE aghinthis case, it is an
iteration loop of 22 steps, with each iteration moving further away from the Mhf the 22nd where
the estimate is quite close to the MLE, but not the MLE. This phenomenon of geyond the MLE
is known as overshoot and, according to Lange [20], is usually a&sttdn“the Hessian not beingell
behavedn the neighbourhood of the desired root”. This peculiar behaviour Bas bbserved when
trying to fit other log-binomial models or when using different data. Yet, tt@aurs clearly show the
existence of a unigue finite maximum inside the parameter space.

Brute force maximization

This work has shown that failed convergence may occur in very simplegettitowever, in all of these
scenarios, with the exception of the case where the MLE is achieved in the limikIitE could be
approximated from the log-relative likelihood contours. In many of theseg;aleclaring these models
“non-convergent” and abandoning their estimation is premature, protdeen alternative estimation
approach can be found.

The increase in desktop computing power provides another option flingleath observed failed con-
vergence besides abandoning the model altogether. That is, brutenfi@dmization [21,22]. When
all else fails, a rudimentary approach can be taken to estimating the maximumggfilkelthood func-
tion. Revisiting the data given in Table 2, applying a brute force maximizatioroapp offers the MLE
quickly and easily. In a way similar to what is done to generate a contour pote grid of defined
precision is placed over a region of the parameter space and the log-ldetlfboction calculated at
each intersection on the grid. The maximum of those points was then fouriti@ptocess repeated
with a smaller, more precise, grid centred at the current estimate of the maxiniisrprocess can be
repeated several times until a predefined precision is obtained. While thisdristrudimentary and
somewhat inefficient, the ability to rescue many log-binomial models that seahmaavise inestimable
may be of great value for the researcher who has invested perhassit® collecting the data only to
find that the desired log-binomial model fails to converge.

Undoubtedly, there are obvious criticisms of this type of approach inclutiméact that standard errors
are not included as part of the estimating process and using the point estatwate is useless. Never-
theless, having an estimate of the MLE can easily lead to subsequent estinitt®figher Information
matrix and consequently estimation of the appropriate standard errormatitety, the 14.7% relative
likelihood region could also readily be used for calculating approximate S&¥ficence intervals for
log-binomial model parameters as suggested by Kalbleisch [19]. Relataldnbkd intervals have the
advantage of being asymmetric and are bound within the parameter spaceawhbktandard Wald-type
intervals would not be asymmetric and could easily include values outsiderdmmgi@r space.



However, in the short term, one can simply provide the MLE estimate to the sthfittiag processes,
restrict the number of iterations to zero and abuse the existing algorithmsdtagdard error estimates.
This solution, however, should not be regarded as a long-term soluttbe faroblem of failed conver-
gence in log-binomial models. There are newly emerging optimization technigthesfield of applied
mathematics that may solve this problem altogether [14,20,23]. These methode inetyd suited for
log-binomial models than the standard Newton-Raphson methods that eeetljunsed. Nevertheless,
in the face of failed convergence a brute force approach can be tdalywhile the necessary research
is done to investigate these other methods for estimating log-binomial models.

Conclusions

With the increasing attention on estimating relative risk using log-binomial models wi# be in-
creasing circumstances where researchers encounter a nomgeorivieg-binomial model. Granted
this paper does not present every possible scenario where failedrgence may occur; however,
from the simple examples presented above it seems clear that there are Stuwdtare failed con-
vergence may occur despite the model being estimable through less stand@mliar methods. In
these circumstances researchers should not simply abandon theirmézigse a log-binomial model
but should consider a more careful examination of possible causesx&mple, one might consider a
reparametrization of the model if it known that the MLE resides on a boyndiaanother case, a re-
searcher may elect to attempt a brute force search of the parametefapheeMLE. Certainly, further
research is needed on the estimation methods for log-binomial models, p&drapwing some of the
recent development from the applied mathematicians on the subject. Hotlevenessage from this
paper should be clear, when log-binomial models fail to converge, dgiveup.
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Appendix 1 - Statistical software

An investigation of the viability of log-binomial models is inseparably connecti¢tal eonsideration of
the current state of statistical software. Indeed this current state igicigarapidly. Nevertheless, we
felt it appropriate to provide some cautious comparisons in part to suppoxtiew that log-binomial
models per se are not the issue, it is the current implementations that arblevaaespread use of the
method will not be accomplished until the method is implemented in the standard stipiatikages,
in a reliable way. The most widely used, and hence influential, statisticabgasKor health research
and many other disciplines are R, STATA, SAS and SPSS. This appendixiigatmal exploration
of the differences between these packages as it pertains to the estimdtigrbaiomial models. We
recognize that there are many other software systems and not attempteddiubige here. Ultimately,
none of these software packages are adequate for modelling log-binoodals in their current state
to ensure results that can be trusted.

R

The R statistical package [15] is at the forefront of statistical computingrhye of being open-source.
Usually, R provides maximal control over the estimating algorithms as compartke oroprietary
alternatives and includes all the functionality of each of them and moréhdtusince it is open-source
it is widely available, and thus not prohibitive from an access point of viesr these reasons, R was
generally the first choice for the software used in this work.

With respect to the GLM fitting algorithms in R, an advantage to the fitting proces#és not been
identified in any of the other packages is that for log-binomial models spabtjiftbere is a functionality
included that ensures that the fitted values are within the allowable spat®isThlogical check to
ensure that the fitted values are always negative. If positive fitted valteeencountered early in the
estimation process then the fit is halted and better starting values are reluastehe user. No other
package offered this. Also, R makes use of a procedure known abaitgpg. If a positive fitted value
would be produced during the fitting process (i.e., the iteration has tried to outsigle the parameter
space) the update is halved and the fitted value is recomputed. If the fittedisadtill positive the
update is halved again and again until the fitted value is negative. Usuallynthiiseguires a single step
halving. In combination, these methods guarantee that if convergenqeoita® it must be to a value
inside the parameter space.

STATA

In contrast to R, STATA [16] does not have a check in place to ensuatettle process only iterates
inside the parameter space. While not shown here, we have obsearagles where STATA converges
to a place outside the allowable parameter space. This is a consequenedaat tihat the numerical
optimization is completely unconstrained. The problem with that is that the log-ldaitiunction is
not defined outside the parameter space so computing a ‘log-likelihood ¥@twa point outside the
parameter space is non-sense. The STATA reference manual [2déslio the fact that the numerical
methods used to fit log-binomial models are actually based on the method @ddposVacholder [8];
however, evidence of this has yet to be observed. In fact, when therawbserved failed convergence
of models fit with STATA, the failed convergence was a consequencesafetation going to an illegal
place and never returning to the parameter space. More researchiéirdeeking at the log-binomial
fitting algorithms in STATA.

One of the advantages of STATA, however, is that both the obserdkebqrected Hessians can be used
in the fitting process. This can be done exclusively with one or the othémaurgh a combination of the
two. STATA allows the user to specify the number of IRLS iterations or the murobiterations using



the observed Hessian (called iterations in STATA). This increased flexibility is a bonus; however,
there are conditions where either method will fail and with STATA allowing theitens to wander
outside the parameter space this is usually a moot point.

When the estimating software is supplied with starting values that are effgdtae MLE, from the
brute force maximization, occasionally convergence would be reporteBARAS The other advantage
of STATA is that when a model is estimable, STATA provides a number of optionestimating the
standard error. The observed or expected information is available laasnjackknife and bootstrap
methods and the robust method known as the Huber-White sandwich estiliate [2

SAS

The options available with estimation in SAS [17] is very similar to those in STATAS 88es not have
a parameter space check like R does and can iterate outside the allowa&lele@pa advantage of SAS
over STATA is that after a pre-set number of iterations if the estimation algohts not been judged to
be any closer to the MLE then the optimization is ceased and the user is notiff@@lATA, the iterative
process continues without end until the process is killed by the user.

SAS was able to correctly converge to the MLE in the example given in Tabfetleananuscript.

However, we have been able to determine that SAS will still fail to convergéhier similar examples
and converge to an illegal place (i.e., outside the parameter space) and.ik®pther systems, SAS
will report an error indicating that there were illegal fitted values for astl@me observation in the
dataset but providing invalid model estimates offers approximately the sdoe agsreporting failed
convergence.

SPSS

The statistical package SPSS [18] is similar to all the others already coediddaximization is done
via Newton-Raphson using either the observed or expected Hessiaombénation of iterations using
one or the other [26]. Initial values need not be supplied as the estimatioadure will compute initial
values for the parameters but initial values can be supplied by the useSH8S implementation also
makes use of step-halving, similar to R. Other characteristics of the implemente8&%S are almost
identical to the others, convergence tolerances and so forth areaffgrmtemmon and user adjustable
as necessary.

However, in spite of a large number of similarities with the other packagesaithesfof SPSS in relation

to the example given in Table 3 is unique. SPSS, with the default convergptions, proceeds through
6 iterations and then declares convergence to a point outside the parapster Fortunately it offers
a warning much like the one provided in SAS when landing in an illegal placeatidgcthat there are

“invalid cases” in the dataset.

Appendix 2 - Technical appendix

This section presents the technical specifics of the example providedlanJabthe manuscript. It is
assumed that the model of interest is a log-binomial model with a single linedicfmeX which has
three possible valuesl = —1,0, 1. The model of interest is

log(p) = Bo + 81X



which is labelled as model 3 above. For this model, the log-likelihood functionésn gs

1(B) = 186y + 17log(1 — ePTA1) 4 3log(1 — ) + 21og(1 — P —F1)

with the score functions fafy and5; given respectively by

SH = M =18 — 17efoth . 3efo _ 2ePo—F
° 9B B 1 — efoth 1— ¢ePo 1 — ePo—b1

and
_ OU(Bo, B1) _ 17ef0tH 92¢Po—h1

S1 = 0B T 1 — ePoth T 1 —ebBo—Pr°

The observed Hessian is given as

%1(Bo,B1)  9%1(Bo,B1)

H — 02 9p1 5o _ | Hoo Hn
B 821(6(%51) 82l(50751) B Hlo Hll
9B0p1 op?
where
—17ePo+b1 3ePo 2ePo—p1
Hoo = (1 — efotPr)2 N (1 — ebo)2 B (1 — efo—P1)2’
—17ebo+b1 2¢eP0—p1
Hio = Hor = (1-— eﬁo+ﬂ1)2 T (1-— 6,30—51)2’
and
—17ebBo+b1 92eP0—B1
Hyy = - — -
(1 —ePotP)2 (1 — ebo—Fr)2
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