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Abstract

Background

Relative risk is a summary metric that is commonly used in epidemiological investigations. Increas-
ingly, epidemiologists are using log-binomial models to study the impact of a set ofpredictor variables
on a single binary outcome, as they naturally offer relative risks. However, standard statistical soft-
ware may report failed convergence when attempting to fit log-binomial models incertain settings.
The methods that have been proposed in the literature for dealing with failed convergence use ap-
proximate solutions to avoid the issue. This research looks directly at the log-likelihood function for
the simplest log-binomial model where failed convergence has been observed, a model with a single
linear predictor with three levels. The possible causes of failed convergence are explored and potential
solutions are presented for some cases.

Results

Among the principal causes is a failure of the fitting algorithm to converge despite the log-likelihood
function having a single finite maximum. Despite these limitations, log-binomial models area viable
option for epidemiologists wishing to describe the relationship between a set ofpredictors and a binary
outcome where relative risk is the desired summary measure.

Conclusions

Epidemiologists are encouraged to continue to use log-binomial models and advocate for improve-
ments to the fitting algorithms to promote the widespread use of log-binomial models.
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Introduction

One of the most basic epidemiological tenets is risk. It is intuitive and easily understood and explained
to a wide audience. It is the conditional probability of an individual having the outcome of interest given
a particular set of risk factors. Usually, it is of interest to frame risk as a comparison between two groups
and one method for summarizing this comparison is the relative risk (RR) or the risk ratio. The relative
risk, in its simplest form, is the ratio of two conditional probabilities,

RR =
p1
p0

wherep1 is the probability of the outcome for those exposured andp0 is the probability of the outcome
for those unexposed. The simplicity of this definition makes it easily conveyedto a wide audience that
may include clinicians, policy makers, or the general public. More generally, this ratio can be framed to
reflect the presence and absence of an exposure either as an assumed common RR, after consideration
of potential confounders, or as a set of stratum specific RRs after consideration of modifiers.

Yet, in spite of this, odds ratios (ORs) rather than RRs are the most frequently reported summary metric
for reporting binary outcomes in modern epidemiological investigations [1]. The odds ratio, is a ratio of
two conditional odds,

OR =
p1/(1− p1)

p0/(1− p0)

wherep1 andp0 are defined as above. ORs are frequently reported in a variety of settings. In case-control
studies, ORs remain definitive [2]. But ORs are also reported in settings where most epidemiologists
would regard the RR as the preferred measure of association [1]. In response to criticism of this practice,
some would cite the well known fact that probability and odds are very closewhen the probability is
itself small, the so-called rare-disease assumption [3]. However, anotherreason that ORs are reported in
inappropriate settings is the current perception that there is not a viable alternative to logistic regression
(which provides ORs) for modelling risk, particularly one that offers RRsrather than ORs.

The majority of work to-date on log-binomial models has been focused on trying to find solutions to the
observed problem of failed convergence. Some of the that work has provided reasonable approximations
to the RR. However, unlike other papers on the subject, this work exploressome possible reasons for
failed convergence and provides potential solutions without resorting to an approximate solution.

Generalized linear models

Modelling ORs is done through the use of logistic regression, a type of generalized linear model that
uses the logistic function to link a dichotomous outcome (assumed to follow a Bernouilli distribution)
to a set of explanatory variables (called the linear predictor when the variables are included in a linear
way).

log

(

p

1− p

)

=

j
∑

i=0

βixi (1)

A log-binomial model is a cousin to the logistic model. Everything is common between the two models
except for the link function. Log-binomial models use a log link function, rather than a logit link, to



connect the dichotomous outcome to the linear predictor.

log p =

j
∑

i=0

βixi (2)

One immediate consequence of this change is the interpretation of the coefficients. In equation 1 theβi’s
refer to differences in the log odds while in equation 2 theβi’s refer to differences in log risks. Except
in some very special cases, there are no easy ways to link the coefficientsfrom a logistic regression to
those in a log-binomial unless one references the rare-disease assumption mentioned above.

If the intention is to report relative risks, then a log-binomial model allows easy access to an estimate of
the relative risks, compared to logistic regression. However, this perceived gain comes at a cost. Both the
logistic and log-binomial models are attempting to describe the relationship betweena set of explanatory
variables and the probability of a specific outcome. Probabilities are strictly defined between zero and
one. The logit link maps the probability of the individual having the disease to the entire real line. The
log-link function maps the probability of disease onto the negative real line, requiring the constraint that
a linear predictor must be negative. This must hold true for all viable combinations of the explanatory
variables to ensure that the implied probability is between zero and one. This simple constraint is
one of the costs of choosing to model relative risk and is implicated in the estimationchallenges for
log-binomial models. That is, for log-binomial models, the parameter space for the set of regression
coefficients is bounded, introducing the opportunity for estimation challenges.

The boundedness of the parameter space means that the likelihood function, the function that is max-
imized to estimate the model parameters, is only defined within that parameter space. Further, trying
to maximize these likelihood functions acknowledging these boundaries is frequently problematic when
using standard methodologies. The next section outlines some of the most popular methods that have
been developed to deal with these problems.

Recently there was a paper published in Stroke [4], where in the statistical methods section the authors
indicated that: “As a first approach to the multivariable analysis, we used a log-binomial model, but
owing to the sparseness of data, this failed to converge. Therefore, weopted for a Poisson regression
with robust variance estimator according to the SAS GENMOD procedure [5].” This type of statement
is becoming increasingly common in top-tier medical journals. Researchers are recognizing the value
of employing log-binomial models to represent their data. However, in the face of failed convergence,
feel compelled to adopt one of the many workarounds, or resort to logisticregression, to even obtain any
estimates at all. However, we submit that there may be circumstances where researchers may not have
to abandon their log-binomial model, as a proper solution may be accessible.

Existing workaround methods

Several papers have been published summarizing the methods currently available for the “approximate
modelling of RRs” [6,7]. These papers all characterize the merits and demerits of the workarounds
that have been suggested. The emphasis of this article is not to detail all of these methods; however, it
is worth noting that, to date, almost all research on log-binomial models can be circumscribed to this
category.

Wacholder was one of the first to articulate the estimation challenges inherentin estimating log-binomial
models and was one of the first to propose a work around [8]. His suggestion was to evaluate the current
fitted values at a given stage in the likelihood maximizing process [after each iteration in the search]
and if any fitted values were outside the boundary space to set the fitted values to values known to be



inside the space. A few years later, Lee and Chia [9] advocated that Coxregression could be adapted
to approximate the solution if one built a dataset where every person had a pre-set and fixed follow-up
time. Schouten [10] proposed the duplication of each case with the outcome ofinterest and suggested
that modelling the log of the odds for the modified data might be the same as the log-binomial model for
the unmodified data. Zhang and Yu [11] make use of a well-known method forconverting odds ratios
to relative risks using a baseline prevalence and then encouraged the use of logistic regression followed
by the conversion of the OR to a RR using that conversion method. Another method has come to be
called the COPY method [12]. With the COPY method, a large number of copies ofthe original dataset
are appended to the original single copy of the data. Then, the for one ofthe copies of the dataset, the
outcome is switched for every observation in that copy and the model is then fit to the enlarged dataset
with the necessary adjustments to the standard errors.

Yet another method for approximating the solution is the modified Poisson method proposed by Zou
[13]. The modified Poisson regression method has gained the most attention in the literature and is
growing in use. Advocates of the method suggest that the key advantage isthat the failed convergence
issues are practically non-existent [14]. This is due, in part, to the fact that Poisson regression is con-
cerned with the log of expected counts and not the log of probabilities. Per se, there is no requirement
that the linear predictor be constrained to be negative with a Poisson regression. Consequently, it is
common that some positive fitted values are offered by the modified Poisson approach. Some authors
have suggested that these can safely be ignored and that this should onlybe the case when the estimate
is near a boundary [14]. However, presumably, the near boundary cases are some of the circumstances
where one might expect failed convergence from a log-binomial model, sousing a Poisson model here
is likely to give probabilities outside the allowable space. While this method seemingly resolves the
convergence issues, we cannot be satisfied with a method that gives fittedprobabilities that are larger
than one.

As previously mentioned, others have published work comparing the existingmethods for approximat-
ing log-binomial models. This work takes a different approach to the problem. That is, that the problem
is not the model itself but rather the limitations of the estimating algorithms to properly maximize the
likelihood function. We submit that failed convergence does not imply that themodel is inestimable.
In fact, with a careful examination of the problem many non-convergent log-binomial models can be
estimated after a simple reparametrization of the model or by using a different maximization technique,
or perhaps the solution may be as simple as using a different software package.

Analysis

Simple models and failed convergence

To understand the mechanism of failed convergence, the simplest possiblescenarios where failed con-
vergence could occur were sought. The simplest of all log-binomial modelsis the model with a single
binary predictor, as it effectively reproduces a2 × 2 table. It is not surprising or interesting to observe
failed convergence when there are zero cells in the2 × 2 table as failed convergence could reasonably
be expected from logistic regression for the same data. Therefore, every unique2 × 2 table, with non-
zero cells, for the fixed sample sizes ofn = 20, 25, . . . , 70, were fit using a log-binomial model with a
single binary predictor in both R (version 2.12.1) [15] and STATA (version 11.1) [16] and not a single
case of failed convergence was observed. The next simplest model would be one with a single predictor
that takes on three levels. Specifically, we explored models with a predictor,X, which was assumed
to be linearly related to the log of the probability of the outcome and had only threepossible values,
X = −1, 0, 1.

log(p) = β0 + β1X (3)



The data could then be summarized using a single3 × 2 table. Again, every possible3 × 2 table, for
samples of sizen = 20, 25, . . . , 60, was fit using the log-binomial model in equation 3 in R [15] and
STATA [16]. In total, more that 7.6 million unique3×2 tables were examined. In R [15], approximately
3% (≈ 225 000) of these tables failed to converge after 100 iterations. It is from these3 × 2 tables
that the examples used below are drawn. Certainly, there are countless examples that could be chosen
of the non-convergent log-binomial models, many of which have been published in top-tier medical
journals. However, by choosing to use the simplest log-binomial models that demonstrate the point, two
advantages are gained. First, using a model with only two parameters, allowsthe visualization of the
log-likelihood function and the relevant parameter space. Second, the issues of non-convergence are not
masked by the complexity of the model. The intention of what is presented next isan exploration of
the fundamental concepts underpinning the estimation of log-binomial models. This can be adequately
demonstrated with simple models and extensions to the more general setting follow naturally.

It is also important to mention that the majority of this work was done in R and STATA; however, failed
convergence is not a problem isolated to these two software packages. Failed convergence was also
observed in SAS (version 9.2) [17] and SPSS (version 19) [18] for various datasets. Software specific
differences are discussed in Appendix 1.

Failed convergence

In general, generalized linear models are fit by maximizing the log-likelihood function, where the re-
sultant maximum is referred to as the maximum likelihood estimate (MLE). Failed convergence occurs
whenever the maximizing process fails to find the MLE. Further, estimation challenges can be grouped
based on the location of the true maximum of the log-likelihood function, relativeto the parameter space.
Specifically, the maximum of the function can reside in one of three differentlocations: on the boundary
of the parameter space (i.e., where the linear predictor equals0); in the limit (i.e., as the linear predictor
heads towards−∞); or inside the parameter space. These three regions span the entire parameter space
and are mutually exclusive. Below are three sections that examine each of these scenarios individually
including possible causes for the observed failed convergence and potential solutions if one can identify
which of the three scenarios they are encountering.

Maximum on a finite boundary

It is not surprising that if the log-likelihood function is maximized on the boundary of the parameter
space then an iterative method may have problems finding it as the algorithm may inadvertently step
into an illegal space. Therefore, boundary issues are often assumed tobe at fault when observing failed
convergence with a log-binomial model. While this is the case occasionally, this should not be regarded
as the only cause of failed convergence. Further, if one can positivelyidentify the situations where
the true maximum does lie on the boundary of the parameter space then the search for the maximum
can be restricted to the boundary and, through a simple reparametrization ofthe model, a solution may
frequently be found. Consider Table 1.

Table 1 Example dataset where the log-likelihood is maximized on the boundary of the parameter
space

(X = -1) (X = 0) (X = 1)
(Y = 1) Disease 10 18 5 33
(Y = 0) No Disease 8 9 0 17

18 27 5 50



Although the data is relatively simple, when model 3 is fit to this data using R [15],STATA [16], and
SPSS [18] the model fails to converge. Perhaps not all that surprising given that for all subjects with
X = 1 only the outcome of interest was observed. Interestingly, when this data is fit using SAS [17] the
algorithm converges to the proper solution but reports that the convergence is questionable given that it
appears to be on the boundary.

To visualize the problem, the contours of the log-relative likelihood function are given in Figure 1.
When viewing the log-likelihood function in this way, the observer can make meaningful statements
about the shape of the function. For example, values inside the 14.7% relative likelihood region corre-
spond approximately to the familiar 95% confidence interval [19]. The choice of 50%, 95% and 99%
relative likelihood levels is somewhat arbitrary but, nevertheless, providethe relative plausibility of the
parameter estimates inscribed by their respective regions. Estimates inside the50% relative likelihood
region are at least half as plausible as the MLE, while values inside the 95% and 99% relative likelihood
regions are nearly and very nearly as plausible as the MLE. Additionally, the parameter space boundary
is also indicated on the figure.

Figure 1 Log-relative likelihood contours for a log-binomial model with data in Table 1.

It is clear from Figure 1 that the log-likelihood is maximized on the boundary ofthe parameter space.
Accordingly, it is not surprising that many software packages fail to locate the maximum as the iterative
methods used in fitting the model may inadvertently iterate to an illegal place and cause the algorithm
to fail. Curiously, the SAS algorithm iterates to the MLE. However, as discussed in Appendix 1, while
SAS finds this example correctly, there are other examples where it fails.

Nevertheless, if an analyst can properly identify situations where the solution is on the boundary, as is
the case in the example, another, more reliable solution, can be employed. A simple reparameterization
of the model makes the MLE readily available to all the software packages. For this particular dataset,
the boundary of interest is the set of all points for whichβ0 + β1 = 0, or equivalentlyβ0 = −β1.
Therefore, along this boundary the model can be rewritten as

log(p) = β0 + β1X1

= −β1 + β1X1

= β1(X1 − 1)
= β1V1,

(4)

whereV1 is a new variable defined as(X1 − 1). If this model is fit, where the constant term is excluded
and the single predictor isV1, then the model converges quickly to provide an estimate of the MLE using
standard statistical software. The reparameterization has incorporated the knowledge that the solution
resides on the boundary and the estimation becomes routine.

Maximum in the limit

In contrast to the situations where the estimate is on the finite boundary are the situations where the
maximum is attained in the limit. These types of estimation problems are not, however, unique to log-
binomial models. It is not uncommon for a logistic regression model to report problems if the data are
such that for a particular subgroup only the outcome of interest is observed or if perhaps no outcomes
are observed. With respect to log-binomial models, this usually occurs when the model attempts to
estimate a risk of zero. For example, one could consider the situation where there were no observations
for Y = 1, such as the data given by Table 2. Observing failed convergence of any model in this
circumstance would not be noteworthy and, as expected, the same is true for the log-binomial model.
Essentially, the log-likelihood function is increasing asymptotically towards zero asβ0 → −∞. The flat
region this creates is problematic for the iterative fitting algorithm and the process fails.



Table 2 Example dataset where the log-likelihood function is maximized inthe limit
(X = -1) (X = 0) (X = 1)

(Y = 1) Disease 0 0 0 0
(Y = 0) No Disease 17 21 12 50
17 21 12 50

Maximum inside the parameter space

Observing failed convergence in the limiting or boundary cases is, in a sense, predictable. However,
if the solution resides inside the parameter space (i.e., not on a boundary orin the limit) then observ-
ing failed convergence, when a finite maximum exists, should be properly regarded as a failure of the
numerical method. Consider the data presented in Table 3.

Table 3 Example dataset where the log-likelihood is maximized inside the parameter space
(X = -1) (X = 0) (X = 1)

(Y = 1) Disease 2 14 2 18
(Y = 0) No Disease 2 3 17 22

4 17 19 40

Fitting a log-binomial model to this data ends in failed convergence in R [15], STATA [16], and SPSS
[18] after 100 iterations. Yet, SAS [17] manages to report convergence after only a few steps. Also,
the corresponding logistic regression model routinely converges in all four software packages. Naively,
one might assume that the solution resides on a boundary given that the logistic regression models were
so easily estimable; however, looking at the log-relative likelihood contoursgiven in Figure 2, this is
clearly not the case.

Figure 2 Log-relative likelihood contours for a log-binomial model with data in Table 3.

It can be shown that this function is unimodal and concave down in the region near the MLE, yet
for some reason this model fails to converge in three of the mainstream statistical packages. Also,
as previously mentioned, this type of data is not a peculiar dataset. In the simulation work described
above, more than 200 000 similar datasets were found that, when fit using thesame log-binomial model,
would cause one or all of the software packages to fail to converge in spite of having a finite maximum
inside the allowable space. Further, while these datasets came from relatively small samples, all of them
could be considered plausible data coming from real-world settings. Readers that are interested in the
technical details of this example are directed to Appendix 2 where the log-likelihood, score and Hessian
are explicitly provided. A more complete detailing of the general form of the log-likelihood function for
all log-binomial models is outside the scope of this manuscript.

Certainly, the issues of failed convergence are software dependent and a more complete detailing of the
software specific differences is included in Appendix 1. As previously mentioned, in SAS this model
converges rather routinely. However, there are other circumstances where SAS may converge to a place
outside the parameter space (see Appendx 1).

Figure 2 clearly demonstrates that the log-likelihood function for this model is unimodal and concave
down. Presumably, any numerical optimization algorithm ought to be able to findthe maximum of a
function that is strictly decreasing away from the maximum. However, in R, as well as in STATA, and
SPSS, the fitting process iterates through hundreds of steps without declaring convergence. Looking
closely at the fitting process for R demonstrates the problem. Oddly, the log-binomial fitting process has



the iterations move quickly towards the MLE but then progressively move farther and farther from the
MLE (see Figure 3). Even when starting values inside the 14.7% relative likelihood region are supplied,
which are analogous to values drawn from within the respective 95% confidence intervals, the problem
persists.

Figure 3 Log-relative likelihood contours for a log-binomial model with data in Table 3, with
iteration steps.

The reason that the model fails to report convergence is that the estimating algorithm enters what appears
to be an infinite loop. The iterative process moves progressively furtherand further from the MLE.
Eventually the next step would be to an illegal place and the algorithm self-corrects to land quite close
to the MLE. Then resumes moving progressively away from the MLE again.In this case, it is an
iteration loop of 22 steps, with each iteration moving further away from the MLEuntil the 22nd where
the estimate is quite close to the MLE, but not the MLE. This phenomenon of goingbeyond the MLE
is known as overshoot and, according to Lange [20], is usually ascribed to “the Hessian not beingwell
behavedin the neighbourhood of the desired root”. This peculiar behaviour has been observed when
trying to fit other log-binomial models or when using different data. Yet, the contours clearly show the
existence of a unique finite maximum inside the parameter space.

Brute force maximization

This work has shown that failed convergence may occur in very simple settings. However, in all of these
scenarios, with the exception of the case where the MLE is achieved in the limit, the MLE could be
approximated from the log-relative likelihood contours. In many of these cases, declaring these models
“non-convergent” and abandoning their estimation is premature, providedthat an alternative estimation
approach can be found.

The increase in desktop computing power provides another option for dealing with observed failed con-
vergence besides abandoning the model altogether. That is, brute force maximization [21,22]. When
all else fails, a rudimentary approach can be taken to estimating the maximum of a log-likelihood func-
tion. Revisiting the data given in Table 2, applying a brute force maximization approach offers the MLE
quickly and easily. In a way similar to what is done to generate a contour plot, asimple grid of defined
precision is placed over a region of the parameter space and the log-likelihood function calculated at
each intersection on the grid. The maximum of those points was then found andthe process repeated
with a smaller, more precise, grid centred at the current estimate of the maximum. This process can be
repeated several times until a predefined precision is obtained. While this method is rudimentary and
somewhat inefficient, the ability to rescue many log-binomial models that seemed otherwise inestimable
may be of great value for the researcher who has invested perhaps years into collecting the data only to
find that the desired log-binomial model fails to converge.

Undoubtedly, there are obvious criticisms of this type of approach includingthe fact that standard errors
are not included as part of the estimating process and using the point estimates alone is useless. Never-
theless, having an estimate of the MLE can easily lead to subsequent estimation of the Fisher Information
matrix and consequently estimation of the appropriate standard errors. Alternatively, the 14.7% relative
likelihood region could also readily be used for calculating approximate 95% confidence intervals for
log-binomial model parameters as suggested by Kalbleisch [19]. Relative likelihood intervals have the
advantage of being asymmetric and are bound within the parameter space, whereas standard Wald-type
intervals would not be asymmetric and could easily include values outside the parameter space.



However, in the short term, one can simply provide the MLE estimate to the standard fitting processes,
restrict the number of iterations to zero and abuse the existing algorithms to getstandard error estimates.
This solution, however, should not be regarded as a long-term solution tothe problem of failed conver-
gence in log-binomial models. There are newly emerging optimization techniquesin the field of applied
mathematics that may solve this problem altogether [14,20,23]. These methods may be better suited for
log-binomial models than the standard Newton-Raphson methods that are currently used. Nevertheless,
in the face of failed convergence a brute force approach can be easilytaken while the necessary research
is done to investigate these other methods for estimating log-binomial models.

Conclusions

With the increasing attention on estimating relative risk using log-binomial models there will be in-
creasing circumstances where researchers encounter a non-convergent log-binomial model. Granted
this paper does not present every possible scenario where failed convergence may occur; however,
from the simple examples presented above it seems clear that there are situations where failed con-
vergence may occur despite the model being estimable through less standardor familiar methods. In
these circumstances researchers should not simply abandon their decision to use a log-binomial model
but should consider a more careful examination of possible causes. Forexample, one might consider a
reparametrization of the model if it known that the MLE resides on a boundary. In another case, a re-
searcher may elect to attempt a brute force search of the parameter spacefor the MLE. Certainly, further
research is needed on the estimation methods for log-binomial models, perhaps borrowing some of the
recent development from the applied mathematicians on the subject. However, the message from this
paper should be clear, when log-binomial models fail to converge, do notgive up.
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model.
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Appendix 1 - Statistical software

An investigation of the viability of log-binomial models is inseparably connected with consideration of
the current state of statistical software. Indeed this current state is changing rapidly. Nevertheless, we
felt it appropriate to provide some cautious comparisons in part to supportour view that log-binomial
models per se are not the issue, it is the current implementations that are available. Widespread use of the
method will not be accomplished until the method is implemented in the standard statistical packages,
in a reliable way. The most widely used, and hence influential, statistical packages for health research
and many other disciplines are R, STATA, SAS and SPSS. This appendix is an informal exploration
of the differences between these packages as it pertains to the estimation oflog-binomial models. We
recognize that there are many other software systems and not attempted to beinclusive here. Ultimately,
none of these software packages are adequate for modelling log-binomialmodels in their current state
to ensure results that can be trusted.

R

The R statistical package [15] is at the forefront of statistical computing byvirtue of being open-source.
Usually, R provides maximal control over the estimating algorithms as compared tothe proprietary
alternatives and includes all the functionality of each of them and more. Further, since it is open-source
it is widely available, and thus not prohibitive from an access point of view. For these reasons, R was
generally the first choice for the software used in this work.

With respect to the GLM fitting algorithms in R, an advantage to the fitting process that has not been
identified in any of the other packages is that for log-binomial models specifically there is a functionality
included that ensures that the fitted values are within the allowable space. This is a logical check to
ensure that the fitted values are always negative. If positive fitted values are encountered early in the
estimation process then the fit is halted and better starting values are requested from the user. No other
package offered this. Also, R makes use of a procedure known as step-halving. If a positive fitted value
would be produced during the fitting process (i.e., the iteration has tried to moveoutside the parameter
space) the update is halved and the fitted value is recomputed. If the fitted value is still positive the
update is halved again and again until the fitted value is negative. Usually this only requires a single step
halving. In combination, these methods guarantee that if convergence is reported it must be to a value
inside the parameter space.

STATA

In contrast to R, STATA [16] does not have a check in place to ensure that the process only iterates
inside the parameter space. While not shown here, we have observed examples where STATA converges
to a place outside the allowable parameter space. This is a consequence of the fact that the numerical
optimization is completely unconstrained. The problem with that is that the log-likelihood function is
not defined outside the parameter space so computing a ‘log-likelihood’ value for a point outside the
parameter space is non-sense. The STATA reference manual [24] alludes to the fact that the numerical
methods used to fit log-binomial models are actually based on the method proposed by Wacholder [8];
however, evidence of this has yet to be observed. In fact, when the authors observed failed convergence
of models fit with STATA, the failed convergence was a consequence of the iteration going to an illegal
place and never returning to the parameter space. More research is needed looking at the log-binomial
fitting algorithms in STATA.

One of the advantages of STATA, however, is that both the observed and expected Hessians can be used
in the fitting process. This can be done exclusively with one or the other, orthrough a combination of the
two. STATA allows the user to specify the number of IRLS iterations or the number of iterations using



the observed Hessian (calledml iterations in STATA). This increased flexibility is a bonus; however,
there are conditions where either method will fail and with STATA allowing the iterations to wander
outside the parameter space this is usually a moot point.

When the estimating software is supplied with starting values that are effectively the MLE, from the
brute force maximization, occasionally convergence would be reported in STATA. The other advantage
of STATA is that when a model is estimable, STATA provides a number of options for estimating the
standard error. The observed or expected information is available as well as jackknife and bootstrap
methods and the robust method known as the Huber-White sandwich estimate [25].

SAS

The options available with estimation in SAS [17] is very similar to those in STATA. SAS does not have
a parameter space check like R does and can iterate outside the allowable space. One advantage of SAS
over STATA is that after a pre-set number of iterations if the estimation algorithm has not been judged to
be any closer to the MLE then the optimization is ceased and the user is notified. In STATA, the iterative
process continues without end until the process is killed by the user.

SAS was able to correctly converge to the MLE in the example given in Table 3 of the manuscript.
However, we have been able to determine that SAS will still fail to converge inother similar examples
and converge to an illegal place (i.e., outside the parameter space) and stop. Like other systems, SAS
will report an error indicating that there were illegal fitted values for at least one observation in the
dataset but providing invalid model estimates offers approximately the same value as reporting failed
convergence.

SPSS

The statistical package SPSS [18] is similar to all the others already considered. Maximization is done
via Newton-Raphson using either the observed or expected Hessian or acombination of iterations using
one or the other [26]. Initial values need not be supplied as the estimation procedure will compute initial
values for the parameters but initial values can be supplied by the user. The SPSS implementation also
makes use of step-halving, similar to R. Other characteristics of the implementationin SPSS are almost
identical to the others, convergence tolerances and so forth are generally common and user adjustable
as necessary.

However, in spite of a large number of similarities with the other packages, the failure of SPSS in relation
to the example given in Table 3 is unique. SPSS, with the default convergence options, proceeds through
6 iterations and then declares convergence to a point outside the parameterspace. Fortunately it offers
a warning much like the one provided in SAS when landing in an illegal place indicating that there are
“invalid cases” in the dataset.

Appendix 2 - Technical appendix

This section presents the technical specifics of the example provided in Table 3 of the manuscript. It is
assumed that the model of interest is a log-binomial model with a single linear predictorX which has
three possible values,X = −1, 0, 1. The model of interest is

log(p) = β0 + β1X



which is labelled as model 3 above. For this model, the log-likelihood function is given as

l(β) = 18β0 + 17 log(1− eβ0+β1) + 3 log(1− eβ0) + 2 log(1− eβ0−β1)

with the score functions forβ0 andβ1 given respectively by

S0 =
∂l(β0, β1)

∂β0
= 18−

17eβ0+β1

1− eβ0+β1

−

3eβ0

1− eβ0

−

2eβ0−β1

1− eβ0−β1

and

S1 =
∂l(β0, β1)

∂β1
=

17eβ0+β1

1− eβ0+β1

+
2eβ0−β1

1− eβ0−β1

.

The observed Hessian is given as

H =





∂2l(β0,β1)
∂β2

0

∂2l(β0,β1)
∂β1β0

∂2l(β0,β1)
∂β0β1

∂2l(β0,β1)
∂β2

1



 =

[

H00 H01

H10 H11

]

where

H00 =
−17eβ0+β1

(1− eβ0+β1)2
−

3eβ0

(1− eβ0)2
−

2eβ0−β1

(1− eβ0−β1)2
,

H10 = H01 =
−17eβ0+β1

(1− eβ0+β1)2
+

2eβ0−β1

(1− eβ0−β1)2
,

and

H11 =
−17eβ0+β1

(1− eβ0+β1)2
−

2eβ0−β1

(1− eβ0−β1)2
.

References

1. Davies H, Crombie I, Tavakoli M:When can odds ratios mislead?Br Med J1998,316(7136):989.

2. Sedgwick P:Case-control studies: measures of risk.BMJ 2013,346:f1185.

3. van Belle G:Statistical Rules of Thumb.New York: Wiley-Interscience; 2002.

4. Silvestrini M, Altamura C, Cerqua R, Pedone C, Balucani C, Luzzi S, Bartolini M, Provinciali L,
Vernieri F:Early activation of intracranial collateral vessels influences the outcome of sponta-
neous internal carotid artery dissection.Stroke2011,42:139–143.

5. Spiegelman D, Hertzmark E:Easy SAS calculations for risk or prevalence ratios and differ-
ences.Am J Epidemiol2005,162(3):199–200.

6. Knol MJ, Le Cessie S, Algra A, Vandenbroucke JP, Groenwold RH:Overestimation of risk ratios
by odds ratios in trials and cohort studies: alternatives to logistic regression.Can Med Assoc J
2012,184(8):895–899.

7. Fang J:Using SAS Procedures FREQ, GENMOD, LOGISTIC, and PHREG to Estimate Ad-
justed Relative Risks – A Case Study.In SAS Global Forum 2011, 4–11 April 2011,Las Vegas:
SAS Institute Inc.; 2011:345–2011.

8. Wacholder S:Binomial regression in GLIM: estimating risk ratios and risk difference s. Am J
Epidemiol1986,123:174–184.



9. Lee J:Odds ratio or relative risk for cross-sectional data?Int J Epidemiol1994,23:201–203.

10. Schouten EG, Dekker JM, Kok FJ, Le Cessie S, van Houwelingen HC, Pool J, Vanderbroucke JP:
Risk ratio and rate ratio estimation in case-cohort designs: hypertension and cardiovascular
mortality. Stat Med1993,12(18):1733–1745.

11. Zhang J, Yu KF:What’s the relative risk? A method of correcting the odds ratio in cohort
studies of common outcomes.J Am Med Assoc1998,280(19):1690–1691.

12. Deddens JA, Petersen MR:Re: “Estimating the relative risk in cohort studies and clinical trials
of common outcomes”.Am J Epidemiol2004,159(2):213–214.

13. Zou G:A modified poisson regression approach to prospective studies with binary data. Am J
Epidemiol2004,159(7):702–706.

14. Lumley T, Ma S, Kronmal R:Relative Risk Regression in Medical Research: Models, Contrasts,
Estimators, and Algorithms.U Washington Working Papers, BE Press; 2006. http://biostats.bepress.
com/uwbiostat/paper293

15. R Development Core Team:R: A Language and Environment for Statistical Computing, Reference
Index Version 2.12.1.Vienna: R Foundation for Statistical Computing; 2011. http://www.R-project.
org

16. StataCorp:Stata Statistical Software: Release 11.College Station, TX: StataCorp LP; 2009.

17. SAS:SAS/STAT(R) 9.2 user’s guide.2011. http://support.sas.com/documentation/cdl/en/statug/
63962/PDF/default/statug.pdf

18. IBM Corp.: IBM SPSS Statistics for Windows, Version 19.0.Armonk: IBM Corp.; 2010.

19. Kalbfleisch J:Probability and Statistical Inference - Vol. 2: Statistical Inference, 2nd edition. New
York: Springer; 1985.

20. Lange K:Optimization.New York: Springer; 2004.

21. Berlin Heidelberg J:Exhaustive search, combinatorial optimization and enumeration:explor-
ing the potential of raw computing power. In SOFSEM 2000: Theory and Practice of Informat-
ics, volume 1963.Edited by Hlavác V, Jeffery KG, Wiedermann J. Berlin, Heidelberg: Springer;
2000:18–35.

22. Trakhtenbrot BA:A survey of russian approaches to perebor (Brute-force searches) algorithms.
IEEE Ann Hist Comput1984,6(4):384–400.

23. Kirkpatrick S, Gelatt CD, Vecchi MP:Optimization by simulated annealing. Science1983,
220(4598):671–680.

24. StataCorp:Stata Base Reference Manual: Release 11.College Station: StataCorp; 2009.

25. Huber P:The behavior of maximum likelihood estimates under non-standard conditions. Proc
Fifth Berkeley Symp Math Stat Probability1967,1:221–223.

26. Kirkpatrick L, Feeney B:A Simple Guide to SPSS for Version 17.0.Belmont: Cengage Learning;
2010.



β0

β
1

−0.6 −0.5 −0.4 −0.3 −0.2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 1



 14.72% 

 50% 

 90% 

 95% 

 99% 

1.1 1.0 0.9 0.8 0.7 0.6 0.5 0.4

0
.8

0
.6

0
.4

0
.2

B
oundary

1

0
Figure 2



 14.72% 

 50% 

 90% 

 95% 

 99% 

1.1 1.0 0.9 0.8 0.7 0.6 0.5 0.4

0
.8

0
.6

0
.4

0
.2

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

B
oundary

0

1

Figure 3



BioMed Central publishes under the Creative Commons Attribution License (CCAL). Under
the CCAL, authors retain copyright to the article but users are allowed to download, reprint,
distribute and /or copy articles in BioMed Central journals, as long as the original work is
properly cited.


	Start of article
	Figure 1
	Figure 2
	Figure 3

