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PREFACE

THE SUBJECT

Statistical inference is the process by which conclusions about unknown charac-
teristics and properties of a real world system are reached from background
information and current data from an investigation of the system. The starting
point for this process is the formal mathematical presentation of the background
information together with the data—the model with the data, called the inference
base.

Linear Models are models in which some or all of the parameters—representing
unknowns of the real world system—have a linear effect on primary variables of
the model. The term linear model commonly refers to the standard regression
model, perhaps with a parameter for distribution form; here the term covers the
same linearity but in more general contexts.

This book examines statistical inference and gives some special attentions to
the more fruitful areas in which models have linearity.

THE BACKGROUND

The common statistical model is really just a class of density functions, or even
just a class of probability measures. Inevitably, the real world system supports
more, even such minimum properties as continuity and relevant metrics. The
common model seems a deplorable minimum omitting ingredients that would
be viewed essential in component areas of science. Do these ingredients matter in
statistics?

The starting point for inference is often taken to be a pair, (E, x), an experiment
and an observed response. The term experiment of course, does not cover all
investigations. And an investigation as such does not include the background
information concerning it. Perhaps the formal process of inference needs a formal
starting point.
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Many methods exist and are proposed in statistical applications. An appealing
and seemingly successful method can invite explanation and plausible grounds.
Bayesian priors and procedural principles can then receive reverse support. Are
there solid and independent bases for some statistical methods?

Several principles are commonly available for the derivation or support of
inference methods. The most prominent is that of sufficiency providing support
for many methods associated with normal distributions. Sufficiency, and some
related principles, involve allocating sample points to sample-space contours to
achieve a type of density-function balance, call this a density-allocation method.
The support for some of these methods and the related principles is often derived
largely from a few attractive examples. Perhaps the examples are attractive
because of some more fundamental properties?

The normal distribution has attractive mathematical and stochastic properties.
Part of this is connected with multidimensional rotational symmetry. And as part
of this symmetry much of statistical theory centers around the normal distribu-
tion. Should not the ubiquitous presence of nonnormal distributions in applica-
tions suggest a more broadly based theory covering inference methods?

THE CONTENTS

This book examines statistical inference. Various current reduction methods of
inference are surveyed in Chapter 3, and various terminal methods are explored
in detail in Chapter 5. Five new necessary reduction methods are developed and
discussed in Chapter 4; these allow a broad extension of inference methods to
nonnormal statistical models. General methods for building on linearity and
extending from linearity are explored in Chapters 7 and 11.

An important part of clarifying the process of statistical inference is being
clear about the starting point. Chapter 1 examines the statistical model for a real
world system and involves requirements for the model for an investigation. This
leads to the concept of the inference base as the starting point for the process of
statistical inference.

In Chapter 2 the model and the inference base are examined in detail for
this very basic system, the location-scale system. Inference methods and computer
programs are discussed for handling the location-scale case with say a Student
family, or a Weibull model, or a numerically presented family—for the basic
distribution form. Robustness and resistance properties are discussed in a con-
cluding section.

After the initial survey and development of inference method in Chapters 3,
4, 5, the regression model is used in Chapter 6 as a major illustration. An example
is given of the computer analysis of the regression model with Student distribution
form and nonnormal data.

The introducing Chapter 1 develops the concept of the inference base as the
formal starting point for the process of inference. This clarification of the starting
point allows the separation of the given from the arbitrary and leads to the
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necessary reduction methods in Chapter 4. The advantages of this clarification
become apparent with the necessary extensions of current methods to handle the
nonnormal cases for location-scale (Chapter 2) and regression (Chapter 6). In
these chapters we find an unequivocal separation of variables to handle key
component parameters.

A central notion in Chapters 2 and 6 is the objective nature of distribution
form in the location-scale and the regression contexts. This objectivity of distribu-
tion form is examined in detail in Chapter 7 and various statistical and mathe-
matical methods are developed for models with objective distribution form. The
models are structural models.

The general methods of Chapter 7 are then applied to the multivariate model
with nonnormal error (Chapter 8), distributions on the circle and sphere (Chapter
9), dilution series and bioassay (Chapter 10), and multivariate regression (Chapter
12). Computer methods and data are examined for a three parameter model on
the circle, and for dilution series and bioassay models leading to significant exten-
sions beyond the usual maximum likelihood approach.

Chapter 11 explores some likelihood and extended likelihood methods for
estimating parameters of distribution form or response reexpression. Power
transformation of the regression model provide an illustration.

In the text we see that the clarifications connected with the definition of the
model and of the inference base lead unequivocally to certain conditional methods
of analysis and to parameter variable separations. This is illustrated throughout
the book with the computer analyses for location-scale, Weibull, extreme value,
bioassay, dilution-series, circle and sphere, regression and multivariate problems.
A range of new directions are opened.
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CHAPTER

ONE
MODEL AND DATA: THE INFERENCE BASE

In this book we examine statistical inference.

Statistical inference arises in the context of an investigation of a real world
svstem. The system can be physical, biological, social, or any other system that is
controllable to the extent that the system responses are random. The investiga-
tion involves a prescription that enunciates what variables are to be examined, what
performances are to be made, and what unknowns are the real purpose of the
investigation.

There are two initial ingredients for statistical inference: the specification of
the system and the data from the investigation. The specification gives the back-
ground information concerning the system; it establishes what are and are not
possible performance patterns for the system—to some reasonable approximation.
The data are the response results or values from the current performances of the
svstem, the performances as detailed by the investigation.

Statistical inference, then, is concerned with what the specification and data say
concerning the unknowns of the system.

This book is concerned with the basic and unifying ideas in statistical inference,
with the common threads and purposes. Accordingly, the emphasis is on the wide
range of problems involving continuous response variables. This is not to suggest
that the discrete problems such as with the binomial, Poisson, multinomial, and
hypergeometric are not important, but rather that the continuous problems repre-
sent a wide range of possibilities for examining ideas and purposes of inference,
and the discrete problems do have some very special simplicities.
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1-1 THE SYSTEM AND THE MODEL

We consider further some real world system that is under investigation, a system
that is controllable to the extent that the response variable is random.

1-1-1 The System

We find it convenient at times to view the system as a box with input variables to
the box and response variables from the box. How the system performs can
then be viewed in terms of the response pattern of the system that corresponds to
each chosen array of input values to the system. A system is called random or stable
orunder statistical controlifeach relevant input pattern gives response performances
that can be described by probability distributions; for a recent discussion, see
Fraser (1976, Chaps. 1 and 4).

In many texts the term experiment is used for what we have called a random
system. Inscientificcontexts,however, the term experiment is used for investigations
wherecontrollable variables are changed explicitly and purposefully to gain inform-
ation on cause-effect relationships. This usage of the term experiment has funda-
mental importance within science and it is prudent not to dilute its meaning when
discussing statistical inference. Accordingly we prefer the term random system and
reserve the term experiment for those very specific investigations of a system in
which input variables are changed in a designed goal-directed manner.

Typically, a system has many input variables that may affect the response
performance of the system. Hopefully these variables will be controllable in their
input values to the system. The specification then establishes what are and what
are not possible performance patterns for the system in relation to values for the
controllable input variables. For designated response variables and designated
ranges for the controllable input variables a model for the system is a mathematical-
probabilistic presentation of the specification in a form appropriate to the
designated variables and ranges.

For an investigation of the system, the controllable variables can be of two
different kinds: the design variables that are changed in a planned pattern in
different performances of the system; and the remaining controllable variables
that are kept constant (controlled). The investigation becomes an experiment if
the design variables are changed purposefully to gain information on cause-effect
relationships—from cause in the design variables to effect in the response
variables.

There may, however, be input variables that are not directly controllable. A
basic experimental procedure, then, is to use external randomization to assign the
planned input pattern to the different performances of the system; the effect of
the uncontrolled input variables then appears as a random effect on the response.

The external randomization of the input pattern to the different performances
of the investigation provides an effective compensation for a certain lack of
control of particular input variables. Also, as a component of the investigation,
the external randomization is a random system separate from and additional to
the basic random system under investigation.



MODEL AND DATA: THE INFERENCE BASE 3

1-1-2 The Model

The specification gives the background information concerning the random system
being investigated. The details of the investigation enunciate what variables are
to be examined, what performances are to be made, what randomization is to be
applied, and what unknowns are the purpose of the investigation.

A specification may provide background information on response variables
additional to those under investigation, or on sequences of performances different
from that detailed by the investigation. Indeed, the specification may provide
information on a wide variety of aspects of the system beyond those detailed by
the investigation. Besides, a specification is typically not recorded in a formal
mathematical-probabilistic form.

In short, the specification as it stands is not formal and specific to the details
of the investigation —with the particular group of variables and performances, with
the particular input conditions and randomization pattern, and with the particular
unknowns of interest.

Accordingly, the term model for the investigation is used for the set of
mathematical-probabilistic descriptions needed for the particular variables, per-
formances, randomization, and conditions as detailed by the investigation. The
model is not an arbitrary construct; rather it is the specification made formal
and specific to the investigation. There are four components to the definition of
the model for the investigation:

(1) The model is descriptive. The components and variables of the model
correspond to objective components and variables for the performances as detailed
by the investigation. Thus the components and variables are real, not arbitrary.

(2) The model is exhaustive. There is a component or variable in the model
that corresponds to each objective component or variable for the performances
as detailed by the investigation. Thus the description is full, not partial.

(3) The model is probabilistic. Without probability, inference is trivial and not
statistical. By probabilistic we mean that the use of the model and its components
conforms to the requirements of probability theory. In a sense this is already
covered by the term descriptive. However, two requirements of probability theory
are often overlooked and accordingly should be made explicit. Both involve con-
ditional probability.

The first requirement is concerned with the observed value of an objective
variable with known objective probabilities : a value on a component probability
space. The requirement then is that all probability descriptions be conditional
probabilities given the observed value.

The second requirement is concerned with information about an objective
variable, information that takes the form of an observed value of a function of the
variable. The requirement then is that the marginal probability description be
used for the observable function and the conditional probability description be
used for the variable itself given the observed value of the function.

(4) The detailed investigation of a random system is concerned with unknown
characteristics of the system—unknown characteristics of the distributions or
unknown characteristics of the relations among the variables. Accordingly the



4 INFERENCE AND LINEAR MODELS

model is the set of possible descriptions tor the investigation thus embracing the
range of possibilities for the unknown characteristics—and such additional de-
scriptions as are needed for an internally consistent model.

For the presentation of the model in notation, it is important to have an index
set for the set of available descriptions. Often we will use Q = {6} to designate this
index set and refer to a fiee variable 6 on Q as the parameter of the model. For an
application, the inference problem is to determine what can be said concerning
the true value of 0, that value of 0 that designates the particular true description
for the system —of course to some reasonable approximation.

We will frequently use the letter .# to designate a model, adding subscripts
or superscripts as needed. The model then has the form

M=(Q;..) (1-1)

where Q is the index set and the remainder is the set of descriptions indexed by 6
in Q.

Note that if we were to use some transformed response in place of the initial
response then, typically, each of the descriptions would change accordingly. The
index and index set would, however, remain the same. For this recall that a particular
one of the values in Q is the true value of 0, the value that designates the true descrip-
tion for the response.

In conclusion we note that for our purposes here it is convenient and appro-
priate to restrict attention to models in which probability is given in terms of
density functions—either with respect to a volume measure on real spaces, or with
respect to a counting measure, or with respect to a mixture of the preceding; this
gives a wide range of practical generality. Also, in conformity with the requirement
that a model be descriptive, we assume that the density functions are density
functions in the obvious limiting sense.

1-1-3 The Inference Base

We have obtained the model .# by formalizing the relevant material from the
specification and making it specific to the investigation. The model, then, is the
set of descriptions needed for the particular investigation of the system: descriptive,
exhaustive, probabilistic and consistent.

The investigation produces the outcomes for the variables on the particular
performances examined. The data for the investigation are the values for the
observable variables as designated by the model. We will use the letter & for the
data.

We have now formalized the ingredients for statistical inference: the model
# and the data Z. The combination of the model and the data is called the
inference base and is designated

I = (M, T) (1-2)

The model and data as initially assembled to form an inference base may con-
tain arbitrary elements, elements beyond those specified by the definitions we
have been discussing. In referring to the combination as the inference base we will
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be referring to the substance and ignoring the arbitrary. One of our first concerns
will be the elimination of arbitrary elements from the inference base as presented ;
we consider this in detail in Chap. 3.

For the remainder of this chapter we investigate in detail the formation of a
model. For a central illustration we consider a real-valued response with unknown
location and unknown scaling and yet with a distribution for variation that is
known or known up to a shape parameter, say 4.

In Chap. 2 we then explore key methods of inference for this particular
location-scale illustration.

1-1-4 Personal Preferences

The specification and the model have established what are and what are not possible
performance patterns for the system under investigation.

An investigator, however, may have personal feelings and preferences con-
cerning the various possibilities allowed by the specification and the model. For
himself--at a given place and time—he may want to combine these personal pref-
erences with the results obtained from an inference base. In such a case he would
be resorting to a terminal procedure, a decision procedure for a specific person at
a specific place and time. We examine this briefly in Sec. 5-4 on terminal decision
methods.

The available statistical methods at any given time seem almost always to fall
short of the expectations of theoretical and applied statisticians. In certain areas
this can be due in part to the lack of developed methods or even the absence of any
method. Such shortcomings, however, can be a powerful stimulus to search for
new methods.

A statistician should feel free to explore any plausible method. Certainly just
about anything can be proffered as a method. A method, however, is only as good
as its validity and reliability, and these qualities depend on properties deduced
from the model or determined pragmatically. Accordingly, we find no place for a
formal input of personal preferences to an inference base. The inference base as
presented thus remains the basis for the objective assessment of possibilities in
relation to data.

The preceding formally excludes Bayesian methods from the discussion of
statistical inference in this book. However, we do not exclude an area that is often
called empirical Bayes. This latter has an objective distribution for an inaccessible
variable. In our view this is not connected in any substantive way with Bayesian
methods proper, and the title empirical Bayes is inaccurate. We view this special
area as involving standard probability and statistical modeling subject to the
requirements we have been discussing.

1-2 THE MODEL AND THE LOCATION-SCALE EXAMPLE

In the remainder of this chapter we discuss the formation of a statistical model
for a random system. To do this we focus our discussion on an important and
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common type of system, a system with a real-valued response. As a special case of
this we then consider a response with unknown location, unknown scaling, and
unknown distribution form, say within some parametric family.

In Chap. 2 we examine in detail statistical inference for the location-scale
case. We then return in Chap. 7 to discuss in a more general way the formation of
a statistical model for a random system.

1-2-1 The Model : Response Based

For our central example we consider the formation of a statistical model for a
random system with a real-valued response. We picture ourselves in the typical
situation where density functions with respect to length measure provide a reason-
able approximation for the distributions. In particular we examine the case with
unknown location, unknown scaling, and unknown distribution form within some
parametric family.

For our example, the random system has a real-valued response ; let y designate
a particular expression of this response. The specification of the random system
allows a spectrum of distributions for this response y; let 6 in Q be a parameter
indexing these possible distributions for y and let f(y|0) be the density function
for y corresponding to the index value 6. The range Q for the parameter  would
be such as to give all the possible distributions for the response y, to some reason-
able approximation, of course.

The parameter 8 indexing the spectrum of possible distributions for y could be
real or vector valued. For the special case with unknown location scaling and form,
we might reasonably use an index 6 that had separate coordinates for these
different characteristics; for example, we could use 6 = (i, 0, 1) where u referred
to location in some way, ¢ to scaling in some way, and A to distribution form.

We now form a model based on the set of possible density functions for the
response. As a minimum response-based model # y we then have

Mr=(Q;R, B, F) (1-3)
where Q is the parameter space for the index 0, 4 is the class of Borel sets, and
F ={f(y]0):0eQ} (1-4)

is the class of density functions for the particular expression of the response vari-
able. Informally we can write the model as

fy|0)dy (1-5)

For the special case with unknown location scaling and form, the class of
density function could be written

F ={fy|u,0,2): ueR, ceR", Le A} (1-6)

where, as mentioned earlier, u refers to location in some way, ¢ to scaling in some
way, and 4 to distribution form; the full parameter spaceis Q = R x R* x A
The use of density functions implicitly assumes some differential continuity
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of the line R as the sample space. It also assumes some length or support measure
for the densities. For the model (1-3) with # as given by (1-4), the particular choice
of length measure could be arbitrary, not just the ordinary and familiar length
measure suggested by (1-5). Alternatively a particular choice of length measure
could be explicitly included in the model. For this recall the definition of the
model in Sec. 1-1-2.

In general the statistical model includes all the relevant available properties
concerning the system. Any such properties would be appended to the minimum
model (1-3) giving

Mrp=(Q;R, B, 7,...) (1-7)

This allows the formalization of properties that are often implicitly used in analyses
though rarely stated explicitly. For example, the Euclidean distance measure, in
certain cases, could be explicitly included.

Note that we are following the pattern in Sec. 1-1-2 and have separately
recorded the index Q in the model .# in (1-3) or (1-7). Also, for the class # of
possible density functions, we assumed that each density function retains its
particular 6 value as an index. One possible way of seeing the significance of this
is in terms of response reexpressions or transformations. Suppose the investigator
chooses to think in terms of some alternative presentation

y=h) (1-8)

for the response where & is, say, a monotone increasing continuously differentiable
function. The density function for y corresponding to the index 0 is

dh” () !
dy

(1-9)

g7 0) = f(h™ ()| 0)

As the minimum model relative to the alternate response expression we then
have

Mg = (Q:R, B, F) (1-10)
where Q is the same indexing set as before and
F =19g(7]0):0eQ} (1-11)

is the class of densities for the alternative response expression. For some particular
investigation there is of course a true value for 0; this value of  indexes the true
density in % for the given response expression and correspondingly the true
density in # for the alternate response expression. To emphasize this point we
note explicitly that 6 and © do not change under a transformation of the response.

In a typical investigation we would of course be concerned with multiple
performances of the system. The minimum response-based model .4k for the com-
pound response y = (V1,...,y,) from n independent performances is obtained by
direct compounding:

‘/%’;Qz (QaR", "ﬂna 9;") (1_12)
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where %" is the Borel class on R™ and #" is the class
f":{l’[’{f(yJQ):HeQ} (1-13)

Again we, of course, assume that each density in the class retains its 0 value as a
label.

Now suppose that for the n performances of the system we obtain the following
data:y° = (%, ..., y2). We then have the model .#’% giving what is known about
the compound system and the data & = y° giving what was obtained from the
performances: this gives the inference base

S = (M, y°) (1-14)

for making inferences concerning the true value of the parameter 6 in Q.

1-2-2 Distribution Form

Now consider further the special case of a system with a real-valued response y
with unknown location, unknown scaling, and either known or unknown distribu-
tion form. First suppose the distribution form is known.

Let f be the density function for the response expressed in some suitable
relocated and rescaled manner. The various possible one—one equivalent
presentations for the response then give the class

% ={c Yflc Uy — a):acR,ceR™} (1-15)

with arbitrary relocation @ in R and rescaling ¢ in' R = (0, o). There is just
one true distribution for the response, f is its density in some suitable standard
presentation, and % is the class for the one—one equivalent presentations.

Now let ¢ be a parameter designating the scaling for the response distribution
and u be a parameter for the location. If we take some density fin the class ¥ as a
standard, then the density for location y and scaling o is

o ' flo7 'y — ) (1-16)

The meaning or interpretation that we give to u and ¢ will clearly depend on what

density fin 4 we choose as the standard. Of course, in general, to work with an

equivalence class it is useful and convenient to have a representative from the class—

often a representative standardized in some simple and easily understood manner.

One possibility that first appears is to standardize with respect to mean and
standard deviation: thus, we would use the representative f having

e — ¢

jm f(z)dz =0 r 2f(z)dz = 1 (1-17)

For the response distribution (u, o) given by (1-16) we would then interpret u as
the mean and ¢ as the standard deviation—for the particular response expression.
This standardization would not, of course, work for long-tailed distributions such
as the Cauchy.
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Another possibility that has particular intuitive appeal for symmetric distri-
butions is to standardize with respect to the median and standard error: that is,
we would use the representative fhaving

J ’ f(z)dz =05 J+ 1 f(z)dz = 0.6826 (1-18)

For the normal this agrees with the first standardization (1-17). For the response
distribution (u, o) given by (1-16) we would then interpret u as the median and ¢
as the standard error.

Another possibility that seems appealing for asymmetric distributions and
agrees with the preceding for symmetric distributions is to standardize so that
(—1, +1) is a central 68.26 percent interval: ie., we would use the representative
fhaving

-1 ®
J flz)dz = 0.1587 = j flz)dz (1-19)
— 1
For the response distribution (u, ) we would then interpret ¢ as the standard error
and y as the midpoint of the central 68.26 percent interval. Other standardizations
may be suitable or appropriate depending on the particular distribution form.
We have considered several ways of choosing a standardized representative
from the equivalence class ¢ in (1-15). Note, however, that an element in the
class has the form ¢ ' f(c”'(y — a)) for some q,c; and yet we have casually
referred to the representative as fand implicitly assumed that this f when used in
the expression (1-15) would generate the equivalence class as initially given. This
turns out to be true, for we can see that a location-scale transformation of a
location-scale transformation is a location-scale transformation. This closure
property is important from several viewpoints and we now make it more explicit.
To do this we find it useful to introduce specialized notation for location-scale
transformations. Let [, ¢] designate the transformation of R to R given by

[acly=a+cy (1-20)

or of R” to R" given by applying the preceding, coordinate by coordinate: that is,

Y1 a+cyy
[acly=lac]l: |= : =al + ¢y
Yn a+ C¥n
where 1 =(1,...,1) is the appropriate one-vector. For two transformations
applied in succession the composition rule is easily verified as
[4,C] [a,c] =[A+ Ca,Cc] (1-21)

and the inverse transformation is easily seen to be

[a,c] '=[-c tac ] (1-22)
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We can then note immediately that the class
G={[a,c]:aeR,ceR"} (1-23)

is closed under the formation of products and inverses: the product of two elements
of Gisin G, and the inverse of an element of G is in G. This formalizes the concluding
remarks in the preceding paragraph, and gives justification for referring to (1-15)
as an equivalence class of similarly shaped densities.

In the more general case in which we have a shape or form parameter 4 we
would have an equivalence class 4, for each A and we would choose a representa-
tive or standardized density f; for each distribution form A. The parameter 4 could
be a real parameter allowing thicker tails as, for example, with the degrees of
freedom A for the Student family. Or it could be a two-dimensional parameter
allowing different tail thicknesses for the two tails of the distribution. For nota-
tion we will use f; for the standardized representative from the class (1-15) for the
particular distribution form.

1-2-3 Observing Distribution Form

We consider further the special case of a system with a real-valued response y with
unknown location y, with unknown scaling ¢, and with distribution form that is
known or known up to a shape parameter A--in a space, say A. Also we continue
with the notation in the preceding section and let f; be the density for the
response in some suitable standard presentation, and % be the equivalence class

%, =1{c Yfilc Uy —a):aeR,ceR™} (1-24)

for the one—one equivalent presentations given .. The full class of possible
densities for the response variable is of course

F ={fy|p o, ):ueR, ceR*, AeA}
={o 'filo "y —w):ueR,geR", ie A} (1-25)

For any particular application there is just one true distribution. To what
extent can this distribution be observed or identified directly from the response
variable? More particularly we consider the question whether the distribution
form can be observed or identified apart from its location and scaling? In other
words is the distribution form something objective in itself?

Consider a response sample (yy, ..., y,) from an application. Let u and o
designate the true values for the location and scaling and 2 be the value for
the distribution form. Then

([um]"lyl,.»-,[u,o]"‘yn)=<y16_“,...,y"0_#> (1-26)

is the corresponding sample from the standard density f;. The corresponding
equivalence class under location-scale change is

{([a c] [ 0] 'y, [ac] [, 0] 'yn):aeR, ceRT}
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which can, of course, be rewritten as
{([A. Clys, ..., [4,Clyn): AeR,CeR"} (1-27)

In this second form, we see that the equivalence class for samples does not involve
the [, o]; this is a direct consequence of the closure property noted with formula
(1-23). Thus (1-27) provides direct estimation of (1-24) and thereby also for the
density f;.

From one point of view we can think of the location-scale transformations as
providing a movable platform that allows us to observe and identify the distribu-
tion form apart from its location and scaling. A simple analogy might be a car
somewhere on a highway. This could be conceptualized in terms of a car at each of
the possible locations. The location transformations, however, used in the manner
we have been discussing provide a moving platform that allows us to observe and
identify the car apart from its location.

We have seen that the distribution form f; is directly observable and identifiable
apart from response location and scaling. We will refer to this distribution form
1, as the distribution for the variation and we refer to a corresponding variable, say
z, as the variation. The variation is an objective characteristic of a location-scale
system.

We return in Chap. 7 to a more formal and detailed study of this identifiability
of distribution form. We will determine the precise criteria needed for this identifi-
ability and we will see that the closure properties—group properties—are central.

1-2-4 The Model : Variation Based

Consider the formation of a statistical model for a system with a real-valued
response y; we examine the special case with unknown location y, unknown
scaling ¢, and distribution form either known or known up to a shape parameter
J.. For this we freely use the notation and results from Secs. 1-2-2 and 1-2-3.

From Sec. 1-2-3 we have that the distribution form, the distribution f; for
variation, is an objective characteristic of the system. Then, in accord with Sec.
1-1-2, the variation must be an explicit component of the statistical model.
Accordingly we let z be a variable for the variation and f; be the distribution for
the variation. The response variable y is then a location-scale presentation [, o]
of the variation z:

y=|[polz=pu+oz (1-28)
In order to write the model formally we let
T ={{u0]:peR,0eR™} (1-29)

be the class of location-scale transformations (or presentations) [u, o] with y in
R and ¢ in R". We also let

7= {filz): i€ A} (1-30)

be the class of density functions for the variation z. We then have the following
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minimum variation-based model :
My = (Q;R, B,V ,T) (1-31)

where the parameter space Q is {(1,0,2)} =R X R™ x A and # is the Borel class
on the line R. Note that we have, of course, separately recorded the parameter
space Q; we also assume that each density in ¥~ and each transformation in 7~
retains its 4 and (u, o) value as a label. Informally we can write the model as

y=u-+oz fi(2) (1-32)
Now consider the model for multiple performances of the system. Let
y=(V1,...,y,) designate the compound response variable and z = (zy,..., z,)

designate the corresponding compound variation. We then have the following
minimum variation-based model :

MpE= QR B", V", T) (1-33)
where, for example, '
¥ = (T1f(z:): L€ A} (1-34)

is the class of densities for the compound variation and 7 is as before but applies
coordinate by coordinate to z and thus presents the response y. Informally we
can write this as

y=ul + oz I1fi(z) dz (1-35)

but with the interpretations as given with the formal model.

Now suppose we have n performances with the data y° = (y9,..., ) cor-
responding to the variation z° = (z{, ..., zJ). The model and data then give the
inference base

5= (3, ¥) (1-36)

In Sec. 1-2-3 we saw how the variation was an objective characteristic of the
system. In this section we have followed the criteria in Sec. 1-1-2 and have intro-
duced the variation as an explicit component of the model. Interestingly enough
this gives us a model that is simpler by a whole order of magnitude, for with a
specified value Ay we have a model containing a single distribution that describes
the variation. By contrast the corresponding response-based model contains a
doubly infinite class of different distributions f(y|u, o, 40). We have obtained a
much simpler model by properly modeling components of the location-scale
system.

1-2-5 The Model : Pivotal Types

Consider further our system with a real-valued response, with unknown location
pand scaling ¢ and with distribution form that is known up to a shape parameter
4. In this section we survey some other models that have been proposed for the
location-scale system. Then in Sec. 1-2-6 we make some comparisons among these
models.
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As a pivotal-type location-scale model consider the following:
Mp=(Q;R, B, p, &) (1-37)
where Q = {(1, 0): ne R, ceR*} is the location-scale parameter space, R is the

real line with Borel class 2 for the response variable y, p is a function

Py, 1, 0) =2 - £ (1-38)

called a pivotal function that maps R x Q into the pivotal space R, and & is a class
of distributions given, say, by density functions on the pivotal space R.

The preceding differs in form from the basic pattern specified in Sec. 1-1: the
“parameter” space Q includes only the location-scale parameters p and ¢ and
omits an index 4 for the distributions recorded in the class &. This is a difference
in organization coupled with the notational detail of omitting an index set A for
the distributions in &.

Some close connections can be established between the variation-based
model .#, in (1-31) and the pivotal-type model .#p in (1-37). For example, the
pivotal function (1-38) provides the inverses of the transformations in the class 7
in (1-29); the class & of pivotal distributions corresponds to the class {fi:Ae A}
of distributions describing variation.

Dempster (1966) has proposed a model that is closer to the variation-based
model .#7" than to the compound version .#} of the present pivotal model. In the
pattern of Dempster’s model, values would occur for yi, ..., yu, i, @ such that

(y1 —B s u> (1-39)

ag g

would be a sample from a fixed distribution; for the case examined, the pivotal
class & would consist of a single distribution. There is no requirement of a distribu-
tion for the response y ; just that from (yy, . .., y» & o) there should be a “marginal”
distribution for the pivotal expression (1-39).

Dempster (1966), in fact, examined the location version of the model as just
presented; the obvious ingredients for the location case are (yi,..., Vs i) and
the location relation y; — p. The preceding material records the location-scale
version of the model.

An earlier version (Dempster, 1963) assumed a joint distribution for (yy,...,
Vs i, @) but specified only the particular marginal of the pivotal expression (1-39).

Beran (1971,1972) examined in considerable detail a model that blended
components of the variation-based and Dempster models. The location-scale
version of the Beran model has the following form : values of z are obtained from
a fixed distribution which could be a single distribution forming the class & in
(1-37); the observable response values for y are obtained from z by a mapping

y=u+oz (1-40)

involving parameters y, . Beran tended to emphasize a distribution for the
response y, and there seemed to be less freedom for having a distribution for (g, o)
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than with Dempster. The Beran analysis covered the continuous case of interest
here and provided more detail than the Dempster analysis.

Barnard (1974) proposed a model of the pivotal type (1-37). Various definitions
were introduced to relate the model to various inference methods commonly
used with the response-based model in Sec. 1-2-1. The notion of a pivotal function
being maximal in relation to other pivotal functions was introduced.

Pivotal functions were considered by Fisher (1930, 1933) in his early papers
concerned with the construction and inversion of tests of significance. Their use
typically appeared at the terminal stages of inference and not at the model presen-
tation stage. '

1-2-6 Some Comparisons

We have developed the response-based model in Sec. 1-2-1 and the variation-
based model in Sec. 1-2-4, all with attention to the criteria in Sec. 1-1-2. In particular
we have emphasized that the components of the model be objective—observable
from the particular real world system being examined.

The response-based model is a common and familiar model used in statistics.
The variation-based model in Sec. 1-2-4 is a structural model (Fraser, 1965a,
1965b, 1966, 1967, 1968a, 1968b) but presented in a more general context of
applications. The identifiability of the distribution for variation is closely tied to
the identifiability of events for variation by means of a response sample; some
discussion on this related topic may be found in Fraser (1971, 1976, p. 162) and
Brenner and Fraser (1977). We return to this question in Chap. 7.

For the pivotal-type models in Sec. 1-2-5 we presented a brief survey but did
not discuss any questions connected with the objective nature of the components
of the models. Indeed the various papers proposing these models have largely
avoided such descriptive characteristics and have presented a model as a possible
model for a system, as a construct, without attention to the requirements we have
assembled in Sec. 1-1-2. In particular the papers have not discussed the origins
for the pivotal functions.

For a simple illustration consider a location-scale system involving normal
distributions: the response y is normal (i, ¢). The function

Yy—H

g

is a pivotal function with standard normal distribution. But also the function

Ku ifly—ul<o
g
p(y, i, o) =

if|y—y‘20

f—y
(22

is a pivotal function with standard normal distribution. Indeed a wealth of pos-
sibilities exist. Of course some seem nicer than others.
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The essential question, however, is not whether a component of a construct or
a model is nice but whether the component is objective.

Accordingly, we refer back to the requirements for a model as assembled in
Sec. 1-1-2. For the location-scale system these give us the variation-based model
in Sec. 1-2-4.
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CHAPTER

TWO
LOCATION-SCALE ANALYSIS

In this chapter we consider the analysis of data from a real-valued response with
unknown location and scaling but with a distribution pattern for the variation
that is known or known up to a shape parameter A. Qur starting point, then, as
formalized in Chap. 1. is an inference base .# = (.#, Z) consisting of a model
A as in Sec. 1-2 and data 2.

We examine two sets of empirical data: the Darwin data recorded in Fisher
(1960, p. 37) on the difference in heights of cross- and self-fertilized plants, and
some indusirial lifetime data usually analyzed with a Weibull model. We also
examine some computer 2encrated data.

The common analys:s of location-scale data is based on the assumption
of a normal, or approximately normal, model. For the normal model a sample of
n leads almost unequivocally to the Student (n — 1) distribution for the ¢-statistic
and the chi (n — 1) distribution for the residual length ; these provide the basis for
inference for the location parameter u and the scale parameter ¢. The normal,
of course, has some very special symmetries and simplicities that lead very easily
to the preceding Student and chi analyses.

For the situation without the normality assumption, various methods have
been proposed. For example, the sign-test procedure leads to tests of significance
and confidence intervals for the location parameter u; the procedure is valid for
A as large as all continuous distributions. In general, however, such methods do
not provide for estimates or inference for the shape parameter 1 in A.

The sign-test and its confidence procedure are nonparametric procedures.
There are many such nonparametric procedures both for the location parameter
u and for the scale parameter ¢. Selections among these can sometimes be made

i6
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on the basis of apparent better performance under certain distribution forms of
interest.

Various estimators of location and scale parameters have been developed as
part of the study of robustness. These methods, however, are targeted primarily
on estimation and not on general tests and confidence intervals. From the view-
point developed in this book, estimation is largely a terminal decision procedure
and is not in itself central to inference. This viewpoint is discussed further in
Sec. 5-4.

In this chapter we first examine some core methods of inference for the
location-scale inference base. We then examine some terminal methods of inference
that build on the core methods. We follow this with an examination of two sets of
empirical data. The chapter concludes with a discussion of the resistance and
robustness properties of the procedures ; these are examined by means of computer
simulations.

2-1 CORE METHODS OF ANALYSIS

Consider the inference base .# = (.#, ) where .# is a location- scale model, one
or a blend of the models M g, My, M pdiscussed in Sec. 1-2, and Z is an observed-
response vector y° = (9,... 0y,

2-1-1 Preliminaries

For each of the models we have that

(ol 'y=0(y—ul) =z (2-1)
has the distribution of a sample from a distribution in
= {fi(z): Ae A} (2-2)

Under the model .y the vector z describes the objective variation in the
system being investigated ; under the model .4 g the vector z provides a standardized
way of describing the distribution form for the response; and under the models
Mg and .#p the vector z is a pivotal quantity that has some preferential properties
in relation to other pivotal quantities.

The inference base provides an observed value y°; let z° be the corresponding
realized value for z given by (2-1). We ask: how much of z° is identifiable from
y® without information as to values of u, ¢? The equation (2-1) with realized
values inserted gives

2= [o] Y=o il + 07 y"

This identifies z° as a point on the half two-space given by

L1y = {al + cy’:aeR,ceR"}
={[a,c]y’:aeR,ceR"} (2-3)
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which is a half plane subtended by the line #(1) and passing through the observed
y. Thus the possible values for z° are not n dimensional but are essentially two
dimensional. We can present this more formally by saying that we have observed
the value of the function #*(1;z) of z:

LT L= 2"(1;2% = 27 (1:y°) (2-4)

but do not have further information concerning the value of z° on the identified
half plane.

Under the model .# we have observed all but two dimensions of the variation
z for a performance of the system ; under the models .#y and .#p» we have observed
all but two dimensions of a constructed pivotal function (2-1). This leads us to
consider the marginal model for what has been observed and the conditional
model for the unobserved. Under the model .#- this separation into marginal and
conditional models follows from the necessary method in Sec. 3-3. Under the
models .#r and .#p the introduction of the weak sufficiency principle in Sec. 4-4
can be used to give the marginal model for inference concerning 4 ; and given 4 the
introduction of an ancillarity principle in Sec. 4-2 can be used to give the
conditional model for inference concerning (u, o).

2-1-2 Suitable Coordinates

In the preceding section we have seen that an n-dimensional vector z should be
examined in terms of where z lies in a two-dimensional region .#*(1;z) and in
terms of which two-dimensional region contains z. For this it is convenient to
have simple familiar coordinates remembering, of course, that there is nothing
absolute in a choice of coordinates, a choice just provides a means of saying
where z is in R".

For the half plane .# " (1; z) the vector 1 is a natural choice as a basis vector.
Let d(z) be a vector orthogonal to 1, of unit length and lying in ¥ 7(1;z); we
use d(z) as the second basis vector. We have

d(z)=s"Yz)(z— 1) = [Z,5(2)] 'z (2-5)
where
sP@)=]z— 212 =) (z; — 2)?
Thus
2= 71 + s(2)d(z) (2-6)

From this we see that the vector z has coordinates [Z, s(z)] with respect to the
basis (1,d(z)) on the half plane and that d(z) determines the half plane. Note that
d(z) generates the unit sphere in the orthogonal complement #*(1) of Z(1).
Again we find it appropriate to emphasize that there is nothing absolute in
any particular choice of coordinates—a choice just provides a means of saying
where z is in R". We could, for example, use the median z and the range R(z), or
the first order statistic z(;) and the first interval z5) — 21y, or any other coordinates
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even without the pleasant location-scale properties of the preceding. Such
arbitrary choices have no effect on the inference.
Now consider the equation

o iy —pl) =z 2-7)

in terms of these coordinates. The points y and z differ by a location-scale
transformation and thus, of course, lie on the same half plane

L (11 =27(13y)

and have, accordingly, the same identifying basis vector
d(z) = d(y) (2-8)
We use the decomposition (2-6) for both z and y and substitute in (2-7):
o '[71 + s(y)d(y) — 1] = 21 + s(z)d(z)

This gives

o lF - =12

o 's(y) = s(z)

for the coefficients for 1 and d(z) = d(y).
We now have convenient coordinates for the half plane as given by (2-8) and for
points on the half plane as given by (2-9).

(2-9)

2-1-3 Marginal and Conditional Distributions

The preliminaries in Sec. 2-1-1 lead us to consider the marginal distribution for the
observed half plane as given by d(z) = d(y) and the conditional distribution for
points on the half plane as given by [y,s(y)] and [Z s(z)] with (2-9) as the
connecting relation.

The initial distribution describing y and z is given by

o "Tfi(0 ™ (yi — ) Ndy; = T1fi(z) Tdz; (2-10)

To get the marginal and conditional distributions we first need to make the
change of variable:

y < (7, s(y). d(y))
2 (2, 5(2), d(z))

The substitution for the density function is straightforward. The substitution for
the differential can be obtained easily by noting that z, s(z), d(z) provide locally
orthogonal coordinates at the point z = z1 + s(z)d(z); for Z we have Euclidean
length V/rn dz; for s = s(z) we have Euclidean length ds; and for d(z) we have
Euclidean volume s"~ % da where da is surface volume on the unit sphere for
d(z) in #*(1) and thus s"~ 2 da is surface volume on the sphere for s d(z) with radius

(2-11)
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s. This gives
Tdz; = \/ndzdss" *da (2-12)

for the differential. By substitution in (2-10) we then obtain
o "TIf (0~ (5 — p + sdp)s" "% /n dv ds da (2-13)
for , s(y) = s, d;(y) = d;, and correspondingly
TIf,(2 + sd))s"~2/ndz ds da (2-14)

for z, s(z) = s, di(z) = d..
The marginal distribution for d(z) = d(y) = d is obtained by integration from
either of (2-13) or (2-14):

o

h(d)da = J Jw £,z + sdi)s"”zw/ﬁ dzds-da (2-15)
0

Typically this integration cannot be completed in closed form but is readily
available by computer integration.
The conditional distribution for ¥, s(y) = s, given d, is obtained by division:

hy Yd)o "I (o (5 — 1+ sdy))s" 2 /ndy ds (2-16)
The corresponding conditional distribution for Z, s(z) = s given d is
Iy (TS (z + sdy)s™ 2 /n dZ ds (2-17)

These conditional distributions are distributions on the two-dimensional half plane
L7 (1 y) = #*(1;2). They are recorded here in terms of the choice of coordinates
[7, s(y)] and [Z, s(2)], but could equally have been recorded in terms of any other
ch01ce of coordinates.

The preceding marginal and conditional distributions are the particular
distributions discussed in Sec. 2-1-1.

2-1-4 Parameter Components
For the location-scale model we have the equation
[mo]ly=0 'y—pl)=2

For the model .y the equation presents the objective variation z. For the models
g and ./ the equation presents a pivotal function. For both cases we have,
as noted in Secs. 2-1-1 and 2-1-2, that the equation separates into

d(y) = d(z) (2-18)
for the observable part of z and
o y—p =2
o 's(y) = s(@)

for the unobservable. The relevant distributions are recorded in Sec. 2-1-3.

(2-19)
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Now consider separately the two parameter components p and . The
equations (2-19) can be rearranged so that y and ¢ are separated:
ST - p =522
a7 s(y) = s()

This separation from (2-19) to (2-20) is unique. Some constants can be used to
rewrite (2-20) into a more familiar form:

(2-20)

ﬁf —B i (2-21)
%y =, (2-22)

where t(z) is the common t variable and s, and s, are the standard deviations
for y and z. That is, s, = s(y)/x/n — 1, and s, = s(z)/y/n — 1.

Again, a few remarks about the choice of coordinates. The equations (2-20)
are essentially relations concerning positions on the two-dimensional half plane
LT(1;y)= £*(1;z). The use of other coordinates in place of [j,s(y)] and
[Z, s(z)] would produce relations (2-20) that would be identical as relations on the
half plane ¥ *(1;y) = ¥ 7(1;2); that is, each (i, 0) would yield the same mapping
of points on the half plane.

The discussions in Sec. 2-1-1 lead us to consider the equations (2-19) in
relation to the distributions (2-16) and (2-17) describing [, s(y)] and [z, s(z)]—
in each case conditional on the value of d(y) = d(z) = d(y°). We now have a unique
separation of equations (2-19) into equation (2-21) concerning x and equation (2-22)
concerning o.

Consider the parameter component . For the model .#, we need the
distribution of the function of the variation (2-21),

Jnz_

t

Sz
conditional on the value of d = d(y°) as cited. And for the models .#z and .#p
we need the distribution of the pivotal function (2-21),

NECETI
Sy
also conditional on the value of d = d(y°) as just cited. These distributions are,

of course, the same and the common distribution is easily derived from (2-16) or
(2-17) by expressing, say, Z in terms of ¢ and s and then integrating out the s:

g, d)dt = h; 1(d)fOo Hf,1<s<—t—- —+ d,~))s"_1 ds-(n—1)"Y2dt (2-23)
0 \/nz

—n

Consider the parameter component ¢. For the model .4, we need the
distribution of the function of the variation (2-22),

Sz
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conditional on the value of d = d(y°). And for the models .#; and .#p we need
the distribution of the pivotal function (2-22),

S

o
also conditional on the value of d = d(y°). These are the same and the distribution
is easily derived from (2-16) or (2-17) by integrating out y or Z:

gi(s;:d)ds, = h;l(d)J‘ If,(z + \/n -1 Szdg)\/; dz{n — 1)~ Vi2gn—2 g,
e (2-24)

In conclusion for parameter components, we note that the discussion in
Sec. 2-1-1Teads us to consider the distribution (2-23) in relation to the parameter
w and the distribution (2-24) in relation to the parameter o.

2-2 TERMINAL METHODS OF ANALYSIS

In the preceding section we have examined some core methods for the reduction
of the location-scale inference base .# = (.#, y°). In this section we examine some
available terminal inference methods that follow after these core reduction
methods.

From Secs. 2-1-1 and 2-1-3 we have a separation of the distribution into a
marginal distribution for an identified component and a conditional distribution
for an unidentified component. For the model .4y this is a necessary reduction
(Sec. 3-3). And for the models .# g and # p this can be supported by the introduction
of a weak sufficiency principle (Sec. 4-4) and an ancillarity principle (Secs. 4-2, 4-4).

The marginal distribution for d(y) = d(z) is recorded in formula (2-15). The
observed value of the function is d(y) = d(z) = d(y°) obtained from the data y° in
the inference base. Let d° designate d(y°).

The distributions of [, s(y)] and [z, s(z)] both conditional on d° are given by
formulas (2-16) and (2-17) respectively. For j and s(y) the observed values are j°
and s(y°). For Z and s(z) the realized values are the only unobservable characteristics
ofz ;indeed, thisisthe reason whyitis necessary to use the conditional distribution for
[z, s(z)].

With this separation of the distribution as a starting peint we now consider
terminal methods of inference concerning 4, u, and o.

2-2-1 Inference: Shape /

The marginal distribution for d(y) = d(z) depends on the shape parameter A. The
observed value is d(y) = d(z) = d°. We now consider inference for the parameter
/, and make frequent forward references to inference concepts that will be
discussed in detail later.

Under the model .4 there is a distribution f,(z) for the objective variation and
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d(z) = d° is the only observable value available from the inference base. This is a
necessary reduction based on Sec. 3-3.

Under the models # r and .#p the function d(y) = d(z) is weakly sufficient (see
Sec. 4-4). The reduction to the function d(y) = d(z) can also be viewed as a necessary
reduction if we permit attention to be focused on 4 as described in Sec. 3-5.

The distribution for d(y) = d(z) is a distribution on the unit sphere generated
by d in #~(1); this sphere is an (n — 2)-dimensional manifold.

For any given d and / the density function can be calculated by straightforward
computer integration. Thus for the observed d = d° we can readily obtain the likeli-
hood function

L@d°; 1) = ch,(d°) (2-25)

For one-, two-, and three-dimensional parameters /. various computer graphing
techniques allow the display and assessment of this likelihood function.

The likelihood function (2-25) is a marginal likelihood function as introduced
in Fraser (1965, 1967, 1968); it has been adapted to the classical model by
Sprott and Kalbfleisch (1969). It is also an invariant likelihood ; see Hajek (1971)
The likelihood function (2-25) can also be obtained by Bayesian procedures,
provided a certain one of the many arbitrary possibilities for a prior distribution
is chosen at the beginning of the analysis so as to target on the particular likeli-
hood function (2-25) examined here; see Box and Tiao (1973), but also note
that the requisite flat prior is currently unacceptable to some Bayesians (Lindley,
1973).

The likelihood function L(d°; ) for 1 based on the observable d(y) = d(z) = d°
allows a direct assessment of the various A values in relation to the inference base.
Certainly we would want to go beyond this and form tests and confidence
intervals for A. Unfortunately the distribution (2-15) and the space for that
distribution are complicated and seemingly intractable for the typical parametric
model f;(z) for the variation.

Some understanding of the model in relation to an observed likelihood is
available from experience—in particular from computer simulations in which
realized likelihood functions are obtained for computer samples from various
distributions in a model.

2-2-2 Inference: Location u

We now consider inference concerning the location parameter y given a value for A.

From Secs. 2-1-1 and 2-1-3 we see that the initial distribution gives rise to a
conditional distribution (2-16) for [7,s(y)] and (2-17) for [Z, s(z)] ; the conditional
distribution has d = d°. Then from Sec. 2-1-4 we can separate out the parameter
u obtaining the equation

_ o
ﬁ(i M \/S'fz — t(z) (2-26)

z

The conditional distribution for ¢ = t(z) with d = d° is given by (2-23).
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For the model #, the necessary description for the uncbserved location z
and scale s(z) is given by the conditional probability distribution in formula
(2-17). A value for y then identifies a contour for Hz) = ﬁz/sz, and the marginal
distribution for #(z) in formula (2-23) is then the necessary basis for tests and
confidence intervals for p (see Sec. 3-5).

For the models .#z and .#p the restriction to the conditional distribution
(2-16) can be supported by the introduction of a weak ancillarity principle
related to that in Secs. 4-2 and 4-4. The further reduction to the distribution
(2-23) relating to p alone has some practical appeal, and for hypothesis testing it
can be supported by a specialized extension of Sec. 3-4 involving the use of
invariance.

Consider testing the hypothesis: u = po. On the assumption that u = po we

find that the value of #(z) = ﬁ Z/s, is observable:

_/nz _/nG° ~ o) 2.27)

Sz sy

This observed value can be compared with the distribution (2-23), with d=d°
to see whether it is a reasonable high-density value, or a ‘marginal’ value, or an
almost impossible value far out on the tails where the density is essentially zero.
The hypothesis can then be assessed accordingly.

Now consider forming a confidence region or confidence interval for the
parameter u. We note that the observed response y° gives various values for

Jnz _/n(° = 228)

Sz sy

t =

depending on the value being considered for u. Let (¢4, t;) be a (1 — o) interval, say
a central interval, for the distribution (2-23) for ¢:

J "ga(t:d0)dt =1 — o * (2-29)

1

Then we obtain the observed (1 — «) confidence interval for u:

59 50
P —ta == —ts = (2-30)
N Jn
The preceding is, of course, an ordinary (1 — o) confidence interval based on
(2-26) and the conditional distribution (2-23). The random interval has the form

[y‘ —12(d) % y—td) %} (2-31)

This has conditional confidence 1 — o given d(y) = d, and thus, of course, has
marginal confidence 1 — .

By shrinking such central confidence intervals down we obtain a median-type
estimate for the location p.
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2-2-3 Inference: Scale ¢

We now consider inference for the scale parameter. Again as in Sec. 2-2-2 we see
that the basic distribution gives rise to a conditional distribution for [, s(y)] in
(2-16) and for [Z, s(z)] in (2-17), in each case with d = d°. Then from Sec. 2-1-4 we
obtain ¢ alone in the equation

L=, (2-32)

with distribution for s, as recorded in (2-24) with d = d°.

The justifications under model .#; and under models .# and .#p parallel
those recorded in Sec. 2-2-2.

Consider testing the hypothesis: ¢ = go. On the assumption that ¢ = g, the
value of s, is observable:

SO
5, =— (2-33)
()
This observed value can be compared with the distribution (2-24), with d = d°, to
see whether it is a reasonably high-density value, or a ‘marginal’ value, or an almost
impossible value far out on the tails where the density is essentially zero. The
hypothesis can then be assessed accordingly.
Now consider forming a confidence interval for the parameter . We note that
the observed y° gives various values for
0
se=-2 (2-34)
g
depending on the value being considered for o. Let (s1,s,) be a (1 — «) interval,
say a central interval, for the distribution (2-24) for s,:

J “gals.d)ds, =1~ (2-35)

1

We then obtain the observed (1 — o) confidence interval for o:

0 0
(S—y, s—) (2-36)
S2 S

The preceding is, of course, a regular (1 — o) confidence interval based on
(2-32) and the conditional distribution (2-24). The random interval has the form

Sy Sy (2-37)
[Sz(d)’ S1 (d)]

This has conditional confidence 1 — « given d(y) =d and thus, of course, has
marginal confidence 1 — .

By shrinking such central confidence intervals down we obtain a median-
type estimate for the scale o.
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2-2-4 Further Remarks

The confidence intervals and tests for i and ¢ are essentially unique. Of course, for
confidence intervals, there is the choice of how much probability should be
assigned to each tail in (2-29) for x and in (2-35) for o. Other than this, however,
the intervals and tests are unique.

A different choice of initial coordinates on the half plane #*(1;y) = £ (1;2)
would not affect the results. For example, if coordinates different from (y, s,) were
used, then a compensating displacement would occur with the distribution for
t(z) with the result that the confidence interval would remain unchanged.

The preceding uniqueness is easily overlooked in casual comparison with
ordinary unconditional analysis. With such analysis, a change from, say, y to the
median ¥ or the first-order statistic y;, would make a considerable difference.
Conditionally, all choices of coordinates are equivalent—just ways of attaching
labels to points on a well-specified half plane.

Simultaneous confidence methods are readily available. The joint distribution
of (1, s) referred to just before (2-23) can be used to calculate the probability for
the rectangle (t1, t2) x (51, s2); this would give the joint confidence for the interval
(2-31) for u and the interval (2-37) for a.

2-3 ANALYSIS OF AN INFERENCE BASE

As an illustration of the methods discussed in Secs. 2-1 and 2-2 we now examine
the Darwin data as recorded in Fisher (1960, p. 37).

The data came from an experiment to compare the heights of cross- and self-
fertilized plants. The design involved 15 pairs of plants, each pair consisting of a
cross- and a self-fertilized plant grown under the same conditions in the same
pot. The data available are the 15 differences in height, cross- minus self-fertilized:

49 23 24 —67 28
75 8 41 60 16 (2-38)
14 —48 6 56 29

It will be of interest later to recall the two extreme values on the negative end
of the sample.

Fisher (1960, p. 37) initially analyzed the data, assuming normality. He then
reanalyzed the data, assuming a symmetric distribution form (p. 46); he tested the
hypothesis of a zero mean difference in height and used input randomization
as support for the symmetric distribution form.

Box and Tiao (1973) used the power exponential

fi(2) =l exp [~ ¢ (1)) 2]"] (2-39)

as a distribution form for variation and presented a Bayesian analysis of the data.
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The preceding distribution form has an unnatural cusp at the origin and could only
be viewed as a very rough approximation for a reasonable distribution form for
variation.

Fraser and Fick (1975) analyzed the data using the Student family

22 G2 .
s 4
[1 +5 (;J ¢ 1) (2-40)

;

Sl = )
r5)r(3)

as the distribution form for the variation. The preceding family provides a
continuous spectrum of symmetric density forms ranging from the normal
(A—o0) down to the Cauchy (2 =1) and to even thicker tailed sub-Cauchy
distributions (0 < /4 < 1). The Student distribution with 2 in the 5 to 7 range has
been cited as a reasonable distribution form for many actual response variables,
providing realistic tail thickness and tail length.

For our analyses in this book we refer extensively to this Student(4) family
as a basic and appropriate family for the variation in many responses—with
symmetry and variable tail thickness.

We now analyze the Darwin data using the Student family (2-40) as the
distribution form f;(z) for the variation. For the analysis we use the computer
program (Fick, 1976) developed to implement the analyses in Secs. 2-1 and 2-2
and indeed used for the original Student-family analysis of the data in Fraser and
Fick (1975). Some standardization values for the Student family are recorded with
discussion in Fraser (1976, p. 467).

For the present analysis we start with an inference base (., y?): the model
4 can be one of the models .#y, .#,, .#» in Sec. 1-2, using the Student family
(2-40) for the variation ; the data vector y° is recorded in (2-38).

2-3-1 Likelihood Analysis for 4

The observed value of the unit residual vector d(y°) = d(z°) = d° is recorded in the
following array:

0.1987 0.0146 0.0217 —0.6226 0.0500
0.3828 —0.0916 0.1421 02766 —0.0349 (2-41)
—0.0491 —04881 —0.1057 0.2483 0.0571

Note the two somewhat large negative values of —0.6226 and —0.4881; the largest
positive value is 0.3828.

The likelihood function L{d°; A) in (2-25) contains the customary arbitrary
multiplicative constant c. The constant can be avoided by using likelihood ratios,
say the likelihood at A as a proportion of the likelihood at some reference value
so. The normal distribution form (1= oo0) provides a convenient reference
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distribution. Accordingly, we examine the likelihood ratio,

h,(d° 0
I¥@d%; ) = IT((dTO)) = A,-1h,d”)

In this we have used the normal reference value Ao = oo and have substituted using
the density function

1

n—1

for the normal case. For this, recall that the rotational symmetry of the normal
gives a uniform marginal distribution for d on the unit sphere in £*(1) and
that the surface area of a unit sphere in R/ is

2nf1?
Y= 0R)

The computer program produces the likelihood function L*(d°; 1) in both
tabulated and graphlc form. The likelihood function has a mode of approximately
2.4 at 2= 2.3. It is greater than 1.5 from A =12 to 1= 8.5 and has, of course,
the limiting value 1 as 4 — oo. For the remainder of the analysis we examine 4
values in the range from 1 to 9 indicated by the likelihood function, and also
for comparison we examine the A = oo value corresponding to the usual normal
analysis.

I | _J
400 500 6.00
t

| | ] ! | |
-6.00 —5.00 —400 -3.00 —-2.00 -1.00 000 100 2.00 3.00

Figure 2-1 Density function for the ¢ statistic for Darwin data; A =1, 3, 6,9, co.
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2-3-2 Inference for ; and ¢

For the location parameter u we need the distribution (2-23) for the ¢ function
(2-21) for various / values; as suggested in Sec. 2-3-1 we use the values
A=1,3,6,9, cc.

The computer program produces the distribution (2-23) in graphical form and
in a suitably integrated form to give the percentage points and confidence
intervals.

The density functions are plotted in Fig. 2-1. Note that they are all somewhat
asymmetric except for the normal case with 2 = oo. Of course, in the normal case,
the density of #(z) is the Student(14) distribution appropriate to a ‘normal” sample
of 15. The mode of the distribution seems to shift to the left as A decreases and the
distribution becomes more concentrated about the mode. On reflection this is a
reasonable phenomenon: the use of a Student distribution for variation provides
a tolerance for the two extreme values on the left tail of the sample and as A
decreases the analysis gradually compensates for the ‘biases’ coming from these
extreme values.

Consider the hypothesis that u = 0—that there is a zero median difference
between cross- and self-fertilized plants.

The observed value of the ¢ statistic under the hypothesis is

=70 g
Sy/\/;

For 4 = oo this value is just beyond the 2% percent point on the right tail of the
Student(14) distribution.

For A=1, 3, 6, 9 and indeed for i = oo the probability of exceeding the
observed t value 2.148 is available by computer integration:

i | 1 3 6 9 o

P(t > 2.148) ‘ 0.000397 0.002989 0.007638 0.011126 0.024835

Approximations to these values are available by a rough visual assessment of
Fig. 2-1.

The analysis based on smaller values of 4 is an analysis involving a distribution
form that tolerates extreme values. Accordingly we find from the preceding
tabulation a much stronger case against the hypothesis when we use the 4 values
indicated in the range from 1 to 9.

Now consider the formation of confidence intervals for the location parameter
u. From Sec. 2-2-2 the (1 — %) confidence interval has the form

S S
G, ( N y>
tul ﬂz) .V 2 ;—n,V 1 /E

Y vV

where (t, t,) is a (1 — o) interval for the ¢-statistic distribution (2-23).
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The computer calculates these intervals for any chosen 2 values and confidence
levels. For example, the 95 percent central intervals are as follows: .

1 —225 0.529 14.8 429
3 —228 1.17 9.6 43.1
6 —2.28 1.55 5.8 432
9 —-227 1.73 4.1 430
e —2.14 2.14 0.03 41.8

The value 4 = 3 is close to the point maximizing the likelihood for A. For this
value we have the 95 percent interval (9.6, 43.1) with the median interval value
26.7. This, of course, contrasts sharply with the normal theory interval (0.03, 41.8)
centered at the sample average 20.9.

For the scale parameter ¢ the analysis proceeds similarly but with details as
recorded in Sec. 2-2-3.

Graphs of the s, distribution display properties similar to those in Fig. 2-1,
but now shifting to the right and expanding as we go to smaller 4 values.

A hypothesis that ¢ has some specified value o = g4 could be assessed by
comparing an s, observed under the hypothesis with the distribution just described.

Confidence intervals are readily available on the computer printout from the
analysis. For example, for the 4 = 3 value near the point-maximizing likelihood and
for the normal A = oo value we have the following 95 percent central intervals:

A $1 S2 G1 G
3 0.698 2.072 18.2 54.1
o 0.634 1.366 276 59.5

2-4 LIFETESTING AND THE WEIBULLT

Lifetesting is an important and yet somewhat specialized area of statistics. The
results from the preceding sections provide the basic and incisive method for life-
testing analysis.

An object placed on lifetest until failure will give a response, lifetime, that is,
of course, nonnegative. A sample of objects placed on lifetest until all have failed
will give a sample of lifetimes. Two variations on this provide protection against
prolonged testing. With Type I censoring, a sample of objects is tested until a
predetermined time T ; this will give the lifetimes that are smaller than T and the

T With Alok Dobriyal.
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number of lifetimes greater than or equal to T. With Type II censoring, a sample
of objects is tested until a predetermined portion of them has failed ; this will give
the smaller values, the particular proportion of smaller values, for a sample from
lifetimes. The methods in the preceding sections apply directly to the full sample
case and to the Type II censoring case.

In this section we illustrate the methods by analyzing a frequently cited data
set from Lieblein and Zelen (1956, p. 286). The Weibull is a common distribution
for lifetesting and has been the usual distribution for various analyses of the
preceding data. We use the location-scale methods from Secs. 2-1 and 2-2 to
obtain an exact analysis of the data with the Weibull distribution. For
comparison purposes we also give the analysis with the log-normal distribution.

An important advantage of the location-scale analysis is the availability of the
likelihood for the shape parameter. Thus as a routine part of the analysis we
obtain the likelihood for the log-normal versus the Weibull. Interestingly the data
give the log-normal an almost 2 to 1 likelihood preference over the commonly
used Weibull.

2-4-1 The Model and the Data

The Weibull is a common distribution for lifetesting and the usual distribution
for analyzing the Lieblein and Zelen data.
The Weibull distribution for lifetime ¢ has the density function

f)= E<[ — A’)>ﬁ1 exp [— <t — }‘>ﬁ} 1> (2-42)
x oA o

=0 t<vy

with parameters 2, i, 7. For most applications the initial point y of the distribution
is known—usually zero— and ¢ is measured from that known value. This gives the
special Weibull with density

p-1 £
Sy = g (;) exp [— (;) ] t>0 (2-43)

with f > 0 and o > 0.

Note that the power transform (t/«)” of the standardized ¢/« variable from
(2-43) has the standard exponential distribution. Or, in a reverse way, note that the
various positive power transforms of the scaled exponential generate the special
Weibull family.

For the special Weibull family (2-43) the parameter x gives the general
“location” of the distribution on the positive axis and the parameter § determines
the tightness or scale of the distribution about the “location.”

The distribution and parameters of the special Weibull are more easily
examined by taking a logarithmic transform of the lifetime variable ¢, that is, by
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putting lifetime into multiplicative units. Specifically, we consider the new
variable

y=Int (2-44)

The distribution for y obtained from the special Weibull (2-43) is easily verified to
have density

1 — —
f(y)=—exp (u> exp (— exp Y ,u> (2-45)
g \ [ ag
This distribution has location parameter y and scale parameter ¢ where
u=Inao c=p" (2-46)

The distribution form can be represented by the variable

;=Y _F (2-47)
g

It has the standardized density function

f(z) =exp (z) exp (—exp 2) (2-48)

The variable —z has the standard extreme value distribution as discussed for
example in Fraser (1976, p. 64). The distribution of z is the Type I asymptotic
distribution form for the smallest value in a sample.

The Weibull as a distribution for lifetime has been discussed from an empirical
viewpoint in Weibull (1951) and Kao (1959) and from a theoretical viewpoint in
Gumbel (1958), Mann et al (1974). The representation of the Weibull form as the
limiting distribution for the smallest in a sample (failure when the first component
ingredient fails) makes it a somewhat natural choice for lifetesting.

The log-normal distribution is also used for lifetesting data. The log-normal
distribution for t has the density function

1 1/Int —pu\*]1
flty= %Gexp[—2< . )}; t>0

t<0 (2-49)

with parameters u, o.
The distribution is more easily examined by taking a logarithmic transform
of the lifetime variable t. The distribution for

y=Int (2-50)

has the following normal density:

_ 1 Ly —ny?
f(y)—vﬂaem [—5( " )} (2-51)
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with location parameter y and scale parameter o. The distribution form can be
represented by z = (y — p)/o with the standard normal density

1 72
flz)= \7_—271 exp <— 3) (2-52)

We now record the data given in Lieblein and Zelen (1956, p. 286). The data
are the lifetimes until failure of 23 deep-groove ball bearings in millions of
revolutions:

17.88, 2892, 3300, 4152, 4212, 4560,

48.48, 5184, 5196, 5412, 5558, 67.80,

68.64, 6864, 68.68, ~ 84.12, 9312, 98.64,
105.12, 105.84, 127.92, 128.04, 173.40.

2-4-2 The Analysis

We now consider the Weibull and log-normal analyses of the Lieblein and Zelen
data as just recorded.

Specifically we consider the analysis of an inference base . = (#y, 7).
The data Z for use with the location-scale program are the natural logarithms of
the lifetimes recorded at the end of Sec. 2-4-1. The model.#) is the variation-based
location-scale model as presented in Sec. 1-2-4. For distribution form we allow, of
course, the appropriate Weibull expression for the logarithmic variable, which is,
in fact, the extreme value distribution recorded in (2-48). As an alternative for
comparison purposes we allow the appropriate log-normal expression for the
logarithmic variable, which is, of course, the standard normal (2-52). The basic
location-scale program uses the standardization in (1-19): for the normal this is
trivial but for the extreme value it introduces location and scale factors. As the
Weibull and extreme value parameters are usually given direct interpretation
we choose to deactivate this option and to use the extreme value distribution as
it stands in (2-48). This does have the effect of making p and o somewhat different
parameters for the Weibull as opposed to the normal, and accordingly would
make the distributions for t(z) and s, somewhat different in nature for the
Weibull as opposed to the normal.

Now consider the results of the location-scale computer analysis of the
inference base (A, D).

Under the Weibull (extreme value) model we obtain the following central
confidence intervals for the location p:

Level t ts ity e
90%; —3951 -0.636 42211 4.5899
95%, —4.281 -0.279 4.1815 4.6265

99% —4951 —0.462 4.0991 47011
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Figure 2-2 The distribution of ¢ for the Weibull analysis of the data.

The median estimate for the parameter u is 4.4096. The appropriate ¢ distribution
is recorded in Fig. 2-2.
The preceding intervals for u can be transformed to give the intervals for

o =exp {u}:

Level 44 %

90%  68.1084 98.4846
95%  65.4640 102.1559
99%  60.2860 110.0682

The median estimate for « is 82.237.
Under the Weibull we obtain the following central confidence intervals for
the scale o:

Level $1 S3 Gy G2
909 0.810 1.382 0.38600 0.65875
959, 0.762 1.444 0.36936 0.69959

99% 0.674 1.569 0.34001 0.79166

The median estimate for the parameter ¢ is 0.49458.
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The preceding intervals for ¢ can be transformed to give the intervals for

p=1Jo.

Level f, B,

90% 1.5180  2.5907
95% 1.4294 27074
99% 12632 29411

The median estimate for the parameter f is 2.0219.
We recall in passing that tests of significance are readily available from the

location-scale computer program.
Under the log-normal analysis we obtain the following confidence intervals

for g and o:

Level fy Q2 Gy G2

90%, 3.959 4.341 0.429 0.712
95% 3.920 4.381 0412 0.755
99% 3.837 4.464 0.382 0.852

The median estimate for p is 4.15 and for ¢ is 0.541. The appropriate ¢ distribution
is recorded in Fig. 2-3; it is Student (22). Note that these estimates and corre-

045~

0.25

0.20

| | | | 1 | | 1 J
-6.00-5.00 —4.00 -3.00 —2.00 -1.00 0.00 1.00 200 300 400 500 6.00

Figure 2-3 The distribution of ¢ for the log-normal analysis.
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sponding parameters cannot be immediately related to those earlier, as we did not
standardize the extreme value distribution.

The computer analysis gives the likelihood 0.5520 for the Weibull in
comparison with the log-normal, or, more casually, the data prefer the log-normal
to the Weibull. This suggests that more extensive data be assembled to pin down
more carefully the appropriate distribution form. Indeed it suggests that a more
general model be widely used—a model that might allow extreme value, normal,
logistic, or Student for the log-lifetime distribution form. A compilation of likeli-
hood values from computer analyses could then give solid evidence for appropriate
form for particular contexts.

2-4-3 Other Analyses

The original analysis of ball-bearing data by Lieblein and Zelen (1956) was based
on the use of linear orderly estimates (generalized Gauss-Markov on the order
statistics). They obtained the estimate § = 2.23 for .

Thoman, Bain, and Antle (1969) obtained the maximum likelihood estimates

4=8199  p=2102

for the parameters o and B. In addition, they used simulations to estimate
percentage points of the functions

Pin(/a)  BIp

The resulting 90 percent confidence intervals (unconditional, approximate) for «
and f are

2 % ,El Bz

68.04 98.75 1.50 262

Lawless (1972, 1973, 1974) examined the conditional distribution of

f—p ¢
6 o

conditionai on the standardized sample deviations

yl_ﬁ yn_ﬁ
s > &

He obtained a 95 percent interval for « as (68.05, c0) and a 90 percent interval
for B as (1.52, 2.59). This conditional analysis corresponds to the computer
location-scale analysis but without the likelihood for comparing possible shapes.
The justification given for this conditional analysis was, however, that of an
ancillarity principle in Sec. 4-2 or as originally in Fisher (1934). By contrast the
necessity here of the conditional analysis and of the comparative likelihoods
follows from the discussions earlier in this chapter and the more detailed dis-
cussions in Chap. 3.
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2-5 ROBUSTNESS AND RESISTANCE

For the typical real-valued response variable we have noted that the normal
distribution form is extremely short-tailed and is thus rather unrealistic as a sole
distribution form for variation. In Sec. 2-3 we have indicated that the Student(4)
family provides a reasonable spectrum of distribution forms to cover many
common response variables, ranging from short-tailed distributions to thick-
tailed distributions and embracing those with 1 in the 5 to 7 range that are often
cited as being particularly appropriate for applications. An additional 4 coordinate
could easily be added allowing for skewness—for different thicknesses in the two
tails.

In this section we examine some statistical properties of the analysis based on
the Student family for the variation; see Fick and Fraser (1976). In particular,
we examine the robustness of the analysis based on the Student family in
comparison with the analysis based on the normal. We also examine how the
Student family analysis for small A values is resistant to spurious observations
in the data.

Our approach involved extensive computer simulations using the Marsaglia
generator. Some theory was used initially to indicate directions. The conclusions,
however, are essentially pragmatic, not distribution theoretic.

2-5-1 Robustness

We compare the normal distribution theory analysis with a Student analysis based
on a small value of A—specifically the value 1 = 3. For this we used computer-
generated samples from the normal and from the Student(3) distributions; we
used a moderate sample size n = 30. We then analyzed each sample by the
computer program using the Student family for the variation. In particular we
examined how the 4 = 3 and 4 = oo analyses compared.

The normal samples were surprisingly consistent in the pattern of the
computer analyses. The following is a typical sample from the normal(10,1)
distribution:

10.8189 9.7212 8.6366 9.4186 9.5955
9.1757 10.0207 8.1110 11.1069 11.4919
9.6644 8.1520 8.3642 9.7043 11.0955

102122 9.7021 10.2434 9.8919 10.2624
8.6833 11.9849 8.8890 10.6948 10.4537

11.5243 89173 8.2356 99143 9.0277

§=97905 s, =10572

The likelihood function for A4 is plotted in Fig. 2-4; it is very flat and non-
discriminating among A values. The distributions for the ¢ statistic for A = 3 and
for A = oo are plotted in Fig. 2-5 and for the s, statistic in Fig. 2-6.

We see that the two t-statistic distributions are very similar and that the two
s-statistic distributions are also quite similar. Indeed, the estimates and confidence
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Figure 2-4 The likelihood function for / for a sample from the N(10, 1) distribution.

intervals are very close. For this sample from the normal it does not seem to
matter whether a normal analysis or a Student(3) analysis is used.

Similar results were obtained with other normal samples: sometimes they
were somewhat closer, sometimes somewhat farther apart, but basically very
similar results were obtained for the two analyses on a given sample. In particular,
the larger discrepancies seemed to correlate with the presence of extreme values in
the samples.

0.40 Normal analysis

0.35 Student (3) analysis
030

0.25+

0.20

0.15

0.10

0.05—

I L |
400 5.00 6.00
t

[ | ] 1 I | L
-6.00 —5.00 —-4.00 -3.00 -2.00 -1.00 000 1.00 200 3.00

Figure 2-5 The distribution of #(z) for /4 = 3, sc; the normal sample.
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Figure 2-6 The distribution of s, for /. = 3, o0 ; the normal sample.

The Student(3) samples were also reasonably consistent in the pattern of
computer analysis—consistent, however, in a rather interesting and different way.
The following is a typical sample from the Student(3) distribution but relocated
to the value p = 10; this distribution has ¢ = 1.1966 [Student(3) relative to
standardized Student(3)]:

11.4426 6.9131 10.0922 11.3484 5.0395
10.6864 9.0702 10.1503 9.0740 10.0486
10.4382 8.6284 9.0450 8.1336 9.7684
20.5017 8.7002 10.6349 9.1181 7.0280
13.5396 10.2305 9.5360 10.2183 8.7759

9.7609 102147 9.9614 9.4326 6.9113

The likelihood function for 4 is plotted in Fig. 2-7; it is very sharply discriminating,
emphasizing rather heavily the smaller values of 4 from 1 to 5. The distributions
for the ¢ statistic for A = 3 and 2 = oo are plotted in Fig. 2-8 and for the s, statistic
in Fig. 2-9.

We see that the two t-statistic distributions are very different. If we suppose
that the Student(3) origins of the sample are known, then the correct t-statistic
distribution is the distribution labeled A = 3. Compare this with the “incorrect”
t-statistic distribution obtained from the usual normal analysis and labeled
A = oo it is shifted to the left and is more diffuse.

The two s, distributions are also very different. Again the correct distribution
is the one labeled A = 3. By comparison the “incorrect” distribution is the normal
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Figure 2-7 The likelihood function for % for a sample from the distribution with g = 10, ¢ = 1.1966,
and Student (3) variation.

analysis distribution labeled 4= oc; it is shifted to the left and is more
concentrated, so that in its effect on a confidence interval for ¢ it is shifted to the
right and is more diffuse.

Thus, to the degree that our examples here represent the many cases obtained
by computer simulation, we can note that for a sample from a normal response,
there appears to be little practical difference between a normal analysis and a

Student (3) analysis

Normal analysis

{ | | | |
-6.00 —5.00 -4.00 -3.00 —2.00 —-1.00 0.00

| 1 l J
1.00 2.00 3.00 4.00 500 6.00

Figure 2-8 The distribution of «(z) for A = 3, oc; the Student sample.
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Figure 2-9 The distribution of s, for 4 = 3, oc ; the Student sample.

Student(3) analysis, whereas for a sample from a Student(3) response the normal
analysis can be very far from correct.

The preceding suggests that the Student(3) analysis works reasonably well both
for normal responses and Student(3) responses, but that the same does not hold for
the commonly used normal analysis.

2-5-2 Resistance

We now consider further the Student family analysis based on small A values and
investigate the resistance of the analysis to spurious observations in the data.

In Sec. 2-5-1 we noted how the Student(3) analysis seems to “tolerate” extreme
values in the tails of a sample. We can investigate this tolerance further by
deliberately producing extreme values, say by taking a value in an otherwise
reasonable sample and moving the value far away from the center of the sample.

For this we obtained a sample of size 30 from the normal(10, 1) distribution:

10.8189 9.7212 8.6366 9.4186 9.5955
9.1757 10.0207 8.1110 11.1069 11.4919
9.6644 8.1520 8.3642 9.7043 11.0955

10.2122 9.7021 10.2434 9.8919 10.2624
8.6833 11.9849 8.8890 10.6948 10.4537

11.5243 89173 8.2356 9.9143 9.0277

y = 9.7905 s, = 1.0572
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The value 9.7043 is a central observation in the sample. We take this observation
and move it by each of the following amounts:

0 —2s, —d4s, —6s, —8s, (2-53)

We then see what the effects of this spurious observation are on the normal analysis
methods and on the Student(3) analysis methods.
For inference concerning u our methods give a confidence interval

(; - L_> (2-54)
\:

where (t4, t,) is the (1 — o) central interval for the r-statistic distribution. When
we alter the sample by making one observation spurious, then we change the
sample average and standard deviation, both of which appear explicitly in the
expression (2-54). We also alter the standardized residual and thus alter the
distribution used to calculate the t-statistic interval. Specifically for an altered
sample we would have

e sy s

(y — Lok 5 - nfﬁ> (2-55)
Jh Vn

where j* and s¥ are the values for the altered sample and (73, T3) is the (1 — &)

interval based on the altered standardized residual.

We are interested in the effects of the spurious observation on the inferences
concerning u. We could directly examine confidence intervals as given by (2-54)
and (2-55) with varying extremity in the spurious observation, or we could examine
the underlying t-statistic distribution provided we compensate for the fact that the
reference sample average and standard deviation in (2-55) vary with the different
extremity in the spurious observation. We adopt the second route as pictures of
distributions can often be more revealing and informative.

Let (T3, T) be the interval calculated with respect to the actual average and
standard deviation of the altered sample and let (¢, ) be the corresponding
interval as reexpressed with respect to the original sample average and standard
deviation:

Sy sy/\ﬂ
Thus we need the location-scale transformation (2-56). This transformation
adjusts the calculated ¢-statistic distribution and makes it relevant to the original
sample average and standard deviation.

For inference concerning ¢ our methods give a confidence interval

(l ly) (2-57)
S2 S1

~ Sy . s¥
y - Zi‘/,:y* — T;~—/;:
v v (2-56)
S D)
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where (s1, s5) is the (1 — o) central interval for the s, distribution. For an altered
sample we would have
s¥ sy
oy 0 2-58
(Sz N 1) (2-38)

where (Sy, S,) is the (1 — «) interval based on the altered standardized residual.
As in the preceding paragraph we are then led to the transformation

s=2 (2-59)
Sy
to adjust the s, distribution and make it relevant to the original sample average
and standard deviation.

Now consider the t-statistic and s, distributions as made relevant to the original
average y and standard deviation s,,.

First consider the normal analyses. We record in Fig. 2-10 the ¢-statistic
distributions for the sample altered as indicated by (2-53). The distributions are, of
course, just relocated and rescaled Student(29) distributions. The shift in the
distribution as the spurious observation moves out shows clearly the large effect
of that observation on inferences concerning p.

Second consider the Student(3) analyses. We record in Fig. 2-11 the z-statistic
distributions for the sample altered as mentioned above. An initial effect occurs as
the observation is just made spurious; then the distribution form is reasonably

-5.00 —4.00 ~3.00 —2.00 —-1.00 0.00 1.00 200 3.00 400 500 6.00 7.00 8.00
t

Figure 2-10 One observation displaced 0, —2s,, —4s,, —6s,, —8s, for a normal sample of 30: the
normal analysis ¢-statistic distribution as made relevant to the unaltered y, s,.
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Figure 2-11 One observation displaced 0, —2s,, —4s,, —6s,, —38s, for a normal sample of 30: the
Student (3) analysis r-statistic distribution as made relevant to the unaltered , s,.

stable. The Student(3) analysis has surprising resistance—an initial effect of the
spurious observation but little additional effect as the observation moves far away
from the sample cluster.

Similar results are obtained with the s, distribution: a steady drift of the
distribution under normal analysis and surprising resistance and stability for the
Student(3) analysis.

The preceding results invite us to try an observation moved by each of the
following amounts:

0 —10s, —20s, —30s,  —40s, (2-60)

In Fig. 2-12 we record the z-statistic distributions for a Student(3)-analysis. Some
drifting of the distribution does occur. In Fig. 2-13 we record the t-statistic
distributions for a Student(l) or Cauchy analysis. The distribution form is
reasonably stable. A Student(}) analysis is even more resistant to such extreme
outliers.

The parallel results for the s, distribution are in fact more favourable than
the preceding—more resistant to extreme spurious observations.

2-5-3 An Overview

The Darwin example in Sec. 2-3 indicated the flexibility of the Student(A) analysis.
We noted how the Student(}) model was more realistic in its allowance for the



LOCATION-SCALE ANALYSIS 45

040

| 1 | | |
—6.00 —5.00 —4.00 —3.00 —2.00 —-1.00 000 100 2.00 300 400 500 6.00
t

Figure 2-12 One observation displaced 0, —10s,, —20s,, —30s,, —40s, for a normal sample of 30:

the Student (3) analysis t-statistic distribution as made relevant to the unaltered j, s,.
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Figure 2-13 One observation displaced 0, —10s,, —20s,, —30s,, —40s, for a normal sample of 30:
the Student (1) analysis t-statistic distribution as made relevant to the unaltered j, s,.
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thicker-tailed distributions we expect to find in many applications. We also saw
how the lower 4 analyses tolerated the two extreme values in the Darwin data.
This resistance to extreme values was examined in Sec. 2-5-2 by artificially
introducing very large spurious observations: the smaller the 1 value, the greater
the resistance.

The example in Sec. 2-3 also gave some indication that a Student(1) analysis
with A too small may give results with somewhat overstated precision—
confidence limits that are tighter than they should be. By choosing to use
analyses with very small 4 values we are facing a trade-off: the possibility of over-
stating the precision as opposed to having very high resistance to extreme
spurious values. Extreme spurious values should be pretty obvious in an ordinary
sample. However, with more complex models such as the regression model a
spurious observation may be far from obvious and we might choose to have very
high resistance at the risk of slightly overstating the precision.

The approach in Sec. 2-3 could almost be interpreted as an adaptive method.
From the sample we estimate the /. value; thus adapted to the sample we proceed
to inference methods for u and o. Such an “adaptive” approach could be
examined for the case of the spurious observation as discussed in Sec. 2-5-2: as
the observation is moved out the likelihood function would indicate a smaller and
smaller A value which would then be increasingly tolerant of the extreme
spurious observation. This seems to have the advantage found with the medium
A values when there are moderate spurious observations and the advantage found
with very small 4 values when there are extreme spurious observations.

The pragmatic assessment in this section emphasizes the flexibilities associated
with the location-scale analysis in this chapter. We can accommodate nonnormal
shape, uncertainty as to shape, and spurious observations; and, in addition, we
obtain all the needed distributions for tests and confidence intervals.

The Princeton robustness study (Andrews et al., 1972) examined numerous
statistics for estimating Jocation. The study was concerned with properties of the
marginal distributions of these location statistics. Our viewpoint here has
overwhelmingly emphasized the conditional distribution of these statistics. And,
indeed, from results in Sec. 2-1-2 we find a remarkable property for these location
statistics under the conditional approach: all the location statistics are in fact
equivalent. Thus the problem of choosing a location statistic vanishes. Indeed
there is much more. The robustness approach basically gives an estimate; here
we have available the full range of test and confidence procedures. The robustness
approach depends strongly on the influence function which often does not
correspond to a density function for variation ; here we obtain results comparable
to those with extreme influence functions and, in addition, have a corresponding
distribution for variation and have the just mentioned distributional properties
that make the significance tests and confidence intervals available. Thus the
arbitrariness for the estimation statistic and the unrealizability for the influence
function is replaced by uniqueness for the estimation statistic and the full flexibility
for the choice of distribution form for variation.
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CHAPTER

THREE
NECESSARY METHODS

In Chap. 2 we examined statistical inference for data from a system with location-
scale parameters. Our starting point was an inference base .# = (.#, &) consisting
of a location-scale model .# for the compound system and the data & recording
the observed response vector.

In Sec. 2-1 various core-reduction methods were mentioned for the location-
scale inference base. Some of these methods were necessary methods, methods
predicated by the definitions for the model and data in the inference base; the
remainder were methods based on principles, some of a spectrum of principles
proffered in inference theories and examined in detail in Chap. 4.

In this chapter we examine necessary methods for analyzing inference bases.
Then in Chap. 4 we examine methods based on introduced principles.

For the discussion of necessary methods our starting point is an inference
base .f = (#, &) consisting of a model .# and data Z. The model .# =(Q;..)
was defined in Sec. 1-1-2 and the inference base in Sec. 1-1-3. The model and data,
as initially assembled to form an inference base, may contain arbitrary elements,
elements beyond those specified by the definitions just cited. In this chapter we
examine necessary reduction methods-——methods for eliminating the arbitrary
elements in an inference base as presented.

3-1 ON THE PARAMETER SPACE

In certain rather special applications an observed response may effectively reduce
the parameter space. In some cases, then, this reduction gives a smaller statistical
model —with the result that an inference base can often be substantially reduced.
Let # = (.#, Z) be an inference base with model .# and data Z.

49
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3-1-1 Preliminaries

A response y may be consistent with only some of the parameter values in the
parameter space Q of the model as given. For a response value y we define the
index set D(y) for that value y to be the set

D(y) = {0:f(y|6) > 0} (3-1)

of parameter values for which the density is greater than zero; we use f (y| 0) to
designate the response density derived from the model .#. The set D(y) is the set
of possible parameter values for the data y.

Consider the simple example of data y from the model .# for the uniform
(0 + %) distribution with 0 in R. For the index set we obtain

D(y)=1{0:fy|O) >0} =(y— %y +3)

Thus from the inference base (.7, y) we know that 0 is in (y + ).

The preceding suggests that we use the simpler model with 6 restricted to the
interval (v + 4). Such a “model,” however, is clearly inappropriate; note that the
simpler “model” has sample points whose index sets are not contained in the range
of the “model.” We explore this further and seek a proper correspondence between
parameter sets and sample space sets.

3-1-2 Some Definitions

It can happen that the sets D(y) form a partition of Q. Or more generally it can
happen that the sets D(y) overlap in various ways but still remain subordinate to
some nontrivial partition of Q. Consider some details.

Let 2 = {P} be a partition of Q, the finest partition that does not break up
any set D(y). Specifically: 2 = {P} is the finest partition of Q such that each P
satisfies

DyycP or Dy)nP=4¢ (3-2)

for all D(y). Note: the finest partition can be obtained by considering partitions
that satisfy (3-2) and then intersecting the sets of the partitions.

Now for each value y we define the options set P(y) to be the element of the
partition Z that contains D(y):

D(y) = P(y) (3-3)

Of course, 2 is the finest partition of Q with this property (3-3).

For the simple uniform example in Sec. 3-1-1 the sets D(y) overlap without a
break on the line Q = R ; accordingly we have P(y) = Q and the partition 2 = {R}
is trivial.

Now let #(y) be the sample space corresponding to the parameter values in
the set P(y):

Fy= U {¥:fy]0) >0}

e P(y)
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= {y': D(y) < P(y)}
= {y": P(y') = P(y);
=P ' P(y)

Note that the various sets #(y) are the preimage sets of the function P; accordingly
the sets #(y) form a partition of the initial sample space for the model. For some
discussion of mappingsand preimagesina statistical context see, for example, Fraser
(1976, pp. 100-104).

Consider the simple uniform example but now with the restricted parameter
space Q = (— oo, — 1)U (1,00). The sets D(y) are as before but restricted where
needed to the set Q. The finest partition satisfying (3-2) is Z = {(— o0, —1),(1, 00)}.
Thus P(y) = (— o0,1) or (1, o0) according as y < 0, or y > 0.

3-1-3 Model Reduction

Consider the model .# as discussed in Sec. 3-1-1. Let P be a subset of Q and let
i be the model .# but with the parameter space restricted to the set P. Of course,
Mo = #.Wewill be interested in .#p for P an element of the partition 2 described
in Sec. 3-1-2. ’

We are now in a position to state the first necessary reduction method.

RM; : Necessary reduction—parameter space The inference base (.#, y) neces-
sarily produces the inference base (#p(,), ¥).

As indicated in Sec. 3-1-2 this will be nontrivial only in cases where the partition
2 is nontrivial (2 # {Q}).

From an observed y we know that 8 is in the index set D(y) and thus in the
options set P(y); P(y) is the smallest parameter range that provides a consistent
model for y. The reduction method RM, eliminates arbitrary elements from the
inference base (.#,y) and produces (.#p(,), y): the parameter space Q has been
restricted to the options set P(y).

Now consider the proof of the necessary reduction method RM;. For this
we recall the definitions for the model and the inference base in Secs. 1-1-2 and
1-1-3, and we show that the model eliminates arbitrary elements from the inference
base as initially presented. The inference base restricts 0 to the index set D(y). The
options set is the smallest parameter range P for which the sample space points
have index sets contained in P; see formula (3-3) and the adjacent comments. The
model .#p, is the smallest model consistent with the observed response y; the
distributions of .# outside .#p,, are arbitrary. It follows that (.#,y) necessarily
produces (A py), ¥).

3-1-4 A Regression Model Example
Consider the linear model .# as given by

y=XB+e (3-4)
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where X is an n x r matrix of rank r, B is the vector of r regression coefficients, and
e has a distribution with

E©)=0  VAR(e) = 020

where Q is a known inner-product matrix of rank p. This model has been examined
by Rao (1976) and more extensively by Zyskind et al. (1971).

The model (3-4) suggests a variation-based model .#; as in Sec. 1-2-4. For
our present purposes, however, we treat (3-4) as just a way of describing a response
model as presented in Sec. 1-2-1.

For our model (3-4) we have assumed that X has full column rank 7, that is,
the column vectors of X are linearly independent. For the case with linearly
dependent columns we could find a substitute X matrix with linearly independent
columns. Of course, the original linearly dependent columns might correspond
to different input variables, and the dependence has occurred through lack of
control of the input variables ; this means a lack of identifiability for some of the
original parameters. The substitute X matrix corresponds to a reexpression of
those parameters that are identifiable—thus we restrict ourselves to the notationally
tidier case in which X has full column rank r.

We consider the model .# for the rather special case in which the inner-product
matrix Q has rank p < n, and we assume that e has a continuous distribution with
a nonzero density function on the p-dimensional subspace determined by the
singular inner-product matrix; for our purposes here it is convenient to think in
terms of normal distributions.

We first investigate the p-dimensional subspace for the distribution of e. For
this we determine the VARiance of the linear compound l'e:

VAR(l'e) = E(lee’l) = ¢°1'Ql

This VARiance is zero for all vectors I in #*(Q), the orthogonal complement of
Z(Q); it follows that the distribution of e lies exclusively in the p-dimensional
subspace Z(Q) of R".

Now consider an inference base (.#, y°) involving a model of the rather special
type just described. The model as it stands is somewhat more general than our
notation so far allows: the model has a density function but it is a density on a
contour that varies with the parameter. The definitions, however, can be extended
in a natural way and we obtain the index set

D(y) = {(B,0):y — XBe £(Q)}

We need some additional notation. Let #(N) be the intersection of the regres-
sion subspace and the error subspace:

Z(N) = Z(X)n Z(Q) (3-5)

where N has s linearly independent column vectors. The interesting cases will
have s < r; we now examine these cases.

Let Z(X*) and £(Q*) be the orthogonal complements of #(N) in the spaces
PL(X)and £(Q) respectively:
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LX) = LX) nZHN) L0 =ZQ) nZL(N) (3-6)

We assume that X* and Q* have r — s and p — s linearly independent column
vectors. Computer programs are readily constructed to determine matrices N,
X*, and Q*.
Any possible y for the model .# can then be written uniquely as
y = Na(y) + X*c(y) + 0*d(y)

relative to the basis (N, X *, Q%) where a(y), ¢(y), d(y) are the regression vectors of y
on N, on X* and on Q*, respectively. Correspondingly, for the location vector
X B of the model we have

XB= Na+ X*y

where («, y) is equivalent to B.
We now determine the index set D(y), but do so in terms of the new coordin-
atesa, y,0:

D(y) = {(«, 7. 0): N[a(y) — a] + X*[c(y) — y] + Q*d(y)e Z(N, 0%)}
= {(& y,0):y=cy)} (3-7)
=R xely) x RY

Note that such sets form a partition of the parameter space Q = R” x R™; thus
we have that the options set P(y) is equal to the index set D(y) in (3-7). The simple
interpretation of the preceding is that an observed response y° completely deter-
mines r — s of the regression coefficients:

71 = (y%)
: (3-8)
Ve—s = Cr**s(yo)

We now record the form of the model .#p, in which the original parameter
space Q is restricted to the options set P(y°). Using the new parameters we have

y= Na+ X*e(y°) +e
or, equivalently,

y — X*¢(y®) = Na+ e (3-9)
where e is distributed as described after formula (3-4). Note that this model has

only s regression parameters.
The necessary method RM; thus produces the inference base

(/%P(yo)a yo) (3-10)

involving only s regression parameters and the error standard deviation o.

Rao (1976) and Zyskind et al. (1971) concentrated their attention on finding
estimates with special properties; they did not make explicit use of this initial
necessary reduction. This reinforces our view that estimation per se is a very
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special terminal decision procedure. It is difficult to see how any broadly based
approach to inference could overlook the preliminary parameter space reduction
just described.

If an applied statistician in a certain application was able to calculate certain
regression coefficients without error, he or she would certainly be very quick to do
so and would feel considerable satisfaction; one certainly could not pretend that
one did not know the values of the particular regression coefficients. For such
parameters the reduction method is basically nonstatistical. The formal necessary
method RM; places this reduction method in the larger context of statistical
inference.

3-2 ON THE SAMPLE SPACE

Sometimes a statistical model can contain a component probability space, a com-
ponent that does not involve the parameter of the model; for this we recall our
Sec. 1-1-2 requirement that the components of a statistical model be descriptive—
and thus correspond to objective components of the particular investigation. In
addition, sometimes the data can give the observed value on the probability space.
The probabilistic requirement in Sec. 1-1-2 then isolates the conditional statistical
model —eliminating the remainder of the initial model as arbitrary.

We first survey some basic results on probability conditioning. We then con-
sider an inference base ¥ = (.#, ) and investigate reduction based on a com-
ponent probability space.

3-2-1 Probability Space Conditioning

For the moment consider a probability space as a model for some real world
system ; by contrast a statistical model has free parameters corresponding to un-
knowns ofasystem beinginvestigated. In its simplest form a probability space model
has a sample space ¥, a o-algebra . of events, and a probability measure P. For
convenience we continue with our Chap. 1 assumption that probability is given by
density functions and that these are density functions in a limiting sense. For the
present let .# designate the probability model. The model .# describes charac-
teristics of the system under repeated performances, and, of course, it also describes
a realization from the system provided the realization is effectively concealed
from the investigator.

Now consider a realization from the system in a situation where there is
available partial information concerning the realization ; more informally, we say
that the realization is partly concealed from the investigator. If the information C
concerning the realization has the form of an observed value of a well-defined
function, then from probability theory the proper model is the conditional model,
say .#c, given the observed value of the function.

The interpretation of the conditional model parallels that for the original
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model. The model .#, describes repeated performances, not of the original system
but of a selected system : the original system is repeatedly operated until a value
occurs satisfying the condition C to some reasonable approximation; this response
is then a value from the selected system.

For some discussion on the application and interpretation of conditional
probability see Fisher (1961), Fraser (1971, 1976, pp. 161-162), and Brenner and
Fraser (1977).

In summary : the model .# provides the probability description for a realiza-
tion that is effectively concealed from the investigator. The model .#; provides
the probability description for a realization that is concealed except for the
information C—on the assumption that the information has the special form
mentioned above.

3-2-2 Component Probability Spaces

Now consider an inference base f = (.#, %) and suppose the model .# as
presented has a component probability space.

Our definition of the model .# in Sec. 1-1-2 required that it be descriptive,
exhaustive, and probabilistic. In particular, we then have that the component
probability space properly describes objective variables of the investigation. Thus,
the probability space is not some construct that records constant totals of other
parameter-dependent probabilities, a topic we examine in Sec. 4-2.

Consider the data 2. In this section we examine the case where the data 2 fully
identifies the value on the probability space. Then in Sec. 3-3 we examine a related
case where there is partial identification of a realization. The probabilistic require-
ments discussed in Secs. 1-1-2 and 3-2-1 then determine the form of the model.

Now for some notation. We suppose that the data Z identifies a value on the
component probability space. Let #( 2) be the restriction of the original space in
accord with the identified value on the component probability space. And let
M 7D be the original model but with probabilities replaced by conditional prob-
abilities given ¥ (Z).

We thus obtain the following second necessary reduction method.

RM, : Necessary reduction—sample space The inference base (.#, &) neces-
sarily produces the inference base (.# ¥'¥, ).

From the data 2 we know the value on the component probability space.
The reduction method RM,, eliminates arbitrary elements from the inference base
(, %) as presented and produces (.# “?, Z) in which the distributions are the
conditional distributions given the value on the probability space.

We now consider a spectrum of examples. One interesting example, however,
that we omit here, is the location-scale model with known distribution form, a
special case of Sec. 2-2. We omit it because it, together with the more general case
having a parametric family for distribution form, is amenable to the reduction
method in Sec. 3-3 and will be examined there.
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3-2-3 Random Choice of Measuring Instrument

Consider a familiar example illustrating the preceding method. Two instruments
are available for measuring a physical quantity 6. The instruments are different,
but have known distribution properties for measuring a physical quantity. The
example involves an initial random choice of measuring instrument, say with
equal probabilities, and then the subsequent measurement of 8 with the chosen
instrument.

We consider the example at face value, even though it has certain unrealistic
characteristics. Certainly responsible investigators would know their instruments
and would choose between them on the basis of the special properties known to
them. Itis hard to imagine a reason for random choice of instrument, but this is not
our concern here. /

Let .#V be the model for the appropriate multiple observations with the
first instrument and .#‘® be the model for the second instrument. For the random
choice of model we have a probability space with probability % at instrument 1
and probability § at instrument 2. Let us represent the composite model in the
convenient symbolic form:

M=yt + 3D

A realized value for the composite model has the form (i, m), where i indicates
the instrument chosen and m represents the resulting measurements with that
instrument. The immediately available inference base then has the form (A, (i, m)).
We now apply the necessary method RM, and obtain the reduced inference base
(4, m). This inference base concerning 6 is specific to the measuring instrument
actually used.

The preceding reduction conforms to a reasonable scientific viewpoint—that
an investigator would use the performance properties of the instruments actually
used together with data from these instruments. The example has been considered
from a somewhat different viewpoint in the literature ; see, for example, Cox (1958).

3-2-4 Sample Surveys and Experimental Design

Consider a sample survey involving simple random sampling. Let IT = {c¢y, ..., ¢y}
designate the population and let y = (yy, ..., y,) designate a sample of n from IT.
We obtain a random sample from the population by choosing with equal prob-
ability one of the N™ different sequences of n elements from IT. As special notation
we might use the index set {1, ..., N} to designate the population and use a sequence
of n different integers from that set to designate the sample. We then obtain a
random sample by choosing with equal probability one of the N™ sequences of n
integers from {1,..., N}.

One might think at first sight that the necessary reduction RM, was applicable
to this sample survey situation ; the method would produce the conditional model
given the chosen sample.

From a very practical viewpoint we can see that RM, is not applicable, for
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we note that conditionally there is no randomness left—there is no conditional
model. Indeed, the purpose of the randomization was precisely to build a statistical
model. The use of the index set is thus somewhat misleading.

From a theoretical viewpoint we can see that RM, is not applicable. An
investigator would be quite satisfied if the randomization could be handled
entirely out of sight, handled by someone reliable but inaccessible—and in some
sense this is the case. We do not know the particular permutation of the unknown
population values because we do not know, of course, what these values are.
Accordingly we view the index set as something quite arbitrary—used only to
accomplish the permutation of the N unknown values in the population. From
this viewpoint we do not have an observed value on the probability space of such
permutations.

A somewhat similar situation arises with the randomization of experimental
design : treatments are randomly assigned to experimental units. We randomize
the treatments to units because we do not know the units—we do not know how
they would respond. We randomize precisely to obtain a reliable statistical model.

In an application we know the permutation of treatments to index numbers
for the experimental units but do not know the permutation of treatments to the
unknown response behavior of the units.

Thus we see from practical and theoretical viewpoints that the necessary
reduction RM is not applicable for the randomization of sampling and experi-
mental design.

3-2-5 Random Choice of Sample Size

Consider some particular system under investigation and suppose there is an
initial random choice of the number of performances n, the sample size. Let p, be
the known probability function for this random choice.

We consider the example at face value, although its unusual features are quite
similar to those for random choice of instrument in Sec. 3-2-3. We do suggest,
however, that a responsible investigator would choose the sample size deliberately
and by design.

Let .#" be the composite model for n performances. The probability space
for sample size has probability p, for sample size n. Accordingly, let us represent
the combined model for sample size and multiple performances in the convenient
symbolic form:

M=) ppt”
n=1

A realized value for the combined model has the form (n, ), where n designates
sample size and r, designates the response from »n performances.

The immediately available inference base then has the form

(5 poaeinn)
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We now apply the necessary reduction method RM, and obtain the reduced

inference base
(V%n) rn)

This inference base is specific to the particular sample size used. The example has
been considered from a somewhat different viewpoint in the literature; see, for
example, Cox and Hinkley (1974, p. 32).

3-2-6 Sample from a Mixed Population

Two distinct populations A, and A, with relative sizes q; and g, are actually
intermingled and are not readily distinguished ; we have ¢; + g, = 1. A physical
quantity 6 can be assessed by the reaction probability p;(6) with a member of
population A; and by reaction probability p,(f) with a member of population
A, ; the functions p; and p, are known.

A random sample of size n is chosen from the combined population. The
members of the individual populations are identified giving totals n; and n, for
populations A; and A,, respectively. The individuals are tested yielding the
following data array:

Population Reactions No reactions Totals

Ay 11 N2 ny
As Ny PP 2

The model for the sample of size n is multinomial with probabilities as follows:

Population Reaction No reaction
A, q1p1(6) ’h(l - 171(0))
A, ] 42p2(6) ‘Jz(l - Pz(()))

We have introduced enough notation at this point without introducing addi-
tional notation for a formal presentation of the inference base. The results, however,
of the necessary reduction method RM, are clear. The reduced model involves a
sample of size n; from population A, giving the binomial (n;, p;(6)) and a sample
of size n, from population A, giving an independent binomial (n,, p2(6)). Sub-
sequent analysis would then involve the product of binomials rather than the
four-way multinomial.

For the examples in Secs. 3-2-3 and 3-2-5 we were able to present no realistic
reasons for the presence of a probability space—no good reasons for randomly
choosing the measuring instrument or the sample size. The present example,
however, is quite different. The probability space randomization describes the
sampling process from the mixed populations, and this sampling is an essential
part of obtaining information about the populations.

The necessary reduction of this example was discussed in Fraser (1973) and
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used to resolve dilemmas that were present in earlier considerations of such
examples. Some anticipation of the necessary reduction may be found in Basu
(1964). Kalbfleisch (1975) gives some alternate discussion of the method in Fraser
(1973).

3-2-7 Random Choice of Input Variable
Consider a random system with response
y=oa+fx+e

that depends linearly on an input variable x; we assume that the variation e has
a distribution that is known or known in form, or is more general, as discussed
in Sec. 1-2 for the location-scale model.

We now suppose that values for the input x are obtained from a distribution
with known density f(x) and that this distribution is separate from and antecedent
to the random system just described. This distribution for x could be describing
some deliberate randomization as in the examples in Secs. 3-2-3 and 3-2-5, or it
could be describing some related system that produces x values in accord with
£(x); as such it is closer to the example in Sec. 3-2-6.

Let .# designate the compound model covering both the random choice of
n input values and the regression for the n response values. And let .#* designate
the regression model alone for the response vector y = (y1,...,y,) given the input
vector X = (X4, ..., X,) -

The immediately available inference base then has the form

(‘/%’ (X7 Y))
The necessary reduction method RM, gives the reduced base
(A, y)

This inference base is specific to the input values xy, ..., X, actually used for the
initial random system.

3-3 FACTORIZATION

With certain statistical models the data may provide only partial information
concerning the realization on the basic sample space of the model. If the informa-
tion concerning the realization has the form of an observed value of a well-defined
function then the appropriate marginal and conditional models are required. This
gives a separation or factorization of the inference base.

3-3-1 The Method

In the preceding section we considered a model with a component probability
space. The data fully identified the realization on the probability space. Cor-
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respondingly the inference base used the conditional model given the realization
on the probability space.

In the present section we consider a statistical model in which the basic sample
space is not directly observable; and correspondingly the data only partially
identify the realization on the basic sample space. In particular we consider the
case where the data information is equivalent to the observed value of a well-
defined function on the basic sample space.

This differs from the preceding section in two ways. The distribution on the
relevant sample space may depend on the parameter. The realized value on the
relevant space is known to lie on a particular contour and there is no information
as to where it lies on the contour.

Consider the inference base ¥ = (.#, Z). We suppose that the basic sample
space is not fully observable. We also suppose that the data information 2 is
equivalent to the observed value D° of a well-defined function D on the basic
sample space; in particular there is no differential information as to where the
realization is on the contour specified by D = D°.

For notation let .#p, be the marginal model for the function D and let .#°
be the conditional model given a value D for the function. Then from Secs. 1-1-2
and 3-2-1 we have the following third necessary reduction method:

RM; : Necessary reduction—factorization The inference base (.#, &) neces-
sarily produces the inference bases (.#,, D°) and (4", D).

Let 4 in A be the parameter for the marginal model .#,; the parameter 1
may be the whole of the original parameter 6, or some reduction 4 = A(f) on 0.
The inference base (.#p, D°) has an observed value D° and a model .#}, for possible
values for the function D ; the parameter is /.

The inference base (.#?°, &) has the data 2 and the conditional model given
the value D° for the function D. The data information 2, however, gives no dif-
ferential information as to where the realization is, given the contour specified by
D = D° Typically there are parameters unknown in value that prevent the identi-
fication of the realization on the contour D = D°—they not only prevent the
identification of the realization but provide no differential information concern-
ing the realization. We consider this in more detail in Chap. 7. The factorization
of method RM; follows from the probabilistic requirement in Sec. 1-1-2.

3-3-2 The Location-Scale Model
For a location-scale system consider the variation-based model
My = (Q; R, B, V", T) (3-11)

in Sec. 1-2-4. We examine the inference base (.47, y°).
From Secs. 2-1-1 and 2-1-2 we see that the data give the value

d(z) = d(y°) = d° (3-12)
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for the function d(z) on the variation space; the variation space has the distribu-
tions 7. From the equation (2-9) it is plausible that the data give no differential
information as to the value of [Z, s(z)]; we will give a precise verification of this
in Chap. 7.

The marginal model describing the observed d(z) is available from formula
(2-15); as noted earlier the space for d(z) is the unit sphere in £*(1). We avoid
extra notation and abbreviate the model as

g = (A; {d)}) (3-13)

The corresponding inference base is
(My,d°) (3-14)
The conditional model describing the unobservable [Z,5(z)] is available from
formula (2-17); let ¥* designate the class of densities. The unknowns standing

between [z, 5(z)] and [¥, s(y)] are given by the equations in (2-9); we can reexpress
these as a transformation T* from [z, s(z)] to [7,s(y)]:

y=u+oz
T*: (3-15)
{S(Y) = os(z)
Thus we have the model
M = {A % (o)) ;R x RY, B2, 9%, T*] (3-16)

where 7 * = {T*} is the class of location-scale transformations (3-15). The cor-
responding inference base is

(4%, [3.5(9]) (3-17)

The preceding inference base has a distribution with parameter A that
describes the realization [Z, s(z)] on the basic variation space. The data [7. s(y)]
gives no information as to where the realization [Z, s(z)] is located on the varia-
tion space; the unknown [, o] stands between the realization and the available
data [ s(y)].

The necessary reduction method RM; applied to the initial inference base
then gives the separation

(Ma, d°); (A*, [3,5(9)])

discussed in Sec. 2-1. The separation was subsequently used for the terminal
methods in Sec. 2-2.

3-4 BY REEXPRESSION

In Chap. 1 we presented the inference base as the essential material from the speci-
fication and the performances of the system. As part of this we remarked that the
notation used to present the inference base may unintentionally introduce arbitrary
elements. In this section we consider a method for eliminating such arbitrary
elements of notation.
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Of course, the model and data as initially presented in an inference base may
contain material seemingly of substance and yet beyond that determined by the
definitions in Sec. 1-1. The methods in Secs. 3-1, 3-2, and 3-3 are concerned with
eliminating such seemingly substantial but actually arbitrary elements. In this
section the method is concerned more with eliminating the arbitrary elements of
notation. ;

Our approach to eliminating these arbitrary elements is the conventional
mathematical approach—the use of the invariant group of a mathematical struc-
ture. In Sec. 1-2-2 we discussed a class of transformations on a space that was closed
under the formation of products and the formation of inverses. A class of transforma-
tions with this property is called a group—a transformation group. In this section
we use transformation groups to eliminate arbitrary elements from the inference
base.

3-4-1 Invariant Group of an Inference Base

Consider an inference base .4 = (.#, %) and let Q be the parameter space of the
model .# = (Q;...).

We examine transformations on the response space, the space of the response
variables of the system under investigation. We view a transformation on the
response space as providing a reexpression or alternate mode of expression for
the response.

We might initially think of the class of all invertible transformations on the
response space. In Chap. 1, however, we restricted our attention to models that
have density functions, densities that are densities in a limiting sense. Accordingly,
we restrict our attention here to transformations that respect densities. We thus
consider the class of one-one transformations on the response space that are
continuously differentiable each way; these transformations are called diffeo-
morphisms. The composition of two diffeomorphisms is a diffecomorphism and the
inverse of a diffeomorphism is a difffomorphism. Thus the class of diffeomorphisms
is a group. In this section we examine the group G of diffeomorphisms on the
response space of the problem under investigation.

Consider an element ¢ in the group G of diffetomorphisms. A response variable
y in the initial mode of expression becomes a response variable gy in the alternate
mode of expression. A response value y° in the given mode of expression becomes
a value gy° in the alternate mode of expression. Or, equivalently, data & in the
initial mode become data ¢ in the alternate mode.

Now consider how a reexpression g affects the model .# = (Q;...). A param-
eter value 0 indexes one of the possible distributions for the response in the initial
mode of expression and of course indexes the corresponding distribution in the
alternate mode of expression. In particular, the “true value” of the parameter on
Q designates the “true distribution” for the response in the initial mode of expres-
sion and also indexes the corresponding “true distribution” in the alternate mode
of expression. Thus there is no transformation on the parameter space Q—just a
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change of distribution for each 0 value as dictated by the reexpression transforma-
tions.

The model .# records Q together with the various indexed distributions for
the given mode of expression. We let g.# designate the model for the reexpression
g of the response variable; g.# records the same Q together with the various
indexed distributions for the alternate mode of expression.

We emphasize particularly that .# and g.# have the same Q and that a param-
eter value 6 designates a distribution for the initial mode of expression and
designates the corresponding distribution in the alternate mode of expression.

An inference base (.#, ) in the initial mode of expression becomes an infer-
ence base (g.#, g Z) in the alternate mode of expression. We examine the following
class consisting of the various modes of reexpression for the inference base:

{(g#,92): g€ G} (3-18)

These provide different ways of looking at the inference base as initially presented.
Sometimes we will find a nontrivial reexpression that does not change the
model. Let G, be the set of transformations g € G that leave the model unchanged:

Gu=1g:9gMl =M, ge G} (3-19)

G is closed under products and inverses; G 4 is a group, called the invariant group
of .# ; this usage of the term invariant group differs from another usage that does
not take account of the indexing class Q.

Now consider the class (3-18) of reexpression for the inference base. The
initial model .# is associated with various data values g & ; we write

Gu2=4{92:9eG.u} (3-20)

for the set of data values corresponding to the initial model .#.
We introduce here a simple property of a group of transformations on a space.
Consider a group H on a space . The group H carries a point s into the orbit

Hs = {hs:he H} (3-21)

of all images under the transformations. As a group is closed under products and
inverses we see easily that the orbit Hs can be generated by applying H to any
element of the orbit. We then have that the orbits form a partition £ of the space
S

P = {Hs:se &} (3-22)

This partition 2 is often designated .#/H, called ¥ modulo the group H. In con-
clusion we note that Hs gives a mapping from & onto #:s — Hs. Any function
one-one equivalent to this mapping is called a maximal invariant function and it
of course indexes the orbits Hs on the space <.

Now consider the data set

Gu2=1492:9€G.u} (3-23)
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that is associated with the model .# in the class (3-18). Or more generally consider
the various data sets G , % as we consider various possible data Z. Let m be
some maximal invariant function that indexes the orbits of the invariant group
G 4. Then the various possible data sets G, < are one-one equivalent to the
various values m( Z) of the function m.

We have used the transformation G to determine the arbitrary elements in
the inference base (.#, 2). Among the reexpressions recorded in (3-18) we find
the model .# associated not with £ but with the data set G 4 Z or equivalently
with the value m( Z) of the function m. Let .#,, designate the marginal model for
the maximal invariant function m. Then the definition of the inference base in
Sec. 1-1 gives

(M s m( D))

We thus obtain the following fourth necessary reduction method.

RM,;: Necessary reduction—reexpression The inference base (.#, %) neces-
sarily produces the inference base (.#,,, m(2)).

The transformations in G provide various ways of looking at an inference base.
As part of this we find that the model .# has associated data G , 2 or equivalently
associated data m(Z). Accordingly the inference base without the arbitrary
elements is just (.#,, m( 2)). For this it is appropriate to recall our definition of
the model in Sec. 1-1-2—that all the relevant characteristics of the system are
included—and to note then that G leaves the model unchanged.

3-4-2 Simple Normal Example

Consider a response y that is known to be normally distributed with
unknown location y and known scaling 6,. Let y° be the data for a sample of n.

We examine an inference base using the minimum response-based model
from Sec. 1-2-1:

/ZR = (Q = {:u} 5 Rna < n, 9_';) (3'24)

where
1
F = {(Zna%)‘"/z exp [— — 2(y; — ,u)zJ: ue R}
260

is the class of response density functions.

We take the model .# at face value: a parameter space, a response space, a
class of events, and a class of densities indexed by the parameter space. As a
realistic model for applications we might well have additional essential ingredients,
e.g., explicit identification of the variation, or distinctiveness of the coordinates,
or individual length measure for each coordinate. However, we take (3-24) at face
value and examine the inference base

(Mg, y°) (3-25)
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The likelihood function from a response value y is

1
L(y;p) = cexp [— RZ(% - u)z}

_ _ s
—ceXp[ 2ag(y u)}

As a function on the space R” this likelihood map (see, for example, Fraser, 1976,
p. 334) is equivalent to the simple functions Zy;, or y, called the likelihood statistic.

Now consider the group G, of transformations that do not change the model
. Under a diffeomorphism in G, the density function does not change and in
particular the dependence of this on the parameter u does not change. Thus a
transformation that leaves .# unchanged in particular leaves the likelihood un-
changed and thus must be a transformation within contours of the simple func-
tions Zy; or y.

The conditional distribution given j is a rotationally symmetric (n — 1)
dimensional normal centered on the intersection with the 1 vector. By contraction
we can view this as a uniform distribution on a (n — 1) dimensional unit ball. With
n > 3 the ball has dimension greater than or equal to 2 (a disc or more), and the
group that leaves the uniform distribution invariant is transitive on that ball
(carries any point into any other point on that ball). Accordingly, for n > 3 the
group G is transitive on the contours of the function y or, equivalently, the
function y is a maximal invariant; this discussion briefly surveys the key com-
ponents for a more formal and detailed proof.

The distribution of the maximal invariant y is normal (u, ao/ﬁ); the model

(3-26)

is
My = (Q = {M};Ra B, F) (3-27)

2 2\—1/2
T = {( ”n“°> exp [—5} 5 - mZ]: #eR}

The reduction method RM, applied to the inference base (3-25) with n > 3
necessarily produces the following inference base:

(M, 5°) (3-28)

This inference base involves only the sample average. Recall, however, the
minimum ingredients for the initial model (3-24).

where

3-5 BY REEXPRESSION ; A PARAMETER COMPONENT

In Sec. 3-4 we used the transformation group on the response space to eliminate
arbitrary elements in the inference base. In this section we suppose that attention
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is entirely restricted to a parameter component of the inference base and we again
use the transformation group to eliminate the arbitrary elements.

3-5-1 Invariant Group for a Parameter Component

Consider an inference base .# = (.#, Z).Let Qbe the parameter space for the model
# and suppose that attention is entirely restricted to the parameter component
¢ = h(0) where h is a given function on Q.

We continue with our restriction to models involving density functions and,
accordingly, consider the group G of diffeomorphisms on the response space.
We then examine the following class of reexpressions for the inference base:

{(gtt,g9):g€ G} (3-29)

Now consider the preceding with attention entirely restricted to the param-
eter component ¢ = h(f). Typically, some transformations in G will leave the
model .# unchanged ; and often some further transformations will leave the model
unchanged with respect to the parameter component ¢ = h(f). Consider this in
more detail. A transformation g leaves .# unchanged with respect to ¢ if the
models .# and g.# have for each ¢ value the same set of distributions but the
indexing of these distributions can be different ; thus g can induce a permutation
of distributions with parameter values as long as the permutations are entirely
within the contours of h(0) = ¢.

We might be tempted to say that such a transformation g changes the 0
value but not the ¢ value. But this would be wrong and very misleading. The
parameter values and the parameter space do not change under a transformation
g in G. Rather, a transformation alters the distributions associated with ¢ values;
and for the transformation g just discussed the distributions are altered, permuted
along the contours of the parameter function hA(0) = ¢.

Let G_, designate the set of transformations g that leave the model unchanged
in the ¢-specific sense just described. With our attention restricted to the param-
eter component ¢, the models .# and g.# are equivalent for g in G« Accordingly,
we identify them for our present purposes and write .# as the representative.

Now consider the class (3-29) of reexpressions for the inference base. The
model .# is associated with data g & for each g in G 4. We write

Gu9=1{92:9€G 4} (3-30)

for the set of data values that are associated with .#. Let i1 be the maximal invariant
function that indexes the orbits of the invariant group G.,. Then the various
possible data sets G, Z are one-one equivalent to the various values #( 2) of the
function m.

We have used the transformation group to determine the arbitrary elements
in the inference base. We have, of course, the model .#, but for data we have just
the value m( 2) for the function m. Let .#, designate the marginal model for the
function 7, the maximal invariant with respect to the invariant group G . Then
the definition of inference base in Sec. 1-1 gives
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(Mg, 1(2)) (3-31)

We thus obtain the following fifth necessary reduction method.

RMs5: Necessary reduction—parameter component With attention restricted
to the parameter component ¢ = h(6), the inference base (.#, &) necessarily
produces the inference base (#, m(2)).

3-5-2 Normal Example

Consider a response y that is known to be normally distributed with unknown
location i and unknown scaling o. Let y° be the data for a sample of n. We suppose
that attention is entirely restricted to the parameter component g, the second co-
ordinate projection for 6 = (g, 9).

As in Sec. 3-4-2 we again examine a minimum response-based model:

%R = (Q = {(,Ll, G)} > Rn) Z n’ 97) (3'32)

where
1 ueR
F = 2)=n/2 — %y — p? |
7 {(ha) exp[ 0 u)} aew}

is the class of response density functions. Again we take the model .# at face
value ; recall the remarks in Sec. 3-4-2. We now examine the inference base

(M r.y°) (3-33)

with attention entirely restricted to the parameter component o.

As a preliminary step we consider the invariant group G, for the model itself.
The methods in Sec. 3-4-2 can be followed ; some needed likelihood material is
available from Sec. 4-1-3. We then have that for n > 4 (not 3) the invariant group
G 4 has the maximal invariant [, s(y)].

Now consider the restriction to the parameter component ¢; the function h
gives the projection of 8 = (i, 6) onto the second coordinate. We enlarge the group
G .« to the group G_, by now allowing new pairings of distributions to parameter
values, but within the contours of the projection function 4. Some obvious addi-
tional transformations are those of the location group

H = {[a,1]:aeR} (3-34)
where from Sec. 1-2-1 we have the location transformations
[a,1]y=al +y

and we have closure under composition and inverses. Fortunately with our choice
of H we have that [a, 1] provides a transformation of the orbits of G, carrying
one orbit intact to become another orbit. This manifests itself as

[a 1][5,s(y)] = [J + a s(y)] (3-35)
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The group G, will contain transformations generated from G, and H. It
has the maximal invariant

m(y) = s(y) (3-36)
The distribution of the maximal invariant s(y) is o-chi(n — 1); the model is
My = (Q* = {6} ; R, B, Fy) (3-37)

where

pu Ap—1 52 N n—Zl‘
7o~ {men (- )G oo}

where A, = 2n//2/T(f/2) is the surface volume of the unit sphere in R’. #, can
be obtained by a simple rewrite of the rescaled gamma distribution of s*(y).

With attention restricted to the component ¢ the reduction method RM;
applied to the inference base (3-33) with n > 4 necessarily gives the inference base

(M, (%) (3-38)

This inference base involves only the sample residual length s(y°). Recall,
however, the minimum ingredients for the initial model (3-32).

It is of interest that the present necessary method does not work for the
case when attention is restricted to the parameter u.

REFERENCES AND BIBLIOGRAPHY

Basu, D.: Recovery of Ancillary Information, Sankhya, ser. A, vol. 26, pp. 3-16, 1964.

Brenner, D.,and D. A. S. Fraser: “When is a Class of Functions a Function?” Department of Statistics,
University of Toronto, 1977.

Cox, D. R.: Some Problems Connected with Statistical Inference, Ann. Math. Stat., vol. 29, pp. 357
372, 1958.

,and D. V. Hinkley : “Theoretical Statistics,” Chapman and Hall, London, 1974.

Fisher, R. A.: Sampling the Reference Set, Sankhya, ser. A, vol. 23, pp. 3-8, 1961.

Fraser, D. A. S.: Events, Information Processing, and the Structural Model, in V. P. Godambe and
D. A. Sprott (eds.), “Proc. Symposium on the Foundations of Statistical Inference,” Holt,
Rinehart and Winston of Canada, Toronto and Montreal, pp. 32-55, 1971.

: The Elusive Ancillary, in D. G. Kabe and R. P. Gupta (eds.), “Multivariate Statistical Inference,”
North-Holland Publishing Company, Amsterdam and London, 1973.

———: Necessary Analysis and Adaptive Inference, Jour. Am. Stat. Assoc., vol. 71, pp. 99113, 1976.

———: “Probability and Statistics: Theory and Applications,” Duxbury Press, North Scituate, Mass.,
1976.

Kalbfleisch, J. D.: Sufficiency and Conditionality, Biometrika, vol. 62, pp. 251-259, 1975.

Rao, C. R.: Estimation of Parameters in a Linear Model, Ann. Stat., vol. 4, pp. 1023-1037, 1976.

Zyskind, G., O. Kempthorne, A. Mexas, P. Papaidannov, and J. Seely: “Linear Models, Statistical
Information and Statistical Inference,” Study-Aerospace Research Laboratories, Project no. 7071,
available from Clearing House, U.S. Department of Commerce, Springfield, Va., 22151, 1971.




CHAPTER

FOUR
DENSITY ALLOCATION METHODS

In Chap. 3 we examined necessary reduction methods, methods that eliminated
arbitrary elements from the inference base. In this chapter we examine reduction
methods that require an inference principle. The inference principles range from the
very widely held sufficiency principle to the relatively uncommon weak ancillarity
principle.

We also examine the support for the inference principles. We find that the
support for some of the principles is rather weak, resting on a few appealing
examples. Indeed, for one of the principles we find that all the appealing examples
properly belong with one of the necessary methods in the preceding chapter.

We will see that the substance of the methods involves grouping together
points on the response space to satisfy some criterion in terms of the density
function—in other words, allocating points with associated density to satisfy some
criterion. Accordingly, we call the methods in this chapter density allocation
methods.

In Sec. 4-1 we consider the weak likelihood principle, otherwise called the
sufficiency principle. In Sec. 4-2 we consider the ancillarity principle. And in the
remaining sections we consider several principles that involve a mix or weakening
of the preceding principles.

The reduction methods in this chapter are targeted primarily on inference bases
that involve the response-based model .#x in Sec. 1-2-1. They can of course be
applied to inference bases that use a variation-based model but the support for the
needed inference principle may or may not be available in the altered context.

69
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Accordingly, in this chapter we discuss the reduction methods in terms of a
response-based model

M=Q; S, oA, F)
where % is the response space and
F={f(-|0):0eQ}

is the class of response density functions. A wider application of a method may
be in terms of a model with additional ingredients—but the support for the
needed principle may no longer be available and the method itself may be quite
inappropriate in the context.

The variables and parameters will typically be vectors but for the general
discussions here we will write simply y, 6, for example, without the use of bold face.

4-1 SUFFICIENCY REDUCTION

In this section we examine a reduction method that uses the sufficiency or weak
likelihood principle. This principle has wide acceptance in the literature.

The analysis of sufficiency seems to proceed most naturally by using properties
of the likelihood function and likelihood map. Accordingly we give a preliminary
discussion of these likelihood concepts.

4-1-1 Likelihood Function

For this we need the definition of the likelihood function. Some familiarity with
likelihood has been assumed for the location-scale example in Sec. 2-2 and for the
examples in Secs. 3-4 and 3-5. For some recent discussion and development see
Fraser (1976, secs. 8-1, 8-4, 8-5).

For our discussions here, we use the definition of likelihood that is appropriate
and fruitful for most areas of statistical inference—in fact, the original definition
as found in Fisher (1922). The reader is cautioned that in most statistical texts,
likelihood is used in a very limited way and the definition, as suitable for this
limited use, does not conform to that needed for general inference or to that
implicit in the original presentation of the concept. We do assume the availability
of general discussions on likelihood as, for example, in Fraser (1976, secs. 8-1,
8-4, 8-5) and accordingly present here a relatively brief survey.

At a response value y the model .# assigns a probability density f(y|6),
which depends on the parameter 6 in Q. If we allow, as is common, that no
particular supporting measure has special significance, then we have that the
probability density depends on 6, but is defined up to an arbitrary multiplicative
constant:

L(y;)=cf(y]|*) (4-1)

where c is an arbitrary positive multiplicative constant. This is called the likelihood
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function as obtained from the response value y. In this, we view y as taking a
particular value and treat (4-1) as a real-valued function over Q that plots L(y; 6)
at the point 6 in Q.

More formally we define as follows:

Definition The likelihood function L(y;-) from the response value y is the
equivalence class

Liy; ) ={dy|"):ceR} (4-2)

of similarly shaped functions of 6.

This definition avoids the direct use of a generic positive constant c.

The set of real-valued functions on Q is designated by R; it is a vector space.
The functions in the class (4-2) differ from each other by a positive multiplicative
constant. Accordingly the class (4-2) is a ray from the origin of the vector space
passing through the functionf(y | -); alternatively, it can be described as the positive
half of a one-dimensional subspace of R.

Consider L(y;+) for various response values y. As a function on the sample
space & it maps a point y into a ray in R the likelihood function for that point
y; we call this function the likelihood map.

Now suppose we form sets or contours on the response space & in the
following manner : we allocate to a contour all the response values y that have a
particular likelihood function. And suppose we do this for each of the possible
likelihood functions. Then we have formed a partition on the sample space &,
specifically the preimage partition of the likelihood map.

Now let s(+) be some simple convenient function on the sample space &
that indexes the sets of the partition just formed; we call such a function the
likelihood statistic. The likelihood statistic, then, is any response-space function that
is one-one equivalent to the likelihood map.

4-1-2 Sufficiency

We now summarize some results concerning sufficiency. The concept of sufficiency
is also due to Fisher (1920) and is approximately two years older than the likelihood
concept. The present form of the concept of sufficiency originally due to Fisher is
called B-sufficiency in a recent survey of generalizations of the concept by
Barndorff-Nielsen (1971).

For the response model .#, we now define a sufficient statistic.

Definition The function #(+) is sufficient if the conditional distribution given
t does not depend on the parameter 0.

For more detailed notation we let (+) be a complementary function so that
y is one-one equivalent to [#(y), r(y)]. We suppose that dt and dr designate suitable
yolume measures for ¢ and r and we suppose that h(t|6) and g(r|1) are marginal
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and conditional density functions for ¢ and for r given t. We then note the
following :

Definition The function ¢(-) is sufficient if the joint density of ¢ and r can be
factored as

h(t]6) g(r|1)

where the conditional density g(r |¢) is independent of 6.

Now let us examine the likelihood function along contours of the statistic z(+):
L(y;*) = {cf(y]"):ceR™}

{eg(r|O)h(t|-):ceR*} (4-3)

= {ch(t|*):ceR"}

1l

If we tolerate the generic arbitrary positive constant ¢ we can abbreviate the
preceding as

L(y;:0) = cf(v]0) = cg(r[e) h(t|6) = ch(t|0)

where the constant (with respect to 0) g(r|t) has been absorbed into the arbitrary
multiplicative constant ¢. Note from (4-3) that the likelihood function does not
depend on r. Thus all the points on a given contour of #( - ) have the same likelihood
function—but the contour may not include all points with the particular likelihood
function.

We now define a minimal sufficient statistic.

Definition A sufficient statistic s( ) is a minimal sufficient statistic if for any
other sufficient statistic #( ) there exists a function g such that s(y) = g[«(y)].

In effect the definition says that s( ) is a reduction on any other sufficient statistic,
or equivalently that s( - ) has a coarser preimage partition than any other sufficient
statistic. Thus in accord with the preceding paragraph we are led to expect the
minimal sufficient statistic to be the statistic for which each contour assembles all
the points with a particular likelihood function. This is formalized in the following
theorems. '

Theorem 4-1 The likelihood statistic s( ) is a sufficient statistic for .#.

Theorem 4-2 The likelihood map is the minimal sufficient statistic; the likeli-
hood statistic s( ) is the minimal sufficient statistic.

For a proofof Theorem 4-1 see, for example, Fraser (1976, p. 337). Theorem 4-2
follows trivially from our discussion on assembling points with a common likeli-
hood function.

Our present organization of the material on likelihood and sufficiency makes
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the very intimate connection between the concepts seem almost trivial. The
connection, however, was not noted publicly at statistics meetings until the early
1960s. Interestingly, Fisher’s writings clearly contained the implicit connection—
as early as the 1930s (Fisher, 1934).

4-1-3 Some Simple Examples

Consider the response model for a sample from the normal (i, o) distribution. The
density function is

1
fy|p o) = 2ne?) "* exp [—2—0—2 (i — #)Z:I

- s*(y)  n(y —p)?
= (no?) ™" exp[— W o (4-4)
and the likelihood function is
—n/ ‘ 82( ny — )2
L(y; 1.0) = c(?) ™" exp [— e (4-5)

From [y, s(y)] we are able to determine the particular likelihood function by
substituting in the preceding expression. Conversely, if we start with a particular
likelihood we can find, say, the parameter value ({i, &%) maximizing likelihood,

2
FERNER )
n

i=7

and thus determine the value of [7,s(y)]. It follows that [7, s(y)] is one-one
equivalent to the likelihood map and is thus the likelihood statistic. It then
follows from Theorem 4-2 that [ ¥, s(y)] is the minimal sufficient statistic. In general,
however, the maximum likelihood estimator may not be one-one equivalent to the
likelihood statistic.

The preceding is a special case of the exponential model

f]0) = k(6) exp [; Y0 j(Y):'h(Y) (4-6)

The model for a sample from the preceding has the same basic form:

F(y]6) = K"B) exp {z v(0) [ Z t;(y»}}nhm) (47)

accordingly, it suffices to consider a density function in the notation of expression
(4-6).

The functions 1, (6), ..., ¥,(0) may be linearly dependent. If so, one function
can be expressed linearly in terms of the others, substituted in (4-6), and the ex-
pression rearranged to obtain one less ¥ function; iteration then gives an expres-
sion (4-6) in which the functions 1,y(0), ..., y,(0) are linearly independent and
have a smaller value for r.
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Now consider the likelihood function, or more conveniently the logarithm of
the likelihood function

l(y;0) =In L(y;0) = In ¢f (v | 0)
=1-a+Inc0) +y1(Oai(y) + - + ¥u(Oaly)

Note that we use a = Inc as an arbitrary real constant and have absorbed
In h(y) into that constant.

Clearly (ay(y), ..., a,(y)) determines the likelihood function. Conversely, the
linear independence of the y’s shows that the likelihood function determines
(a1(y), ..., a(y)). It follows that (a;(y), ..., a(y)) is the likelihood statistic and is
the minimal sufficient statistic. For some further discussion see, for example,
Fraser (1976, Sec. 8-5)..

4-1-4 Weak Likelihood Principle

Consider the response model .# and let s(-) be the likelihood statistic, the
minimal sufficient statistic.

In Sec. 4-1-1 we saw that by allocating to a particular contour all the points with
a particular likelihood function we obtained the contours of the likelihood
statistic. A contour of the likelihood statistic thus consists of points for which the
density function has the same dependence on 6. If the density function—the core
of the response-based model—does not distinguish points along any contour of
thelikelihood statistic, then why should any analysis based on the model distinguish
among points along a contour of the likelihood statistic? Or, why use data beyond
the value of the likelihood statistic? The lack of any obvious answer provides what
may be called the likelihood argument for the principle described below.

In Sec. 4-1-2 we saw that the conditional distribution of the location of the
response along any contour of the minimal sufficient statistic s( - ) does not depend
on 0. Thus, if a technician in the laboratory has given us the value of the minimal
sufficient statistic s(+) = s and is prepared to give us the value of the complementary
function #(+), we would be encountering what could be called post-randomization
—the opportunity to obtain a value from a known probability distribution. Why
should such a value be obtained? Why should the data include anything beyond
the value of the minimal sufficient statistic? The lack of any obvious answer pro-
vides the sufficiency argument for the principle described below.

S: Weak likelihood (sufficiency) principle For an inference base (.#, ), the
data y should be replaced by s(y), the value of the likelihood (minimal
sufficient) statistic.

The sufficiency support deriving from Sec. 4-1-2 is the traditional and widely
accepted endorsement for the principle. The weak likelihood support deriving from
this section is more recent and more closely tied to the views in the preceding
chapter; we feel that it provides more cogent and substantial support for the



DENSITY ALLOCATION METHODS 75

principle. Note, however, that the two supporting arguments are appropriate only
with the response-based model. Thus the arguments as given would provide little
if any support for use of the principle with a variation-based model.

We are now in a position to present the first density allocation method of
reduction. Let .# be a minimum response-based model, s(y) be the likelihood
(minimal sufficient) statistic, and .#, be the marginal model for s(y). We then
have the following method:

RMy; : Density-allocation reduction—likelihood The weak likelihood principle
S and the inference base (.#, y) necessarily produce the inference base

(%*7 S(y))

The proof is straightforward. Principle S replaces the data y with the data s(y).
The definition of the model in Sec. 1-1-2 then replaces .# by .#4 giving the
inference base (.#, s(y)).

4-1-5 An Example

Consider a response-based model for the location-scale system examined in Chap.
2. The usual procedures for deriving tests and confidence intervals for two
parameters p and o require in general a preliminary reduction so that the data are
essentially two dimensional. For the present problem we then ask—when is the
likelihood statistic two dimensional?

For the cases in which the initial response density is positive on the real line
the normal model in Sec. 4-1-3 is the only model yielding a two-dimensional
likelihood statistic. And for the cases in which the endpoints of the distribution
can vary, the uniform and the left-facing and right-facing exponentials are the only
models yielding a two-dimensional likelihood statistic. See, for example, Fraser
(1976, p. 344) together with Dynkin (1951) or Ferguson (1962).

If we then restrict our attention to models appropriate to common and
reasonable applications we eliminate the variable carrier models and are left with
just the normal model examined in Sec. 4-1-3. Thus the applicability of reduction
method RMy; to applied statistical models is very limited —handling just the
normally distributed case of the location-scale model.

In conclusion, it is perhaps worth mentioning that in sampling from a
location-scale distribution on the real line the sufficiency reduction is typically
from the initial vector (yi,..., y,) just to the order statistic (1), - - ., Y)-

4-2 ANCILLARITY REDUCTION

In our constructive approach to sufficiency in the preceding section we saw that
contours of the sufficient statistic were formed by allocating to a contour all the
points that have the same dependence on 6. In this section we proceed in an
opposite direction and allocate to a contour points with different dependences on
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0 but allocate in such a way that the dependences average out along the contour:
the resulting function is called an ancillary statistic. In this section we examine a
reduction method involving an ancillary statistic and a related ancillarity principle.
This principle, often called the conditionality principle, has special appeal for some
theoreticians.

4-2-1 The Ancillary Statistic

Consider a response-based model .# as discussed at the beginning of this chapter.
For the method in this section we now define an ancillary statistic.

Definition A function a(-) is ancillary if its marginal distribution does not
depend on the parameter 0.

Let () be a complementary function so that y is one-one equivalent to
(a(y), 7(»)). Then using the notation and assumptions in Sec. 4-1-2 we obtain the
following :

Definition The function a(+) is ancillary if the joint density of a and r can be
factored as

h(a)g(r

where the marginal density & is independent of the parameter 6.

a, 6)

The concept of an ancillary statistic was presented by Fisher (1925) and
developed in subsequent papers. It was largely neglected by the statistical
profession until Buehler (1959) and Wallace (1959). This original form of ancillarity
due to Fisher is called B-ancillarity in a recent survey of generalizations by
Barndorff-Nielsen (1971).

How can we construct an ancillary statistic? Consider a contour of a function
a{y) which is to be an ancillary statistic. Along the contour, points typically will
have probabilitiy densities with various dependences on 0; the integration of the
density along the contour, however, will average out the differing dependences
giving a marginal probability for the contour that does not depend on 6. Thus,
points are lumped together on a contour so that the total probability for the
contour is #-independent.

For a simple example we turn to a discrete distribution and examine a four-
way multinomial with a single real parameter. The example comes from genetics,
as is indicated by the labels for the following arrays:

Probabilities Data
A aa A aa

B | Q404 (1—6)4 B | vy yu
bb | (1-0)/4 0/4 bb | vy
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The distribution of (y11, V12, V21, Y22) is multinomial [n, (2 + 6)/4,(1 — 0)/4,
(1—6)/4,0/4].

The sample space for (yy1, ..., y22) typically has a large number of points.
We can, however, see the salient characteristics of the example by looking at the
special case n = 1; this amounts to a single observation and an indicator function
for the “observed” cell. We then have just four sample points and they effectively
correspond to the four cells in the left array of probabilities.

How can we construct an ancillary statistic for this model? Starting in the
upper left-hand corner with its probability (2 + 6)/4, we can look for some other
point with a compensating probability. The lower left-hand or the upper right-
hand corner has a compensating probability. Suppose we choose the lower left-
hand corner. A contour of an ancillary is then the first column; a second contour
is given by the second column. Thus the indicator function for columns is
ancillary:

A aa

2+ 6)/4 (1—0)/4
(1—-6)/4 0/4

3/4 1/4

For a general value of n the corresponding ancillary is given by the column total in
the earlier array; we have that the column totals are multinomial (n, 3/4, 1/4), in
effect binomial (n, 3/4) or binomial (n, 1/4) depending on the particular column
used.

In the preceding paragraph we could equally well have chosen the upper right-
hand corner to pair with the initial top left corner. We would then have obtained
a constant total for the probabilities in each row. For a general value of n the
corresponding ancillary would be given by row totals in the original array; we
would have that the row totals are multinomial (n, 3/4, 1/4).

For this four-way multinomial with a single real parameter we have found two
very different ancillaries. The ancillary idea of balancing out 6 differences has
some appeal but is rather arbitrary. The duplicity we have just observed points up
this arbitrary aspect and points to serious difficulties for the ancillary approach.

The preceding example is a simplified version of examples in Basu (1964) and
Fraser (1973). The present version in a genetics context may be found in Fisher
(1956, p. 47) and Barndorff-Nielsen (1971).

4-2-2 Ancillary Reduction

Consider the response model .# and let a(-) be an ancillary statistic.

In Sec. 4-2-1 we saw that the dependence of the density on 8 typically varied
along a contour of the statistic a(+) and yet the total or marginal density for the
ancillary a(-) was 6-independent.

One interpretation that can be projected on an ancillary statistic is that of pre-
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randomization: A value q is obtained from the known probability distribution for
the function a(-); the remainder of the data is then viewed as an observation from
the conditional distribution given a(y) = a, a distribution that is f-dependent.
Viewing the distribution of a( + ) as providing a form of pre-randomization, we can
ask why the value a should matter other than in determining the conditional
distribution that can be used for assessing the remainder of the data. The lack of
any quick and easy answer provides support for the ancillarity principle described
below.

Let a(+) be an ancillary with marginal model .#, and let .#“ be the
conditional model for y given a(y) = a. Note that the model .#4 does not have
parameters ; it is a mathematical construct—a probability space model marginalized
from the initial model by averaging 6 out of 6-dependent probabilities.

A : Ancillarity principle For an inference base (.#, y) the model .# should be
replaced by .#°"), the conditional model given an ancillary statistic value

a(y).

The pre-randomization argument presented above is the typical kind of
support for the principle. In fact, however, the common acceptance of the
principle rests almost entirely on a number of examples with prima facie appeal.

We are now in a position to present the second density allocation method of
reduction:

RM,,: Density allocation reduction—ancillarity The ancillarity principle A
and the inference base (.#, y) necessarily produce the inference base

(29, r()).

The proof is straightforward. Principle A replaces the model .# with the
model .#*?. The definition of the model in Sec. 1-1-2 then replaces the data y by
the data given a(y); with the notation earlier in this section this amounts to
replacing y by r(y). The resulting inference base is (.# %, r(v)).

4-2-3 Some Examples

First consider the four-way multinomial example considered in Sec. 4-2-1:

A aa A aa
B | @404 (1—0y4 | 34 B ’> v | onm
bb | (1 —-06)/4 0/4 1/4 bb | Y21 V22 Y2.
3/4 1/4 | ’ Va V2 } n

We have noted that the column totals (y.,, y.,) form an ancillary a(y) with the
multinomial (n, 3/4, 1/4) distribution. The conditional distribution given this
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ancillary may be described as follows: y;, is binomial [y.;, (2 + 6)/3] and
independently y,, is binomial (y.,, 1 — 6/3). Principle A and method RM,, then
give an inference base in which y;; and y;, are the data, and the model involves
the product of the preceding independent binomial distributions ; this is an analysis
within columns.

~ InSec.4-2-1 we also noted that the row totals (y, . y».) form an ancillary with
the multinomial (n, 3/4, 1/4) distribution. Principle A and method RM,, then give
an inference base in which the rows are analyzed as independent binomials; this
is an analysis within rows.

Thus principle A is self-contradictory. The principle says to do something. But
the something can be different things that contradict each other.

The multinomial example is, of course, discrete. Consider a somewhat similar
example involving continuous variables. Let (y,, y,) be bivariate normal with mean
(0, 0) and VARiance matrix

L p
(p 1)

a matrix with a parameter p in (—1, +1).

The first coordinate projection function y; is ancillary: it has the normal (0, 1)
distribution. The conditional distribution given y; says that y, is normal
(py1,~/1 — p?). Principle A and method RM,, then give an inference base in

which an observed y, is analyzed against the normal (py;, \/ 1 — p?) model.
In a parallel way, however, we see that the second coordinate projection
function y, is anciliary. This leads to an inference base in which an observed y,
is analyzed against the normal (py,, \/1 — p*) model.
Again, we see the self-contradictory nature of principle A.

4-2-4 Some Discussion

The examples just discussed do not paint a very attractive scene for the
ancillarity principle A and the method RM,,. However, the presentation usually
given for this principle and method (for example, Cox and Hinkley, 1974) has
several very appealing examples as well as the two rather unattractive examples
just examined.

The appealing examples are all concerned with systems that typically admit
more detailed models than the minimum response models we have been discussing
in this chapter. In fact, these examples, as in Cox and Hinkley (1974), are all
examples that were mentioned in Sec. 3-2 and for which we used the more detailed
model appropriate to the applications. These other examples are: the random
choice of measuring instrument; the random sample size; and the location or
location-scale example. These more attractive examples were thus drawing their
strength from the more detailed contexts in Chap. 3 and are thus inappropriate
for illustrating the principle and method in this section.

One example mentioned in Sec. 3-2 but not discussed until it was examined
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more generally in Sec. 3-3 is the location-scale example. We discuss it briefly now.
Suppose we consider the response-based model in Sec. 1-2-1 and examine the
analysis in Sec. 2-1 for the special case that the distribution form is known.
For the model] we have the class

F ={o "If(e™'(yi — w): peR,0eR"}

of response distributions where f is the known density describing the distribution
form.
The function d(y) given by

dy)=s"'(y)(y — 1)

has a distribution (2-15) that is independent of 6 = (i, 0); thus the function
d(y) is ancillary. The ancillarity principle A and the method RMy, then produce
an inference base involving the value of [y, s(y)] with the conditional model
(2-16). The analysis in Chap. 2 proceeded in this manner and it corresponds closely
to the analysis suggested in an early Fisher paper (1934) concerning ancillaries;
the more general case with a parametric family for distribution form was not
examined in Fisher’s papers.

Recall, however, that with the proper model, the variation-based .#), the
necessary reduction method RM; in Sec. 3-3 directly gives the procedures
discussed in Chap. 2.

4-3 SUFFICIENCY-ANCILLARITY REDUCTION

Sufficiency leads to a marginal model; ancillarity leads to a conditional model. In
a few special cases a statistic can be both sufficient and ancillary—sufficiency
for one parameter component and ancillarity for an independent parameter com-
ponent. In this section we examine this combination of sufficiency and ancillarity
for a response model .Z.

4-3-1 Sufficiency-Ancillarity

We now examine a blend of sufficiency and ancillarity, a blend that uses a
statistic with sufficiency properties for one parameter component and ancillarity
properties for the complementary parameter component. For this, suppose that the
parameter 0 in Q can be reexpressed as (i, ¢) on a Cartesian product Q, x ;.
Thus (y(6), ¢(0)) provides a one-one reparameterization onto a product space.
The parameters ¥ and ¢ are thus independent in a reasonable way, which we call
Cartesian independence.

On the sample space, now consider a function #(+) and let r(-) be a
complementary function so that y is one-one equivalent to [#(y), r(y)]. We suppose
that dt and dr designate suitable volume measures for ¢ and r, and we suppose that
h(t|6) and g(r |1, 0) are marginal and conditional density functions for ¢ and for r
given t. We now define a sufficient-ancillary statistic.
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Definition A function t(+) is sufficient-ancillary for (¥, ¢) if the marginal
distribution of t depends only on ¥ and the conditional distribution given
t depends only on ¢ where the parameter components i and ¢ are
Cartesian independent.

Thus a statistic ¢ is sufficient-ancillary if the joint density of  and r can be factored
as

h(t|¥)g(r|t, ¢) (4-8)

where the parameter (¥, ¢) belongs to the Cartesian product Q, x Q;.

This separation of variables and parameters was proposed in Fraser (1956)
as sufficiency (). Some separation of variables but without the required Cartesian
independence of parameters may be found in Olshevsky (1940) and implicitly in
Neyman (1935). An emphasis on the ancillary component may be found in
Sandved (1967). In a recent survey Barndorff-Nielsen (1971) has used the term
S-sufficiency and S-ancillarity, depending on the parameter component under
discussion. Basu (1977) more recently has reattributed the sufficiency-ancillarity
definition to Olshevsky and Neyman but has overlooked the absence of the second
half of the definition concerned with Cartesian independence.

Consider a simple example. Let y; and y, be independent Poisson (6,) and
Poisson (0,). We introduce new parameters replacing (61, 6,) by (i, ¢) where

0,

lpZQI.‘*—OZ ¢=01+62

49)

The function t = y; + y, has the Poisson () distribution and y, given ¢ has the
binomial (¢, ¢) distribution. It follows then that ¢ is sufficient-ancillary for
W ¢).

How can we construct a sufficient-ancillary statistic? Consider a separation of
the parameter 0 into the Cartesian product of the parameters y and ¢, as
discussed earlier in this section. Suppose we allocate to a contour or assemble on a
contour all the points for which the variation in the likelihood function is entirely
in terms of the parameter ¢ ; thus y, is on the same contour as y; if and only if the
ratio

239, ) _
L01:v. ) (*+10)

is independent of y and thus involves just ¢ and, of course, y; and y,. This is a
direct positive construction procedure paralleling that in Sec. 4-1-1.

Now let t(+) be a function that indexes the contours just constructed and let
r(*) be a complementary function that indexes points along the contours. We
also suppose that density functions are available for these new coordinates ¢ and r
giving

hit| §, Y)g(r

t,d)
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The construction condition for the contours of ¢(-) ensures that ¥ is absent from
the second factor; indeed, it ensures that the contours of t(-) are the largest
contours with this y-independence. From this we see that there is sufficiency-
ancillarity if and only if the parameter ¢ is absent from the marginal distribution
for the constructed function #( ).

Ifthere are functions that are sufficient-ancillary for (i, ¢) then the construction
procedure gives one such function, a particular one. There may, however, be more
than one, depending on how the pre- and post-randomization discussed in Secs.
4-1 and 4-2 are separated between marginal and conditional variables.

4-3-2 Sufficiency-Ancillarity Reduction

Consider the response model .# and let ¢(-) be a sufficient-ancillary statistic for
W, ¢).

Ifattention is restricted to the parameter i then #( +) has some of the properties
of a sufficient statistic, for if a technician in a laboratory has given us the value of
the statistic t(+) = t and is prepared to give us the value of the complementary
function r(-), then we would be encountering what we have called post-
randomization—the opportunity here to obtain a value from an unknown
probability distribution, a distribution, however, that is completely independent of
the parameter i of concern. Thus for inference concerning i why should such a
value be obtained? Why should the data record anything beyond the value of the
statistic ¢( +)? The lack of any obvious answer provides support for the sufficiency
aspect of the following principle. A discussion similar to that of Sec. 4-2-2 provides
support for the ancillarity aspect of the definition.

Note that the preceding argument would not be applicable using the Olshevsky
version. Consider the Poisson example in Sec. 4-3-1 with 0; restricted to an
interval (01, 07). Then the possible values of ¢ would satisfy

1Y < ¢ < min {67 /4, 1}

and the distribution of the complementary function r( - ) would not be independent
of the parameter .

The preceding discussion provides support for a sufficiency-ancillarity
principle. For this, let #(+) be sufficient-ancillary for (y, ¢); let .#, be the
marginal model for ¢(+) with parameter y; and let .#* be the conditional model
for y given t(y) = t with parameter ¢. We then have the following sufficiency-
ancillarity principle.

SA : Sufficiency-ancillarity principle For an inference base (.#, y), the data
y should be replaced by t(y) for inferences concerning ¥, and the model .#
should be replaced by .#'"? for inferences concerning ¢.

We are now in a position to present the third density allocation method of
reduction.
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RM,;: Density allocation reduction—sufficiency-ancillarity The sufficiency-
ancillarity principle SA and the inference base (.#, y) necessarily produce
the inference base (.#4, t(y)) for inference concerning i and the inference
base (.4, r(y)) for inference concerning ¢.

The proof routinely follows the pattern in Secs. 4-1 and 4-2.

4-3-3 Some Examples

First consider the example from Sec. 4-3-1. Let y; and y, be independent
Poisson (8;) and Poisson (#,). We have noted that t = y; + y, is sufficient-
ancillary for (i, ¢) where Yy = 0, + 0, and ¢ = 0,/(0; + 0,).

Now suppose that inferences are to be made separately for  and ¢. For the
parameter s principle SA and method RM,; give the inference base with
Poisson () distribution and data t. And for the parameter ¢ principle SA and
method RMg; give the inference base with binomial (¢, ¢) distribution and data y,.

A somewhat similar example arises with the three-way multinomial. Let
(1, V2, n—y; —y,) be multinomial (n, pp;, pqg:, q) where p+g=1 and
p1 + q1 = 1. The function t = y; + y, has the binomial (n, p) distribution and y;
given t has the binomial (z, p,) distribution. It follows then that ¢ is sufficient-
ancillary for (p, py).

Now suppose that inferences are to be made separately for p and p;. For
the parameter p the principle SA and the method RMy; give the inference base
with binomial (n, p) distribution and data t. And for the parameter p,, the principle
SA and the method RM; give the inference base with binomial (t, p,) distribution
and data y,.

The preceding examples are both discrete. Continuous examples are much
more difficult to find. A continuous albeit nonparametric example may be found
in Fraser (1956).

4-3-4 Some Discussion

The example involving independent Poisson distributions has some appealing
features. Consider some physical context involving a possibly nonhomogeneous
Poisson process. Let ¢ be the total count for a specified time interval and let y; and
y2 be the counts for first and second component intervals. Interest could be centered
on the average rate for the full specified time interval; this is given by the
parameter { = 0, + 0,. Or, separately from the preceding, interest could be
centered on the homogeneity of the process—how 6, and 60, relate to the lengths of
the corresponding time intervals of observation.

Our Poisson example has now been enlarged to include obvious objective
aspects of the physical situation. And not surprisingly we find that methods from
Chap. 3 are available ; specifically we can use the method in Sec. 3-2 for part of the
analysis discussed in Sec. 4-3-3. If Yy has some specified value, then the total count
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is a characteristic of the full time interval of observation and it has a known
distribution. The reduction method RM, then specifies that inference concerning
¢ be made in terms of y; and the binomial (z, ¢) distribution. This inference base
for ¢, however, is the same for each specified value of . Thus since the italicized
“if” clause holds for some i, we obtain necessarily the reduced inference base
in Sec. 4-3-3 for the parameter component ¢.

In conclusion, we should note that the sufficient-ancillary statistic need not be
unique. Principle SA then has some potential for the self-contradictory properties
discussed in Sec. 4-2-3.

4-4 WEAK SUFFICIENCY AND ANCILLARITY

The sufficiency-ancillarity concept in the preceding section requires a very sharp
separation of Cartesian-independent parameters, one for-a marginal distribution
and the other for a conditional distribution. In this section we relax the
requirements and obtain two different extensions: weak sufficiency and weak
ancillarity.

These principles are not widely acknowledged in the literature. The search for
such extended principles is no doubt rooted in the failure of the earlier principles
to come to grips with the simple separation of y-inference and g-inference for that
simplest of models, the normal (i, o). Even at a considerable price in terms of loss
of support, these extended principles only partially handle the very simple normal
problem.

4-4-1 Weak Sufficiency and Ancillarity

Consider a response-based model .# and suppose the parameter 8 in Q can be
reexpressed as (, ¢) in Q*, which need not be a Cartesian product as required in
Sec. 4-3-1.

Now consider a sample space function #(-) and a complementary function
r(+)and suppose that density functions are available as in Sec. 4-3-1. The concept
of sufficiency-ancillarity requires the following separation of parameters in
the density function:

ht|¥)g(r|, §) (4-11)

Consider a first relaxation called weak sufficiency.

Definition The function () is weakly sufficient for y if the factorization has
the form

hit[¥)g(r|t, . ¥) \ (4-12)

and the conditional distribution g(r|t, ¢, ¥) provides no direct information
concerning .
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Two interpretations for “no direct information” will be discussed below. Consider
also a second relaxation called weak ancillarity.

Definition The function t(-) is weakly ancillary for ¢ if the factorization has
the form

ht| ¢, ¥)g(r|t, §) (4-13)

and the marginal distribution h(t|¢, ) provides no direct information
concerning ¢.

We now examine two interpretations for “no direct information.”

A type of weak ancillarity was proposed by Cox (1958). For this, the
marginal density h(t|¢, ) is said to provide no direct information (NDI-1)
concerning ¢ if at each point ¢ the likelihood ratio for any two ¢ values can be
duplicated by two ¥ values; specifically, if for each t, ¢y, ¢, ¥ there exists ¢,
Y1, Y2 such that

Liy; ¢u¥) _ Lyi ¢, Y1)
L(y;¢a2, %) Ly o, ¥2)

A parallel definition can be used for the conditional density g(r
to give weak sufficiency.

Another type of weak ancillarity was proposed by Barndorff-Nielsen (1971)
and is called M-ancillarity. For this, the marginal density h(t | ¢, ¥) is said to provide
no direct information (NDI-2) concerning ¢ if for each value of ¢ the density
family h(z|$, y) is universal; specifically, if for each value of ¢ and value for ¢
there is a  value that places maximum density at the particular ¢ value,

h(-| ¢, ¥) < h(t|$,¥)

t, ¢, ) in (4-12)

In a sense a t value can be fully “explained” by variation in  alone.

A type of weak sufficiency was proposed by Barndorff-Nielsen (1971) and
called M-sufficiency; it used NDI-2 for the conditional distribution.

In Secs. 4-2 and 4-3 we have mentioned some of the difficulties and self-
contradictory properties of the principles of ancillarity and of sufficiency-
ancillarity. The possibilities for unsatisfactory propertiés are far greater for the two
extensions: weak sufficiency and weak ancillarity.

The extended definitions have been proposed, it seems, in order to handle
some very simple problems that are not amenable to the methods presented
earlier in this chapter; an example is given in Sec. 4-4-2. The wider use of the
method, beyond such very simple transparent problems, seems to face, however,
many very unsatisfactory possibilities. We feel that the case for the extended
definition is so weak that it is inappropriate to bother with more than the one
simple example to follow.
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4-4-2 An Example

Consider a response model for a sample (yy, ..., y,) from the normal (i, o)
distribution. The weak likelihood (sufficiency) principle S can be used to support
areduction to [y, s(y) | ; we then have that 7 is normal (x, O'/\/ﬁ) and, independently,
that s(y) has the chi (n — 1) distribution scaled by the factor o.

The sufficiency-ancillarity principle in Sec. 4-3 does not lead to separate
inferences for y and for ¢. We examine the usefulness of the present principles,
weak sufficiency and weak ancillarity.

First consider the parameter . The function y is sometimes referred to as
being sufficient for y, but this does not conform to the definition in Sec. 4-3 and in
a quite general sense is perhaps very misleading, for with ¢ unknown there is no
reasonable way that j alone can be viewed as “sufficient” for inferences
concerning u: its reliability is available from the complementary s(y). Our
present principles do not lead us to the use of y alone for inferences concerning
.

Now consider the parameter ¢. The function s(y) does seem to be a rather
natural function for inference concerning ¢. First we note that s(y) is weakly
sufficient for ¢ using either NDI-1 or NDI-2. Then we note that y is weakly
ancillary for ¢ using either NDI-1 or NDI-2. These properties are sometimes
used as support for s(y) for inference concerning ¢. Note that the two properties,
weak sufficiency and weak ancillarity, sit side by side largely because of the
statistical independence of y and s(y).

The presence of a nice example somehow tends to lend strength to tentatively
proffered principles—here weak sufficiency and weak ancillarity. Serious cautions,
however, are indicated. The normal has so many natural simplicities and
symmetries that just about anything not totally misdirected will work. The
niceness of the example does underlie something more substantial, for we can
recall that for inference concerning the parameter ¢ the normal model is amenable
to the necessary reduction method RM; as in Sec. 3-5-2.

Certainly reduction concepts are needed. The case for weak sufficiency and
weak ancillarity, however, is at present very very weak. Indeed the concepts,
away from the very simple example, may be quite misleading and damaging.
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CHAPTER

FIVE
TERMINAL METHODS OF INFERENCE

In Chaps. 3 and 4 we examined various methods for the reduction and simplification
of an inference base. In this chapter we examine the subsequent components of
inference, the common terminal methods of inference ; these are the methods for
summarizing and presenting the output inferences from a reduced inference base.

The terminal inferences are viewed in the larger sense of a full spectrum of
results, not one or two results from a single method. Statistical inference involves
this full spectrum.

5-1 TESTS OF SIGNIFICANCE

Perhaps the most elementary and basic inference method is that of testing or
assessing a hypothesis that specifies the value of the parameter or the value of some
component parameter.

Consider an inference base

(A, ) (5-1)

and let H, be a hypothesis that specifies the value of the parameter in Q or
specifies the value of some component parameter. The hypothesis H, produces an
alleged model .#,, which in the first case would be a probability model and in
the second case would be a statistical model using the restricted parameter. Thus
H, gives the alleged inference base

(Mo, D) (5-2)

89
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A test of significance, then, is an examination or assessment of the alleged
inference base (5-2) to see if it is realistic and plausible, or if it is inherently self-
contradictory and the original inference base (5-1) is needed.

An assessment of an inference base is really an assessment of the data in
relation to the model. Could the data reasonably have come from a system
described by the alleged model? If the alleged model .#, is a probability model
—a statistical model without a parameter —then the assessment amounts to seeing
whether the data could reasonably have come from a particular distribution. More
generally, the assessment amounts to seeing whether the data could reasonably
have come from a statistical model, that is, some collection of probability
models.

Such an assessment is in part concerned with unusual, rare, or unlikely values.
Such values are typically those that are distant from where the distribution or
model is concentrating probability. In the case of a fully specified probability
distribution, an experienced worker in probability should be able to make a direct
assessment of an observed value in relation to a distribution—whether it is unusual
or extreme and to what degree. In the more general case, an experienced worker
may still be able to make some direct assessment—whether a value is unusual or
extreme for all the possibilities in the alleged model.

In Secs. 2-2-2, 2-2-3, and 2-3-2 we examined tests of significance for a location
parameter y and a scale parameter ¢. The preliminary reduction, there, gave an
inference base that permitted relatively straightforward assessments, and for each
test we had an observed value to assess against a single distribution that was
determined by the hypothesis.

As part of these assessments, we calculated an observed level of significance—
the probability of as great or greater departure from the centre of the distribution.
For the numerical example in Sec. 2-3-2, however, we recorded the probability
of such departure just for the particular tail on which the observed value occurred.
This is highly informative in itself, and with the near-symmetrical distribution
involved, can be doubled to give the preceding departure probability to reasonable
accuracy.

Of course, if the distribution under the hypothesis is far from symmetrical,
then it is rather unclear how to compare distances on the two tails and thus how to
calculate the probability of as great or greater departure from the centre of the
distribution. What is needed is some measure of departure from the centre, a
measure of discrepancy. For the earlier example, we used absolute distance from the
“obvious” centre. More generally, a choice of a measure of discrepancy is an
arbitrary input to the inference analysis, and can be based on an ordering from
the center of the distribution, or on various probability or likelihood criteria that
we do not investigate here. Often the one-tailed probability seems quite appropriate
for an assessment—provided the context clearly indicates that it is a one-tailed
probability.

An extreme possibility arises if the distribution specified by the hypothesis has
a hole or shallow spot in the centre. How should this be incorporated into an
observed level of significance? With an asymmetric distribution we measured
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probability of departure on the particular tail. With a hole in the centre and an
observed value in the hole we would certainly record what happened; a suitable
measure of discrepancy might be rather difficult to come up with and would
certainly be quite specific to the particular distribution involved.

For tests of significance based on normal models, almost all reasonable
approaches lead to the same assessment calculations. This pleasant state for the
normal with its many natural symmetries tends to raise expectations that there can
be some absolute measures of discrepancy, suitable for all models. In fact, such
absolute measures do not seem to be available and, indeed, there seems to be
little need for them; this is partly indicated by the approaches we mentioned
for asymmetric distributions and for distributions with a “hole in the centre.”

An extreme value for an alleged or hypothesized distribution might in fact
be an extreme value for all the other distributions indicated by the full model. In
that case the data may be casting doubts on the full model itself. If likelihood is
available from a spectrum of models, then various comparisons are possible using
likelihood ratios and likelihood functions (see, for example, Sec. 2-3-1).

Our discussion so far has been concerned largely with an observed value on the
real line. The preliminary reduction, however, may produce an observed value that
is still multivariate. The example just mentioned from Sec. 2-3-1 was of this type,
and_ only likelihood assessment seemed available there. In other problems,
generalized likelihood ratios and some techniques from hypothesis-testing theory
may be useful and give distances and measures of discrepancy that are one
dimensional rather than many dimensional.

For multiparameter problems we may often be able to separate the parameters
and examine them in some natural sequence. We explore some possibilities in this
direction in Sec. 7-4 and Chap. 11.

The approach in this section has been deliberately informal. It has emphasized
the direct assessment of data and has tried to avoid tendencies toward premature
formulation and overformulation.

5-2 CONFIDENCE REGIONS

Confidence intervals and confidence regions are the most important and widely
used method of inference. Trends do occur and other methods may arise, but we
must acknowledge the ubiquitous nature of confidence procedures.

5-2-1 Confidence Method
Consider a reduced or simplified inference base
(M, D) (5-3)

and let ¢ = ¢(#) be a parameter of special interest for a particular purpose in
statistical inference.
The confidence method can be presented most easily in terms of the tests of
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significance discussed in Sec. 5-1. Suppose that for each value of the parameter ¢,
we have a 1 — o test of significance for testing that parameter value, that is, we
can form a set of response values that leads to acceptance of ¢ with probability
1 — o if ¢ is the true value of the parameter. This set of response values is called
the acceptance region for ¢. We can then see whether the observed response is in
the acceptance region for ¢. The values of the parameter that lead to acceptance
in the preceding way form a 1 — « confidence region for the parameter ¢ = P(0).

A 1 — o confidence region as just presented has the property that in repeated
performances, the confidence region will cover the true parameter value with
probability 1 — o, whatever that parameter value is. The preceding is the standard
textbook interpretation and we do not elaborate on it here. For some recent
discussion on confidence regions, see Fraser (1976, Sec. 10-5, pp. 579-584).

The close connection with tests of significance suggests that to the degree that
reasonable tests of significance are available so also are reasonable confidence
regions. The reduction of the model and the inference base by the methods in
Chaps. 3 and 4 removes much of the arbitrariness from the formation of confidence
regions. There still remains a range of possibilities corresponding mostly to the
range of possibilities for the measure of discrepancy; recall the example in Sec.
2-3.

Most statistical texts tend to focus on 95 and on 99 percent confidence intervals.
Certainly for a particular end use an investigator could be interested in a particular
confidence level. For inference more generally, however, it seems appropriate to
record a spectrum of confidence intervals at a variety of confidence levels. For
example, the computer printout for the analysis in Sec. 2-3 gives confidence
intervals at the levels 90, 95, 99, and 99.9 percent; in fact a broader spectrum
would seem preferable but one needs to weigh the benefits against the bulk of
computer printout that can be received.

The intervals at different levels for the example in Sec. 2-3 form a nested family
of intervals. This nesting occurs with nice examples, and frequently with real
parameters. For the case where the nesting occurs for a full range of confidence
levels we have what can be called a confidence distribution for the parameter. Such
nested intervals and confidence distributions are available in a natural way for the
variation-based models introduced in Sec. 1-2-4 ; we return to this in detail in Sec.
7-3. At this stage we view a confidence distribution solely as a tool for obtaining
confidence intervals.

In this book we emphasize the importance of having a wide spectrum of
confidence intervals, hopefully intervals that nest one within another. It is a small
step then to a full spectrum of intervals or a confidence distribution. We choose
to avoid this small step as it seems to attract an unnatural amount of attention
from some areas of statistics and, in turn, deflects attention from the serious and
substantial topics under discussion.

What meaning should we attach to a confidence distribution? Certainly such a
distribution means what all of the component confidence intervals mean. And in
some contexts it is possible to attach further meaning to the distribution;
specifically, with variation-based models we can view the distribution as having a
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probability meaning based on direct probability statements concerning the varia-
tion. We do note, here, that such extensions are not of central concern for this book,
and we will merely record a few results of mathematical interest in appropriate
supplements.

5-2-2 Some Examples

The standard interpretation for confidence regions was mentioned briefly in the
preceding Sec. 5-2-1. It is a fairly strong, easily understood interpretation, and
provides backbone for standard statistical theory in applications.

In this section we use several simple examples to investigate certain unusual
features that can arise in all but the special situations—those that use the variation-
based model introduced in Chap. 2.

The first two examples show that we should treat the term confidence with
caution and mild scepticism: the quoted percentage may differ from the realities of
an application.

Example 5-1 Recall the example in Sec. 3-2-3 involving the random choice of
measuring instrument ; we now consider this example entirely in the context of
a response-based model and initially ignore the obvious availability—
indeed necessity—for the stronger variation-based model. To simplify the
calculations let the first instrument have an error distribution that is uniform
(—1, + 1)and the second instrument have an error distribution that is uniform
(=5, +5); we assume as before that the measuring instrument is randomly
chosen with equal probabilities from the two available.

Now consider the preceding for a single observation: we have the
inference base (.#, y) where y is the observed measurement. A 90 percent
confidence interval for the location 8 is (y — 4, y + 4).

Note an anomalous feature of the preceding interval. If the investigator
records the particular instrument used (how could he neglect to do so?) and
if he finds it to be the first instrument, then he can assert categorically that
(v — 4,y + 4) brackets 6; he has 100 percent confidence. Indeed, he can assert
this without any use of probability or statistics.

Alternatively, if he finds it to be the second instrument, then he can
assert that the interval (y — 4, y + 4) brackets the true 6 with confidence only
80 percent.

Clearly, disregarding the information concerning the instrument used gives
anomalous results. Indeed, it violates basic scientific principles.

Now consider a more substantial example illustrating the same anomalous
results, but in a more detailed and less transparent context.

Example 5-2 Consider a sample (y;, y,) from the uniform (0 —3%, 0+ 3)
distribution with 0 in R. Again, we deliberately depart from the variation-based
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methods as indicated in Chap. 2 and start with

Yity: Yo tye
t= = 5-4
5 3 (5-4)
as an estimator for the parameter 6. The density for ¢ is easily derived and
we have
2—4]t—90| lt—0]<3
t—0)= 5-5
f ) {O otherwise (5-3)

We can, of course, test any value for 6 by seeing if an observed ¢ is
reasonable for the distribution (5-5) using the particular 6 value. Correspond-
ingly, we can form a confidence interval by choosing a range of “acceptable”
values for t — 0 and then finding the 0 values that are acceptable given the
observed r value.

A 75 percent probability interval for t — 8 is (— %, %); this is the central
75 percent interval for the deviation t — 0. The resulting 75 percent
confidence interval for 6 from a value ¢ is

Cl)=1{0:t—0e(=41)
=(t—4%t+12) (5-6)

The preceding 75 percent confidence interval has some rather unusual
features that should make it very unattractive for applications. Indeed,
consider the confidence interval for cases in which the sample range is
|y2 — y1|> 4. A short integration for the uniform distribution on (6 — 3,
0 + %) x (0 — %, 0 + 4)shows that this range condition occurs with probability
25 percent. Now if y, differs from y; by more than 4, then using the fact that
lyi — 0] < £ for each i we find that (y; + y,)/2 =t must be within % of the
true 0 and thus (t — 4, t + %) must cover the true 0:

i

Thus the confidence for (¢t — 4, t + %) is 100 percent. In an application with
| y2 — y1| > % a practicing statistician would be able to say categorically that
(t + %) brackets the true parameter value. And yet the interval as developed
is an ordinary “75 percent confidence interval.”

In a compensating way, however, if |y, —y;| is very small, say
approximately zero, then the conditional probability of covering the true 6 is
approximately 50 percent:

Yyitys 0

P

In an application with such a value for |y, — y;|, a practicing statistician
would clearly be overstating the case to attach 75 percent confidence to
(t+3).

The intermediate cases are easily examined using the conditional

+
V1 )/2_6

! v2 =il =4) = 100%, )

<%

<} Iyz—y1|#0>#50°/o (5-8)
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b

distribution for ¢ given the difference d = |y, — y,

1
— —0 1—d)/2
geldo=li=a [T OI<U=d) (5-9)
0 otherwise
and the marginal distribution for d,
2—2d 0<d<1
= 5-
hid) {0 otherwise (-10)

We can view the coverage probabilities as being as high as 100 percent and as
low as 50 percent—but averaging out with respect to the distribution for d to
the nominal value 75 percent. However we choose to view this phenomenon,
we do need to acknowledge the absoluteness of the 100 percent statement given
by (5-7). Clearly we do not need probability theory to obtain the statement
(5-7): if |y;— 0| <4 for i=1, 2 and if |y, —y,|> 1, then by ordinary
deductive logic we know that |t — 0] < . Thus it follows by elementary logic.

In conclusion, we can note that the reduction method RM, from Chap. 3
used with the obvious and appropriate variation-based model gives the
conditional confidence levels, e.g., as in (5-7) and (5-8). The example was
discussed from a different viewpoint in Welch (1939).

We now consider a third example that avoids the obvious faults that lead to
unusual coverage probabilities for a given nominal confidence level. We examine
it in terms of the response-based model, but avoid the faults by conforming to the
pattern required with the appropriate variation-based model. The example shows
how a casual choice of confidence intervals—that somehow inadvertently ties in
with response values—can produce the same kind of anomalous results as those
found in the preceding examples.

Example 5-3 For this example we turn to a discrete distribution. Let y and 0
take values on the integers 0, 1, 2, 3, treated as integers modulo 4, and let the
distribution of y be uniform on 6 — 1, 6, 8 + 1 (modulo 4).

There are three possible values for z = y — 6, namely 3, 0, 1; each of these
values has the same probability 4. A 66.7 percent acceptance region for tests or
confidence intervals can be formed by selecting two of the three values. If we
select the values z =0, 1, we obtain the following 66.7 percent confidence
procedure:

Observation y Confidence region for 6

-

W N = O
Nt N S N

(5-11)

W N = O
PR S SN
= O

-
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If we use a different pair of z values, then we obtain a different 66.7 percent
confidence procedure, just differing in an obvious way from the preceding.
There are, of course, (3) = 3 different ways of selecting two z values from the
three possible values and, accordingly, there are three different procedures of
the general kind just described.

Now suppose we have an investigator who inadvertently or carelessly
chooses his regions from the preceding three procedures, and does so in a way
that ties in with response values in the following pattern:

Observation y ~ Region chosen for 0

3}
1}
3}
3}

S

{L
{l(l) (5-12)
{0,

W N = O

For an investigator who chooses a region consistently in this way we can
easily determine the long-run performance probabilities:

Value of 6 Probability of covering 0, in percentage

0 66.7

1 100

5 0 (5-13)
3 100

Thus we have the same anomalous coverage probabilities—some above and
some below the nominal 66.7 percent confidence level.

Note that each of the three mentioned procedures has a regular coverage
probability of 66.7 percent and does not have the anomalies in the earlier
example. However, an inadvertent or unfortunate selection of intervals tied
in with response values produces again the anomalous, sometimes high,
sometimes low, coverage probabilities. Thus, if there is selection among various
reasonable procedures there can be anomalous and disturbing possibilities.

A fourth example shows that unusual coverage values can all be above the
nominal confidence level. This property for the coverage values does, however,
overlook certain possibilities and these possibilities correspond to a “low coverage”
value—or to large losses within a betting framework for assessing probabilities.

Example 5-4 Now suppose that 0 can take integer values and that y = 6 — 1,
6 + 1 with equal probability 4. A 50 percent confidence interval for 6 can be
obtained as the point y + 1, or as the point y — 1.
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We have seen that selection among procedures can lead to high and low
coverage probabilities. Suppose for the present example that an investigator
chooses the interval y — 1 if y > 0, the interval y + 1 if y <0; in a sense the
investigator is betting inward towards zero. The coverage probabilities are then
as follows:

Value of 6 Probability of covering 0, in percentage
0 100
1 100

Otherwise 50

Thus it seems that the investigator’s procedure is at least 50 percent effective,
and in special cases is 100 percent effective.

A randomized version of this procedure spreads the § = 0, 1 advantages
to all the possible integer values for 0: use a -discrete distribution with
positive probability at each integer; randomly obtain a value from this
discrete distribution ; and then follow the preceding procedure adjusted so that
“betting” is inward toward the value just obtained.

Asserted probabilities and confidence intervals are sometimes assessed in
terms of betting between two supposedly equal participants. For the preceding
confidence procedure with an asserted 50 percent confidence, the person
betting in favor of coverage would have a net possibility of gain: he or she
would win for sure if # = 0, 1 and would break even otherwise.

In a way it is always possible to be 100 percent correct for a particular
parameter value ; use intervals that always contain that parameter value when
it is a possibility. This is the case with the initial nonrandomized procedure.
The nonfinite nature of the integers on the real line allows the investigator to
choose intervals that include 0 (also 1) whenever O (and 1) are possibilities, and
yet still have a protected 50 percent interval otherwise.

The initial procedure can be viewed as betting that 0 is inward toward
the centre 0 on the line. Betting inward would seem to have the possibility
of missing values far out. In a sense this is the case.

The assessment procedure in terms of betting allows the person placing
bets to decide where and how to bet depending on assessment of the
betting situation. Correspondingly, for two equal participants, we need to
allow the person accepting bets to decide whether or not to accept individual
bets. It turns out that with a sequence of # values that tends to oo, a person
betting on the preceding confidence procedure can lose heavily. Thus the
procedure with its asserted 50 percent confidence level does not have protected
money-making properties for the bettor ; certain possibilities can lead to very
large losses.

For some discussion of betting assessments for such confidence intervals
see Fraser (1977), in which the preceding is discussed in detail.
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We thus return in effect to the Example 5-3 situation. If selection is made
among a spectrum of good confidence procedures, then the high-low coverage
probabilities are possible. Whether such a selection of intervals from a spectrum
has real significance for applications is not clear. Central intervals, meaningful in
most contexts, are a natural and sensible approach to inference concerning real-
valued parameters.

5-3 LIKELIHOOD

The likelihood function from an observed response provides by itself an assessment
of the various possible values for the parameter. This provides a widely available
although somewhat primitive method of inference.

5-3-1 Observed Likelihood Function

Consider an inference base (.#, 2). The model .# can be any of those examined
in Sec. 1-2. For most of the discussion in this section, however, it suffices to have
the minimum response-based model discussed in Sec. 1-2-1. Let f(y|0) be the
density for the observable response y given the parameter ¢ in Q.

The likelihood function from a response value was defined in Sec. 4-1-1. It
presents the probability for the response value as a function of the possible 6 for the
model

Liy;0)=¢f(y|6) (5-14)

The arbitrary constant ¢ allows for an arbitrarily sized neighbourhood at the
response value. Informally, an observed likelihood is the probability for what is
observed as a function of the possible values for 0 ; the formal definition is given by
(4-2). The likelihood function was used in Sec. 4-1 largely in a mechanical way to
obtain the weak likelihood (sufficiency) reduction.

The equivalence class of similarly shaped functions presented informally by
(5-14) or formally by (4-2) describes the relative probability for y as a function of
possible values for 6. A common way to handle an equivalence class is to choose
arepresentative from the class based, say, on some general characteristic; for some
recent and detailed discussion see Fraser (1976, p. 313f). A simple representative is
obtained by standardizing with respect to the maximum,

1010)
fy[0)

provided there is a finite maximum value for f(y | 6) at a point, say 6 = 6(y). This
representative is sometimes called the relative likelihood function, but this is a
misnomer. The likelihood function itself is relative, one 6 value to another, and the
preceding representative is just one of many ways of recording or presenting the
relative properties of the likelihood function.

Li(y;:0)=
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In this section we view the likelihood function as a direct and primitive means
for assessing an observed response.

Definition The observed likelihood function records the probability for the
observed response as a function of the parameter 8 of the model.

We are, of course, assuming in this section that the model .# for the system is
given. Typically, then, there is no problem calculating the observed likelihood
function ; simplistically, just substitute the observed y in the function f(+|) and let
the resulting y section be indeterminate with respect to a multiplicative constant c.
With one real parameter a likelihood function can be plotted directly or by
computer. With two real parameters the contours of the function can be plotted
directly or by computer; also with computer graphics the full function can be
displayed in perspective and prints produced in hard copy. With more than two
real parameters, direct examination of the likelihood function becomes difficult;
one straightforward possibility is to examine various sections through the likeli-
hood function. ;

When we examine an observed likelihood function it is natural to ponder the
likelihood functions we might have obtained—from other response values of the
system. It is then natural, one step further, to ponder the patterns of likelihood
functions we would obtain under the various distributions given by the parameter
of the system—in other words, the statistical model for the likelihood function as
the “response” of the system. Some indication of this from a pragmatic viewpoint
may be found in Sec. 2-2-1 and also, diffusely, in Sec. 2-5.

The weak likelihood (sufficiency) principle S in Sec. 4-1-4 prescribed in effect
that the initial data and model be replaced by the observed likelihood function and
the model for possible likelihood functions. The principle is not presented
explicitly in this way in Sec. 4-1-4, but in the earlier Sec. 4-1-2, we did record the
equivalence of the likelihood map and the likelihood statistic when the model is
available.

There is, however, a strong likelihood principle that effectively says forget about
the model and use only the observed likelihood function.

L: Strong likelihood principle An inference base (.#, y) should be replaced by
the observed likelihood function L(y; *).

This principle goes much farther than any suggested in Chap. 4. By using this
principle we no longer have a nontrivial inference base; we have the observed
likelihood function as the data and we have a model that consists just of the
indexing space Q.

The development in this book does not in any way endorse the strong likeli-
hood principle L. The methods in the preceding section require more than just the
likelihood function, and our approach generally is that inference should be based
on all the nonarbitrary ingredients in the inference base.

Sometimes, as in Sec. 2-2-1, an observed likelihood function may be available
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and yet the model for the likelihood may be essentially impossible to extract and
use. In such cases we are then de facto using just the observed likelihood; but
this is not by principle, but by pure force of circumstances. Recall, however, that
in Sec. 2-2-1 we recommended the empirical or Monte Carlo examination of
likelihood functions that can arise with a model. Typically this examination will
be by computer simulation, and will give background information as to what
likelihood functions arise under various parameter values. This background
information would then allow a safer and more incisive use of an observed
likelihood function.

In the profession there is a strong concern and unease with the strong likeli-
hood principle ; this largely derives from results in Birnbaum (1962) and related
papers on inference principles. Birnbaum presents an argument that the weak
likelihood principle S and the ancillarity principle A together imply the strong
likelihood principle L. Some dissent concerning the validity of the argument has
been registered, for example, by Fraser (1963). In addition, there has been some
discomfort that seemingly acceptable principles S and A should imply a principle
L, so seemingly unacceptable to most statisticians, except the committed
Bayesians. The validity of the argument is one aspect, as mentioned above.
Another is the questionable nature of principle A (see Sec. 4-2). We have noted in
Sec. 4-2-4 that all the attractive examples supporting principle A are in fact
examples of the necessary method RM, in Sec. 3-2, and that the unattractive
residual examples are those left for principle A. Also, we have noted the self-
contradictory nature of principle A. These difficulties leave principle A rather loose
and unsatisfactory as an ingredient for an argument in support of the strong
likelihood principle.

5-3-2 Techniques with Likelihood Functions

For multiparameter problems the direct assessment of a likelihood function may
be rather difficult; we now examine some techniques for simplifying this
assessment.

Consider a likelihood function with parameter 6, and suppose the parameter
0, perhaps a reexpression of the initial parameter, has components 64, 6,.

The profile likelihood for the parameter component 0, is

sup L(y; 01, 0) (5-15)
0,

This gives the profile or silhouette of the likelihood surface viewed along 0, sections.
The section likelihood for 0, given 0, is
L(ya 01, 92)

EARS 2 (5-16
S;}P L(y;6,,02) )

This is the 8 section of the likelihood surface.
Now suppose that the sample space function ¢(+) has some special relevance
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for the parameter component 0, ; in particular that it has a distribution independent
of 0, ; this function could arise perhaps on the basis of a reduction method in Chap.
4. Let h(t|6,) be the marginal density function for ¢ given 0;. Then the marginal
likelihood function for 0 is

chit]6y) (5-17)

This is, of course, a regular likelihood function, but calculated from the value t
together with the corresponding model h.

Alternatively, suppose that the sample space function r(+) conditional on the
preceding t(y) = ¢ has some special relevance for the parameter component 0;
this function could arise on the basis of a reduction method in Chap. 4. Let
g(r|t, 61, ;) be the conditional density function for r given t, 6,, and perhaps 0;.
Then the conditional likelihood for 6, given 0, is

cg(r|t, 01, 0,) (5-18)

as a function of §,. This is, of course, a regular likelihood function for 6,, but
calculated from r together with the conditional model for r given ¢; note that if
0, is involved in the preceding expression, then the expression as it stands is just
a 0,-section for the full likelihood from the conditional model.

The preceding presents a few indications of the wealth of possibilities for
forming likelihood-type or likelihood-based functions. For example, paralleling
formula (5-15) we could integrate out the parameter 0, using some weight or
measure function, as indicated by some other considerations. Or with formulas
(5-15) or (5-16) we could modulate with some weight function for the variable in
question, again as indicated by some other considerations. Or we could explore
any plausible mathematical operation on the initial likelihood or on likelihoods
from component variables.

Itis perhaps all too easy to call such functions “likelihood functions.” But there
may be little left of what can reasonably be called “likelihood.” This brings us, of
course, to many questions: What do such functions mean? How do they
interrelate? Are they in some sense useful? Are they in fact misleading? Do they
have significance or purpose?

5-3-3 Some Discussion

Consider a simple example bearing on the interrelationship of two of the
techniques.

Example 5-5 Consider a sample y = (y1,..., y,) from the normal (g, o)
distribution. The likelihood function fromy is

1
L(y; p,0) = c(c®) " "? exp [— 272(% - u)ZJ

Suppose we focus attention on 62 and profile out the parameter u following
pp p
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formula (5-15); we obtain
1
c(e®) ™" exp [—W 0 - yﬂ (5-19)

This likelihood-type function depends on the response value y only through
the sample space function t(y) = Z(y; — y)*

Consider the marginal likelihood function for ¢? based on the preceding
function t(y) = £(y; — 9)>. The marginal density is

oy et (AT DN ENTE e
ht|o®)=T < 2 )(20’2) ¢ 202

The corresponding likelihood function is

) e |~y T - | (5-20)

Note the discrepancy between the expressions (5-19) and (5-20); they are
different functions of 2. The first is obtained by a mathematical operation on
a likelihood function and the second is the likelihood function from the
variable needed for the first expression. Each expression might be treated as a
likelihood function and yet only the second is a true likelihood function.

A much more extreme example arises if we have a large number n of normal
samples of size 2 from different normal distributions with unknown means but
common variance. The analog of formula (5-19) has the power of ¢* equal to
—2n/2 and the analog of formula (5-20) has the power equal to —n/2; this is a big
difference or discrepancy.

These examples focus on a major problem or difficulty with likelihood-type
functions: they may not be likelihood functions and yet be treated as likelihood
functions because “likelihood” is used in the name. As a precaution we suggest
the following principle:

Consistency principle—likelihood A function should be treated as a likelihood
function only if it is the likelihood function from the variable on which it is
based.

This principle would prescribe the marginal likelihood (5-20) in place of the profile
“likelihood” (5-19).

At this stage the principle is offered more as a guide or general recommenda-
tion concerning the many possibilities for the techniques in Sec. 5-3-2. The
techniques, without guidance from methods in preceding chapters, are, however,
rather loosely based and exploratory.

The principle does focus on the marginal likelihood (5-17) as opposed to the
other functions. Marginal likelihood was introduced in Fraser (1965, 1966) for
particular variables that have some special significance (for example, see Sec. 2-2-1;
also see Sec. 7-3-1).
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Marginal likelihood can, of course, be calculated from any component variable.
There can be little merit or safety in the examination of such a likelihood unless
there is some justification for the choice of the particular component variable.
In some cases the choice can be based on, say, the principles in Chap. 4. In other
cases the choice may be necessary (see, for example, Secs. 2-2-1, 2-3-1, and the
later Sec. 7-3-1).

For the conditional likelihood there is a special case of particular interest.
Suppose that 6, = 6 and that 6, is trivial, and then consider the reduction method
RM,, based on an ancillary a(+) in Sec. 4-2. The conditional likelihood based on
the conditional model given a(y) = a is of course just the original likelihood from
the full response.

In general a conditional likelihood can be very misleading. For example, there
may be a nontrivial likelihood coming from the conditioning variable, and it could
be an important and significant part of the likelihood from the full response.

In this section we have considered the direct assessment of likelihood functions.
We do not propose that only the likelihood function be examined, but there may
be cases where only the likelihood function is available.

5-4 INFERENCE AND DECISIONS

We have developed the concept of an inference base and examined various methods
for reduction and terminal inference. The inference base formalizes all the relevant
model and data information concerning the unknowns of the system under
investigation ; and the various methods of inference are concerned with organizing,
extracting, and presenting what the inference base implies concerning the
unknowns of the system. _

As part of concentrating our attention on inference we have avoided any
consideration of terminal decisions, decisions specific to some particular use for a
particular purpose at a particular time. Such decisions are, of course, based on the
available information concerning the unknowns of the system, but they are not
directly concerned with these unknowns. We do not examine this specialized area
of terminal decisions—which could be called expedient statistics. Rather we focus
our attention on organizing the available information; we focus on inference—
what can be inferred from an investigation concerning the unknowns of a system.

We have not discussed any point-estimation techniques in the preceding
sections and yet they are often found under the general heading of inference. We
argue that point-estimation theory belongs with the study of terminal decision.
Consider an example.

Example 5-6 Let y = (yq,...,y,) be a sample from the normal (u, o)
distribution and suppose that a point estimate is wanted for the parameter p.
The common estimate for u is the sample average y. Presenting this value can
be viewed as an expedient, not as an inference in the sense we have been
developing.
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An estimate, by itself, is a very minimal output from an inference base.
It provides no indication of reliability or precision. The contention here is that such
an output, a single point estimate, can only be meaningful in some particular
context for some particular purpose. In a different context with a different purpose,
a different estimate would typically be the decision—based, say, on a different
measure of reliability or a different loss function. The tailoring of results to a
minimum form for a specific use is a part of decision theory, and, as such, is a
separate consideration from the inference methods examined in this book. For
some recent comments see Fraser (1976, p. 284).

5-4-1 Combining Inference Bases

Consider two different investigations concerning an unknown of some system. By
this we do not mean, for example, the results from two different blocks of a
randomized block design; they are both part of the full design. Rather we are
thinking of two distinct investigations, each of which yields an inference base:

(%I’EZI) (/{27 92)

These inference bases are concerned with the same unknown. Accordingly .#,
and .4, have the same parameter space Q and the same true value of the parameter
6.

Certainly the two inference bases can be mathematically combined. The model
would be the product model but with the common parameter space. The data
would be the vector combination (24, Z,).

Some plausible arguments can certainly be given for combining the inference
bases, if only to examine the combined base in comparison with the individual
bases.

The viewpoint in this book is that the component inference bases should be
available. Indeed, the viewpoint is stronger —that the component bases are primary
and that a decision, a type of terminal decision, is involved in forming the
combined base. This becomes a rather serious matter in the following Bayesian
context.

5-4-2 Bayesian Analysis

Consider the typical context for Bayesian analysis. For this we picture some
observational or experimental investigation ofa system. The available specification
has produced a model that formalizes the relevant aspects of the system; the
model is the set of possible descriptions for the system as needed for the particular
performances. This definition clearly excludes preferences or shadings among the
possibilities: the model is the set of possibilities.

A nonnegative numerical value placed on each of the possibilities is sometimes
referred to as a sort of “prior likelihood” and a nonnegative measure placed on
the set of possibilities can be referred to as a sort of “prior distribution.” In
subjective Bayesian analyses, these are organized as the considered impressions,
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judgments, and feelings of a particular investigator or statistician. Thus with
different investigators we would have different prior likelihoods or different prior
distributions.

One motivating force for the introduction of these prior assessments is the
need to obtain an analysis of an inference base; we have referred to this earlier
in Sec. 1-1-4. To the degree that available theory is unable to produce inference
methods, an investigator can feel free to explore possible methods. But a method
proffered is no better than the support available for it.

Now let us return to a particular investigator with prior likelihood or
prior distribution. Also suppose we have an inference base recording what is
available from the particular investigation. We then have two different sources
of information concerning the parameter: the “prior” density or likelihood and
the inference base. The former is a loose and personal thing far from the firm
kind of information we had in mind for the discussions in Sec. 5-4-1. The view-
point there is that the two sources of information should be separate and should
both be available and that to combine them represents a type of terminal
decision. For some recent discussions see Fraser (1976, pp. 576-578) and also
Fraser (1972, 1974).

The case for keeping different sources of information separate can be high-
lighted by considering an example involving standard probability and statistical
analysis. It is, however, a type of example often incorrectly classified under the
heading of Bayesian analysis.

5-4-3 An Example

A certain population consists of two racial groups in the proportion 1 to 5. A
certain characteristic 0, perhaps social, cultural, or economic, is known to be
distributed as the normal (85, 10) in racial group A; and as the normal (115, 10)
in racial group A,. An assessment procedure is available for measuring 0 in any
individual and the measurements are normal (6, 10).

For an individual sampled from the population, information is wanted
concerning his characteristic 6. The individual is measured by the assessment
procedure and the value y = 110 is obtained ; what are the inferences concerning
the 6 value? The racial origin of the individual may or may not be available.

The individual The assessment procedure has given the observed value y = 110
from the normal (0, 10) distribution. The routine methods from Sec. 5-2 and
earlier sections give the following:

Confidence level,

in percentage Confidence interval
68% (110 + 10) = (100,120)
95 (110 + 19.6) = (90.4,129.6)

99 (110 + 25.8) = (84.2,135.8)
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These and other confidence intervals can be summarized in the form of the
confidence distribution: normal (110, 10) with density given by

1

1 5 ]
\/Zlnloexp[—ﬁ(()— 110)] (5-21)

The population origin The individual was sampled from a population in which
the characteristic 6 is a mix of two normals:

1 1 51 1
ex ——(9—85)2]+——ex [——(9-115 2] (5-22
V2r 10 p[ 200 6 /2m10° T~ 200 ) :

Simple integration gives the following confidence intervals:

QN —

Confidence level,

in percentage Confidence interval
68% (94.95, 123.76)
95 (74.63, 133.81)
99 (66.19, 140.12)

These and other confidence intervals can be summarized in the form of the
confidence distribution : (%) normal (85, 10) + (2)normal (115, 10) with density given
by (5-22). The mean of this distribution is 110 and the standard deviation is 15.

The racial origin The racial origin of the individual is available by special
request : the individual belongs to racial group A ;. The individual thus came from
a population in which the characteristic 6 is normal (85, 10). The confidence
intervals for 6 are immediately available:

Confidence level,

in percentage Confidence interval

68% (854 10) =(75,95)

95 (85 £ 19.6) = (65.4, 104.6)
99 (85 + 25.8) = (59.2, 110.8)

These and other confidence intervals can, of course, be summarized in the form
of the confidence distribution: normal (85, 10) with density given by

1 1
— — (0 — 85)? 523
\/2moeXp[ 200" : ] 2
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The individual and the population origin We now examine the kind of inferences
that would come from the combined inference base involving the assessment and
the population origin. The prior density given by (5-22) multiplied by the likelihood
(5-21) gives the following conditional density (normalized) given the data y = 110:

— 2 _ 27
(@ 97‘5)]”’95727 1Fexp[_(9 112,5)J

1
—————exp
/271 x 50 [ 100 21 % 50 100

(5-24)

0.04273

The mean of this distribution is 111.86 and the standard deviation is 7.86. Some
confidence intervals are:

Confidence level,

in percentage Confidence interval
68% (104.48, 119.37)

95 (95.62, 126.23)

99 (88.78, 130.61)

The confidence distribution is unimodal with the peak at 112.43, approximately;
the confidence density is given by (5-24).

The individual and the racial origin We now examine the kind of inferences that
would come from the combined inference base involving the assessment and the
racial origin. The prior density given by (5-23) multiplied by the likelihood
(5-21) gives the following conditional density (normalized) given the data

y = 110:
1 exp l:_ 0 — 97.5)2] (525)

27 x 50 100

which is normal (97.5, 7.07). Some confidence intervals are:

Confidence level,

in percentage Confidence interval

68% (97.5 +£ 7.07) =(90.43, 104.57)
95 (97.5 £ 13.86) = (83.64, 111.36)
99 (97.5 £+ 18.24) = (79.26, 115.74)

These and other confidence intervals can, of course, be summarized in the form
of the confidence distribution: normal (97.5, 7.07). Note that the central value here
is 97.5, which is 12.5 units below the value in the direct assessment of the individual’s
characteristic 6.
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In summary, note the following mean and standard deviations for the
confidence distribution:

Inference base Mean SD
The individual 110 10
Population origin 110 15
Racial origin 85 10
Combined inference base Mean SD
The individual and the population origin 1119 7.9
The individual and the racial origin 97.5 7.1

We have expressed the view that inference bases should be combined only for
some appropriate terminal decision. There may not be any appropriate terminal
decisions for the present problem that would require a combined inference base.
We would, of course, remain then with the component inference bases.
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CHAPTER

SIX
THE REGRESSION MODEL

In Chap. 2 we considered a real-valued response, with location and scale unknown
but with distribution form known or known up to a shape parameter 4. For this
we had already noted (Sec. 1-2-3) that the distribution form itself was directly
observable, even with the unknown location and scaling. We were thus required
to use the more descriptive variation-based model in Sec. 1-2-4.

Now suppose the system has input variables that can be changed and the
investigator wants information on how such changes affect the response. Also
suppose that the background information concerning the system and related
systems specifies that the only effect from the input variables is on the general level
or location of the response and is linear over the appropriate range for the input
variables.

In this chapter we investigate the appropriate model and its analysis with
data—the linear regression model and regression analysis.

6-1 CORE METHODS OF ANALYSIS

For notation let y designate the response and xy, ..., x, designate the input vari-
ables. Some of the “input” variables x may actually be combinations of other input
variables, thus allowing the usual polynomial and interactive regression models.

Also let f; be the density function describing the variation, with a possible
shape parameter A taking values in a space A. We suppose that f; has been suitably
standardized as discussed in Sec. 1-2-2; e.g., the central 68.27 percent probability
is in the interval (=1, +1). Now let z designate the standardized variable for
variation corresponding to the response variable y.

109
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Let o designate the unknown response scaling for the variation and let
Bix1 + -+ + B.x, designate the general level of the response, linear in the input
variables. We thus obtain

y=pfix1 + -+ Bix, + 0z (6-1)

where z has the standardized distribution f;(z) with 4 in A. This is the common way
for presenting the regression model, although often the combination oz is written
as e and called the error.

For multiple performances of the system let

X =(X;...%) = <"““> (6-2)

designate the design matrix where the ith row records the values for the input
variables xi, ..., x, on the ith performance; we assume that X has rank r < n.
Also let B =(f4,..., B.) designate the linear coefficients for the general response
level, the regression coefficients, and lety = (y4, ..., y,) and z = (z4, ..., z,) record
the n values for the response and the corresponding values for the standardized
variation. We then obtain

y=XB+ oz (6-3)
where z has the sample distribution f;(z) = I1f,(z;) with 1 in A.

6-1-1 The Models

We now examine the various kinds of models as introduced in Sec. 1-2. For this
we let Q= {(B, 0, 1)} =R" x R" x A designate the full parameter space.
For the minimum response-based model we have

’/{R = (Q; Rna d’na f) (6-4)

where R” is the response space, 4" is the Borel class in R”, and % is the class
. mnp (= BeR’ <
F :{a filo l(y—Xﬁ’)):ae[R+ reA (6-5)

Let y° be the observed response resulting from the design matrix X ; we then
have the inference base
( My, ¥°) ' (6-6)

For the variation-based model we refer to the general discussion in Sec. 1-2-4.
With multiple observations at given settings for the input variables the distribution
for the variation is directly observable and identifiable, and must then be included
in the model as an objective component. The model for the variation is

(AR 2%, 77) (6-7)
where
V= {fi(2) = TIfy(z): A€ A} (6-8)
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The response y is a particular presentation of the variation z; we write
y=XB+oz=[B,c]z (6-9)
and use a minor extension of the notation in Sec. 1-2-2. Specifically we have
[b, cly = Xb + ¢y
[b, c] [b*, ¢*] = [b + cb*, cc*]
[bc] *=[—c"bc ]
and thus see that the class of transformations
T ={[B,o];pcR,0eR"} (6-10)

is closed under the formation of products and inverses, and accordingly is a group—
as remarked in the discussion at the beginning of Sec. 3-4.
We can now present the variation-based model .#; :

’///V = (Q’ Rn’ 9 na V) ‘7) (6-1 1)

This has essentially two components: the model (6-7) for the objective variation
and the model (6-10) for all the possible presentations for the response from the
variation. Let y° be the observed response from the design matrix X ; we then have
the inference base

(My,¥°) (6-12)

We do not specifically introduce notation for the pivotal version of the model.
Rather, we refer to the discussion in Sec. 1-2-5 which relates the pivotal model
Mp to the response-based model .# and to the variation-based model .%,.
Apart from minor notational differences, the pivotal model is a response model
My plus a pivotal function; the pivotal function gives pivotal distributions but
without the objective requirement (Sec. 1-1-2) for ingredients of a statistical model.

6-1-2 Preliminary Reduction

Consider the inference base 5 = (.#, %) where .# is a regression model .#y, 4y,
or some blend thereof, and  is an observed response vector y°.

The inference base records the observed y°; let z° be the corresponding
realized value for the standardized variation z. We examine how much of z° is
identifiable from y°. The equation (6-9) gives

2°=[B0] 'y = -Xo" 1+ 'y° (6-13)
for some unknown B, ¢ ; this identifies z° as a point on the half (» + 1) space given
by

LHX;¥%) = {Xb+cy’:beR", ceR"}

= {[b.c]y’:beR", ceR"} (6-14)
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which is half of the linear space #(X ;y°); it is the half space subtended by #(X)
and passing through the observed y°. Thus the space of possible values for z° is
not n dimensional but is essentially (r + 1) dimensional. We can present this more
formally by saying that we have observed the value of the function (X ;z)
carrying z to £*(X; z):

LX) =2L1(X;2%=2L7(X;y"

but do not have further information concerning the value of z° on the identified
half space.

Under the variation-based model .# ;- we have observed all but (» + 1) dimen-
sions of the essential variation z for a performance of the compound system.
Accordingly, by necessary method RM3 in Sec. 3-3 we obtain the reduction to
the marginal model for what has been observed and the conditional model for the
unobserved ; these provide respectively for inference concerning A and for inference
concerning (B, o) given A.

Under the response-based model .# r we can find the following grounds for
using the marginal and conditional models. The introduction of the weak suffi-
ciency principle in Sec. 4-4 can be used to support the marginal distribution for
inference concerning A; and with attention restricted to A the necessary method
RM; in Sec. 3-5 requires the use of the marginal distribution for inferences con-
cerning A. For inference given A the introduction of the ancillarity principle in
Sec. 4-2 can be used to support the conditional model for inference concerning
(B, o) ; however, recall from Secs. 4-2-3 and 4-2-4 that the ancillarity principle A
is self-contradictory.

6-1-3 Suitable Coordinates

In the preceding section we have noted that an n-dimensional vector z should be
examined in terms of where z lies in an (r + 1)-dimensional region (X ;z)
and also in terms of which (r + 1)-dimensional region contains z. For this it is, of
course, convenient to have familiar coordinates, but we emphasize again that
there is nothing absolute in a choice of coordinates. It is a device for talking about
points that are there, in R”, already.

For the half (r + 1) space £ (X ; z) the vectors in X form a natural choice of
r of the needed (r + 1) basis vectors. Let d(z) be a vector of unit length lying in
#7(X ;z) and orthogonal to the vectors of X. We have

d(z) = s '(z)[z — Xb(z)]
= [b(z), ()] "'z (6-15)
where
b(z) = (X'X)" X'z
and (6-16)
s(z) = |z — Xb(z)|* = 2[I — X(X'X)"'X']z
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Note that Xb(z) is the projection of z into #(X) and that s*(z) is the squared length
of the residual. Thus

z = Xb(z) + s(z)d(z) = [b(z), s(z)]d(z) (6-17)

From this, we see that z has coordinates [b(z), s(z)] with respect to the basis
(X,d(z)) for the half space. Note that the possible values for d(z) generate the
unit sphere in the orthogonal complement #*(X) of Z(X).

Again, we find it appropriate to emphasize that there is nothing absolute in
any particular choice of coordinates—a choice just provides a means of saying
where z is in R”. We could have used any of a wealth of possibilities. Such arbitrary
choices have no effect on the inferences.

Now consider the equations

y=Xp+ oz
oy~ XB) =z

in terms of these coordinates. We see that y and z differ by a location-scale
transformation (6-9) and thus lie on the same half plane

LX) =27(X3y) (6-19)

(6-18)

or orbit under the group (6-10); accordingly, they have the same identifying basis
vector

d(z) = d(y) (6-20)

We use the decomposition (6-17) for both y and z and substitute in the equation
(6-18):

y = Xb(y) + s(y)d(y)
=XpB+oz

= XB + o[ Xb(z) + s(z)d(2)] (6-21)
= X[B + ob(z)] + os(z)d(z)
This gives (with the orthogonality of X and d)
b(y) = B + ob(z)
(6-22)

s(y) = os(z)

for the coordinates of X, and gives d(y) = d(z) which we had deduced earlier.
We now have convenient coordinates for the half (r + 1) space as given by
(6-20) and for points on the half space as given by (6-22).

6-1-4 Marginal and Conditional Distributions

The preliminary reduction in Sec. 6-1-2 leads us to consider the marginal distribu-
tion for the observed half space as given by d(y) = d(z) and the conditional distribu--
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tion for points on the half space as given by [b(y), s(y)] for y or by [b(z), s(z)] with
(6-22) for z.
The initial distribution describing y and z is given by

o "filo™ y — XB) dy = f,(2) dz (6-23)
To obtain the marginal and conditional distributions we first need to make

the change of variable
y < (b(y), s(y), d(y))

Z > (b(z), s(z), d(Z))

The substitution for the density function is straightforward. The substitution for
the differential can be obtained easily by noting that b(z), s(z), d(z) provide locally
orthogonal coordinates for zin R": for b(z) we havet Euclidean volume | X' X |'/*db;
for s = s(z) we have Euclidean length ds; and for d(z) we have s" "~ 'da where da
is used for surface volume on the unit sphere in #*(X) and thus s" "~ 'da for
surface volume on the sphere for sd(z) with radius s. This gives

dz=|X'X|"?dbdss" """ da (6-25)

(6-24)

for the change of variable in the differential. Then by substitution in (6-23) we
obtain

o il [X(b— B)+sd])s" "' | X'X|Y? dbds da (6-26)
for b = b(y), s = s(y), and d = d(y); and correspondingly obtain
fi(Xb + sd)s" "1 | X'X |V dbds da (6-27)

for b = b(z), s = s(z), and d = d(z).
The marginal distribution for d = d(y) = d(z) is obtained by integration from
either (6-26) or (6-27):

h,(d) da = J‘ J £ XD+ sd)s" " | XX V2 db ds da (6-28)
R+

-
This integration is usually not available in closed form but is accessible by a
range of computer techniques.
The conditional distribution for b(y) = b and s(y) = s given d is obtained by
division:
hi Yd)o "o ' [X(b— B)+ sd])s" "1 X'X|"? db ds (6-29)
The corresponding [by (6-22)] conditional distribution for b(z) = b, s(z) = s given
dis
h Hd)fo(XDb + sd)s" " 1| X'X |V db ds (6-30)

+ Suppose we have an orthonormal set ¥ of vectors that generate #(X) and let X = VT (where
T is r x r) express the X vectors in terms of this new basis; let b be coordinates with respect to X
and a be coordinates with respect to V. Thus Xb = VTh = Va gives Th = a; then Euclidean volume
can be written da = | T |db = | V'V |Y2|T|db= | T'V'VT|"/?db = | X' X |'2db.
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These conditional distributions are distributions on the (r + 1)-dimensional
half space Z (X ;y) = ¥ 7 (X ;z). They are recorded here in terms of the choice
of coordinates [h(y), s(y)] and [b(z), s(z)], but could equally have been recorded in
terms of any other choice of coordinates.

The preceding marginal and conditional distributions are the particular dis-
tribution discussed at the end of Sec. 6-1-2.

6-1-5 Parameter Components

The response y and the objective variation z are related by the equation
[B.o] ly=0c"y—Xp =2z (6-31)

For the variation-based model .# this expresses the objective variation z in terms
of the response y. For the response-based model .#y it records a pivotal function
for the response. For both cases we have noted in Secs. 6-1-2 and 6-1-3 that the
equation separates as

d(y) = d(z) (6-32)
for the observable part of z and
o~ '[b(y) — 8] = b(2)

o 5() = 5(2) (6-33)

for the unobservable part of z. The relevant distributions are recorded in Sec.
6-1-4.

Now consider separately the two parameter components f and o. The
equation {6-33) can be rearranged so that g and ¢ are separated:

s~y [b(y) — B] = s~ '(2)b(z) = T(2)

o™ Is(y) = s(2) (6-34)

This separation from (6-33) to (6-34) is unique, unique up to reexpression of the
individual components in (6-34); we will examine this for the general case in
Chap. 7.

We could rewrite (6-34) in a more familiar form involving the ¢ statistic and
the residual standard deviation. This has advantages for the numerical integration.
We would, however, be picking up a variety of simple constants that unnecessarily
complicate some of the distribution expressions to follow; accordingly, we derive
the distributions for the components in (6-34) as they stand.

Consider the parameter f. We have the unique separation of the equations
(6-33) giving the following components involving 8:

s~ Hy)[b(y) — B] = T(z) = s~ (2)b(z) . (6-35)

The distribution for this comes from the conditional distributions (6-29) and (6-30).
These distributions, of course, produce the same distribution for the left- and
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right-hand sides of (6-34); the resulting distribution for T = T(z) is easily derived:

gHT:d)dT = r hi M) £ (s(XT + d)s"* ds| X' X |2 dT (6-36)

In a similar way, if we consider a component of g we obtain a further separation

of (6-35) and then obtain a corresponding distribution by integration of (6-36).
Now consider the parameter component ¢. We have, of course, the unique

separation of the equations (6-33) giving the following component involving o

o™ s(y) = s(z) (6-37)

The distribution for this comes from the conditional distributions (6-29) and
(6-30). These distributions, of course, produce the same distribution for the left-
and right-hand sides of (6-37); the resulting distribution for s(z) is easily derived:

gS(s:d)ds = J 7 1(d) (XD + sd)| XX |2 db 5" ds (6-38)
.

6-2 TERMINAL METHODS OF ANALYSIS

In the preceding section we examined the core-reduction methods for the regression
model inference base .# = (#,y°). We now examine some terminal inference
methods that are based on these core-reduction methods.

From Sec. 6-1-2 we have a separation of the basic distribution into the marginal
distribution for an identified component and a conditional distribution for an
unidentified component. This separation was necessary for the variation-based
model .#, and needed the introduction of special principles for the response-based
model 4.

The marginal distribution for d(y) = d(z) is recorded in formula (6-28). The
observed value of this function is d(y) = d(z) = d(y°) as obtained from the data y°
in the inference base. Let d° designate d(y°).

The conditional distribution of b(y) and s(y) or of b(z) and s(z), in either case
given d, is recorded in formulas (6-29) and (6-30). For b(y) and s(y) the observed
values are b(y®) and s(y°). For b(z) and s(z) the realized values are unobservable;
indeed, this necessitates the use of the conditional distribution for b(z) and s(z).

With this separation of the distribution as a starting point we now consider
various terminal methods of inference.

6-2-1 Inference: Shape 4

The marginal distribution (6-28) for d(y) = d(z) depends on the shape parameter
J. The observed value is d(y) = d(z) = d°. We consider inference concerning /.
Under the variation-based model .#,,, we have a distribution f;(z) for the objec-
tive variation,and d(z) = d°is the only observable value available from the inference
base. This gives a necessary reduction RMj (see Sec. 3-3). Under the model .#
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the function d(y) = d(z) is weakly sufficient (see Sec. 4-4). Also by focusing attention
on Awe obtain the reduction to d(y) as a necessary reduction using RM; in Sec. 3-5.

The distribution for d(y) = d(z) is a distribution on the unit sphere generated
by d in Z*(X); this sphere is an (n — r — 1)-dimensional manifold.

For any chosen d and A the value of the density function h,(d) requires an
(r + 1)-dimensional integration; combinations of simulation methods and direct
integration provide access to such values. For the observed d = d° we can then
obtain the likelihood function

L@d°; 2) = ch,(d°) (6-39)

For one-, two-, and three-dimensional parameters A various computer graphing
techniques allow assessment of (6-39)—for cases where the preceding integrations
can be completed.

The likelihood function (6-39) is a marginal likelihood function as introduced
in Fraser (1965, 1967, 1968). Other derivations are possible provided the principles
needed are chosen propitiously (see Sec. 2-2-1).

The likelihood function L(d°;A) for A from the observed d(y) = d(z) =
allows some direct assessment of A values in relation to the inference base. We
would, of course, like to use the observed likelihood in relation to the model for
that likelihood, but in general the distribution h,(d) seems less than tractable;
see Sec. 2-2-1.

6-2-2 Inference : Location p

We now consider inference for the location parameter § given a value for A.

From Sec. 6-1-4 we have the separation of the basic distribution, which gives
the conditional distribution (6-29) for b(y) and s(y) and (6-30) for b(z) and s(z);
the value d = d° is used in these formulas. Then, from Sec. 6-1-5 we have the
unique separation of g in the equation

s ' (y)[by) = B] = s '(@)b(z) = T(z) (6-40)

The conditional distribution for T(z) with d = d° is given in (6-36).

Under the variation-based model .#} the necessary description for the un-
observable b(z) and s(z) is given by the conditional probability distribution (6-30).
A value for B then identifies a contour of T(z), and the marginal distribution for
T(z) in (6-36) is then the necessary basis for tests and confidence intervals for .
Under the model .#5 the introduction of a weak ancillarity principle related to
that in Secs. 4-2 and 4-4 gives some support to the conditional distribution (6-29);
the further reduction to the distribution (6-36) for T(z) can be based on the
necessary method RM; in Sec. 3-5.

Consider the hypothesis: g = Bo. On the assumption that g = f,, the value
of T(z) = s~ *(z)b(z) is observable :

T=s""'(2)b(z) = s~ '(y°) [b(y°) — Bo] (6-41)
This observed value can be compared with the distribution (6-36), with d = d°,
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and the given value of 4, to see whether it is a reasonable, high-density value, or a
questionable value, or an impossible value out on the edge of the distribution where
the density is essentially zero. The hypothesis can be assessed accordingly.

Now consider a confidence region for . The observed value y° gives various
values for

T =s"'z)bz)= s '(y)) [by") — £] (6-42)

depending on the values being considered for p. Let A be a 1 — « acceptance
region for the distribution (6-36) for T:

J gi(T:d%)dT =1 -« (6-43)
A

We then obtain the observed 1 — « confidence region for f:
C(y%) = {B:s 'y [b(y*) — Bl 4}
= b(y®) — s(y))4

The preceding is, of course, a 1 — « confidence region based on (6-40) and
the conditional distribution (6-36). The random region has the form

C(y) = bly) — s(y)4(d)

where A(d) is obtained from (6-43) with d replacing d°. This has conditional
confidence 1 — « given d(y) = d and thus has marginal confidence 1 — o.

6-2-3 Inference : Components of

Consider some component coordinates of the location parameter f. Let p*
designate a particular set of p coordinates of the original p. Then from (6-42) we
have

T* = s~ Y(2)b*(z) = s~ (y°) [b*(y°) — B*]

where T*, b* record the coordinates of T, b that correspond to those of f*. The
distribution for T* is obtained from (6-36) by integrating out the coordinates not
represented in T*. Tests and confidence regions can then be formed following
the pattern in Sec. 6-2-2.

In ordinary regression analysis the parameter components f, f2,..., f, are
usually ordered from the most obviously present parameter f3; to the least obviously
present parameter f,. In addition, it is typically the case that a non null value for
a latter parameter, say f,, implies a possible effect corresponding to preceding
parameters. In accordance with this the parameters are usually tested sequentially:
(1) test B, = Br.0;(2) if B, = B0, then test B, = f,—1,0;and so on. The sequential
testing stops with a significant effect.

Consider the second test: if f, = B, 0, then test f,_1 = f,_1,0. If the given
B, = B0 is fully used then there would be pooling of the error variance, pooling
that could inflate the error variance if, in fact, g, was different from f, . The
common procedure is to be safe and not pool the error variance; in effect this
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amounts to testing f,- 1 = B,— 1.0 without formally assuming S, = B, 0. In short,
the lack of significance for f, gives ground for testing f,— ;, but the test is performed
in a safe manner that does not assume f, = fi, o for the analysis—in other words,
without pooling of error variance. For the general analysis without normal theory
we are able to conform to this pattern of analysis; as we shall see in Chap. 7 this
occurs because of some rather special properties of the presentations or trans-
formations involved.

With a nonnormal distribution for variation it is important to note that an
analysis of a variance table needs to record actual projections or projection
coefficients and not the usual squared lengths.

6-2-4 Inference: Scale o

We now consider inference for the scale parameter o. Again as in Sec. 6-2-2 we
have a separation of the distribution for b(y), s(y) in (6-29) and for b(z), s(z) in (6-30).
We then have the unique separation of ¢ in the equation

a7 s(y) = s(z)

The conditional distribution for s(z) with d = d° is given by (6-38).
Tests and confidence intervals for ¢ are then available exactly in the pattern
described in Sec. 2-2-3.

6-2-5 The Normal Case

For the location-scale analysis in Secs. 2-1 and 2-2 we did not derive the distribu-
tions for the special case of normal error but quoted an appropriate reference.
For the regression model, however, it seems reasonable to record the substitutions.
Consider the formulas in Sec. 6-1-4 with

fiz) = 2m) 1 exp (‘22 )

Note that now there is no free parameter A. The conditional distribution (6-30)
for [b(z), s(z)] has the form

hy {d) (2m) "2 exp [—3(XDb + sd) (Xb + sd)]s" "~ ' ds| X' X | db

X'x |2 Ay 2\
_—_L(Zt)Tl/Z—exp (—4b' X' Xb)db Wexp <—7> 1 s

where we have used the normalizing constant for the multivariate normal
[0;(X’'X)~ '] and for the chi (n — r) distribution; recall the definition of A in Sec.
2-3-1 and note the correspondence with the gamma and chi-square normalizing
constants. It follows that b is multivariate normal [0;(X’X) '] and independently
sischi(n — r); the normalizing constant h,(d) = 1/A,-, shows that d has a uniform
distribution on the unit sphere in .#*(X).

The transformations or presentations (6-22) then show that b(y) is multivariate
normal [B, 6?(X'X)~ '] and independently s(y)is o-chi (n — r). The ordinary normal
analysis then follows necessarily, but on the basis of the necessary method RM;
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in Sec. 3-3. By contrast the usual presentation of the normal analysis requires the
introduction of a sufficiency principle as examined in Sec. 4-1. For some discus-
sion in the present framework see Fraser (1976, p. 476f).

6-3 REGRESSION WITH SERIAL CORRELATION

The sequence of response values in a regression analysis is often a sequence in
time or in space. In accord with this, the design matrix may contain component
vectors that allow for temporal or spatial trends. However, there can be other
ways in which temporal and spatial effects can influence the response sequence.
More specifically, the variation that affects the response may contain correlations—
higher correlations between near responses and lower correlations between distant
responses ; this is called serial correlation. The reason could be that there is under-
lying variation that affects nearby responses but not more distant responses. In
this section, we examine the regression model with serially correlated variation.

6-3-1 The Model

We consider the variation-based regression model .#y given by (6-11). In its
abbreviated form, this model can be written

y=XB+ oz (B,6)in R" x R¥

z has a distribution f,(z) 2 in A (6-44)

We examine the inference base (%, y°).

For serial correlation we consider a distribution form f;(z) on R" that has a
parameter component that adjusts the serial correlation. In this general form the
mode! and the data analysis are exactly as discussed in preceding sections.

For our discussion here of serial correlation we examine the normal case.
Specifically we let f,(z) be a normal distribution that is standardized for each co-
ordinate but does have correlations between variables ; the integration in formula
(6-28) can then be completed in closed form. For the normal distribution for

variation we use
—1/2

fr(z) = 2 P (—3ZR™'2) (6-45)

where R is a correlation matrix. Thus z is N(0; R). A common choice for the
matrix R has a single real parameter p with —1 <p<lorO<p < 1:

2 . (6-46)
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With this correlation matrix the correlation drops off multiplicatively with the
distance between the responses.

6-3-2 The Analysis

Sec. 6-1-4 records the basic distribution components for analyzing the regression
model. As noted above we can, for the correlated normal, complete the necessary
integration in closed form.

We make a few general comments before examining the details of the inte-
gration. The conditional distribution for b and s is concerned with the primary
parameters § and o; this distribution involves a chosen or given value for the
secondary parameter A, here R. The analysis for p and o is modified regression
analysis with the particular conditional distribution just mentioned and the
modifications as indicated briefly at the end of Sec. 6-2-3.

The marginal distribution hg(d) for the orbit is available in closed form. Thus,
we are able to do more than just likelihood analysis; specifically, we can make
tests and form confidence regions.

We now derive the marginal density hg(d) for the orbit. We, of course, continue
to use the reference point d on the unit sphere in #*(X). From (6-28) with (6-45)
we have

hR(d)‘_“ J.fR(Xb + Sd)sn"r'I IX/X|1/2 db ds
i - (6-47)
j T P [HXb + s (XD + s}~ [ XX [T db ds

The integration of a multivariate normal over r coordinates gives in effect
the marginal distribution for the “remaining” coordinates. For this, it can be
convenient to have orthonormal coordinates. Let P, be a matrix of » orthonormal
column vectors that span #(X) and let P, be a matrix of n — r orthonormal
column vectors that span .#*(X); then in part,

H(Py)= LX) PP, =1 (6-48)

Thus b= (X'X)"1X'z and 1= P5z together form a new set of n coordinates
relative to the n basis vectors (X, P,); here we do not use the orthonormal co-
ordinates for #(X). Note that

I = Pysd = sP>d = sd,

4, = P (6-49)

and thus that 1 = sd,, with just n — r coordinates, gives a very convenient set of
coordinates for d, a set of just n — r coordinates that complements the coordinates
b.
The marginal distribution for 1= sd, is available from standard statistics
textbooks e.g., see Fraser (1976, pp. 177, 200). We have that 1is N(0; P,RP,); let
= P,RP, be the (n — r) x (n — r) variance matrix for L. This gives us the result
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of the location integration of b in (6-47); we have

0 R -1/2 B o
hg(d) = j (lz—n’;(—lr—ﬁ exp (—3s?d, Ry 'd,)s" "1 ds
0

= [Re |71 N L exp (—4s%c?) (sef* " tdsc
(d:kR,; 1d*)(n—r)/2 o (2n)(n7r)/2 -

_ 'R* ’—1/2
- A,,_,(d/*R;ld*)("_")/z

n-—r _
5

= A pn—N/2 (d:kR; ld*)(n—r)/2

B | Po,RP, |12 (6-50)
= A, [d'Py(P2RP,) ' Pd]"

where we use the integration results in Sec. 6-2-5 and use ¢ = (d4 Ry 'd,)'/%.
For the uncorrelated case with R = I the density h;(d) reduces to the uniform
distribution for d on the unit sphere in .#*(X) or for d,, on the unit sphere in R"™":

r(n — r)
! 2 (6-51)

Ao, 200707

hl(d) =

Compare with Sec. 6-2-5.
For the correlated case the distribution is proportional to

(d,R; 'd,)""""2 = [d'P,(P4RP,) ™1 Pyd] "2 (6-52)

whered R 'd, = d'P,(P5RP,)” ' Phd is, of course, a quadratic expression in terms
of the n — r coordinates of d,, or the n coordinates of d. This distribution is the
distribution for the rays from the origin; it is recorded on the unit sphere —where
the rays intersect the sphere—and is called the projected normal distribution on’
the sphere.

6-3-3 Inference for Serial Correlation

For response values that form a sequence in time or space there is often a concern
for the possible presence of serial correlation. The common regression analysis
based on uncorrelated variation was summarized in the results in Sec. 6-2-5. This
common analysis can, of course, be altered in the presence of serial correlation,
and we would follow the general pattern of Secs. 6-2-2, 6-2-3, and 6-2-5 but with
the appropriate correlated model. As noted earlier, we do not examine these
details here. Rather, we examine inference concerning serial correlation.
Certainly, in the pattern of Sec. 6-2-1 we can calculate the likelihood function
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for the correlation matrix R:

B c|P3RP, |12
~ [d'Po(P2RP,) 1 Pd]"

L(d; R) = chg(d) (6-53)
This can, of course, be easily calculated and plotted for the special correlation
matrix R in (6-46), which has a single real parameter p.

For more specialized inference, we can construct, say, a test of significance
for the hypothesis Ho: R = I of zero correlation. The most powerful test of zero
correlation against a specified alternative R is available in the form of the Neyman-
Pearson likelihood ratio test:

U= hR(d) _ ]R* ‘—I/Z/An_r(d/*R; ld*)(n—y)/z

= 6-54
hi(d) /A, (6-54)

Rejection for large values of u is equivalent to rejection for large values of
v= —(d}R; 'dy) = —[d'P,(P2RP;)" ' P2d] (6-55)

Note that v is a quadratic function of a point d on the unit sphere in #*(X). The
hypothesis-testing theory used here may be found in most standard texts; e.g., see
Fraser (1976, p. 416).

Typically, it seems there will not exist a uniformly most powerful test, even
for the relatively simple correlation matrix R in (6-46). However, for the special
R in (6-46) we can determine the most powerful test for some specific and repre-
sentative alternative, say p = %, and hope that the test behaves reasonably for
the range of plausible correlation values (0, 1).

The hypothesis distribution of a particular test statistic (6-55) can be obtained
by computer integration from the uniform distribution (6-51) over the unit sphere
in #*(X). The corresponding power for a particular significance level can be
obtained by computer integration using the general distribution (6-50) on the
unit sphere in Z*(X).

6-3-4 An Example

The following example involves eighteen observations of y, which records wheat
consumption, specifically domestic use of wheat and wheat products for food by
civilians, for the years 1921 through 1938, in million bushels. As introduced by
Hildreth and Lu (1960, p. 59), this uses six input variables:

x;=1

x, = average wholesale price at Kansas City of No. 2 hard red winter wheat
per bushel in cents

X3 = average processing tax on wheat per bushel in cents

x4 = consumers’ disposable income in billion dollars

xs = wage rates of all factory workers, per hour, in cents

xg = total population on January 1 in millions
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The data are:

X1 X2 X3 X4 Xs X6 y
1 120.3 0 55.0 48.9 110.9 481
1 113.0 0 64.4 50.2 112.6 480
1 107.2 0 69.8 542 114.7 489
1 149.9 0 70.1 54.8 116.7 490
1 162.0 0 75.3 54.6 118.3 509
1 136.3 0 76.0 55.0 119.9 512
1 138.0 0 76.5 55.6 121.5 512
1 111.0 0 80.6 56.5 122.9 516
1 113.0 0 80.3 56.1 1242 511
1 73.0 0 68.5 534 1254 500
1 49.8 0 54.9 48.6 126.2 498
1 51.0 0 43.6 41.6 127.0 507
1 85.5 30 494 50.1 127.8 463
1 100.3 30 54.5 54.5 128.6 474
1 106.8 15 61.6 55.1 129.5 490
1 128.3 0 69.9 582 130.3 493
1 97.9 0 679 63.6 131.2 489
1 68.4 0 67.3 62.6 1322 496

The likelihood function (6-33) for p using the special R matrix (6-46) is plotted
in Fig. 6-1. The likelihood peaks at about 0.7 and has half-max likelihood in the
range (0.05, 1.00).

2.10+

1.50

0.90

0.30~

] 1 | 1
- 0.69 -0.27 0.15 0.57 0.99
P
Figure 6-1 Observed likelihood function for p from wheat data.
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Figure 6-2 Power function for 5 percent test v(}). Envelope power function. Power function for four
alternative test functions.

The test statistic (6-55) using the representative p = & has observed the value
v= —1.58454
The 10, 5, and 1 percent values as obtained ‘by computer integration are
vyge, = — 1.59198
Uso, = —1.49042
vye, = —1.31270

The observed value is just significant at the 10 percent level.

The power function for the 5 percent test using v(p = %) was calculated by
computer integration and is plotted in Fig. 6-2. For comparison, several other
curves are also plotted: the curve just barely above that for v(3) is the envelope
power function which records the power of v(p) at the value p; the remaining
curves record power functions for some alternative test statistics commonly used
for serial correlation. For further details and background, see Fraser, Guttman,
and Styan (1976). The data analysis and computer integrations were performed
by Laurel L. Ward in association with George P. H. Styan on the McGill
University IBM370(158).

6-4 REGRESSION WITH NONNORMAL VARIATION+
We now consider an example illustrating the regression methods with a non-
normal distribution for variation, specifically the Student (1) family.

For purposes of calculation, it is useful to express a linear model in a canonical

+ With Gordon Fick.
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form. The natural presentation of the model may be
y=XB+ oz

where X represents the matrix of input vectors as recorded ; an alternate presenta-
tion is
y=Va+ oz

where V is an orthonormal matrix such that
Z2(V)= Z(X)

Inferences can be made for the canonical parameter « and these usually have
some direct interpretations for the applied problem. At a terminal stage of the
analysis, inferences for g are available by observing that

X=VT

where T is upper triangular; from this, it follows that § = T~ 'a and that b(y) =
T 'a(y) where, of course, a(y) = V'y. Clearly s*(y) and d(y) do not depend on the
basis for Z(X).

y

7.9042
16.2425

9.9128
10.0184
12.8359
12.8607
15.1697
16.0589
i

: Student (2) line
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19.8824 y=2045+ 0.9853 x
21.3117
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Figure 6-3 The 25 points (x, y): least-squares line: Student (2) line.
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Consider the data set displayed in Fig. 6-3; we note that 1 and x are orthog-
onal. The context suggests the model

y=p11+ px+ 0z

=0y 1/i/25 + arx//Zx* + 0z

where the distribution form for the variation z s the standardized Student (1) family
suggested in Chap. 2. For all the distributions except the normal, computer calcu-
lations are used.

For a given value for the shape parameter /, the assessment of « and then
B is based on the observed value of

t(z) = a(z)/s; = /n — 2a(z)/s(z)

together with the conditional distribution given d° as computed using the selected
J value. Note that we are now using s, as the standard deviation about regression.
Some preliminary calculations yield

a(y) = (101.746, 32.278)
b(y) = (20.3492, 0.8952

s(y) = 8.6625
s, = 1.80626
d = (—0.1965 06627 —01713  —02625  —0.0406
—0.1411 0.0221 00215  —0.0186 0.0974
0.0649 0.0495 0.1111 00433  —0.0583
00228  —0.1061  —00048  —02710 0.0207
0.1867  —0.4329 0.0769 0.1397 0.1844)

The largest positive deviation is 0.6627 (corresponding to y, = 16.2425 and x; =
—11.0) and the largest negative deviation is —0.4329 (corresponding to yz; =
24.6564 and x,, = 9.0). These observations seem to be the most influential in
determining distributions for b(y).

We now examine the data using the analysis in the beginning sections together
with the Student (2) family for variation. As with the location-scale analysis of
Chap. 2, we begin by consulting the likelihood function for 1. In particular we
examine

¥d%; 4) = Ap-2h;d%) = Az3h(d°)
Selected values of the likelihood function are

A | 1 | 2 | 3 | 4 |56 ]9«
@) | 138 [ 302 | 166 | 8 | 45 | 27 | 10 | 1

This rather sharply discriminating likelihood suggests A values between 1 and 6.
For comparison, we have included the traditional normal analysis corresponding
to A= 0.
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Contour plots for the distribution of t = a(z)/s, are given in Fig. 6-4 for

1, 3, 6, and 0. Confidence regions for « or § are based on these distrib

A

For 4

density

Figure 6-4 Density contour plots for (t1,1,) on (—4, +4)?
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s are plotted

6-6 for . = 1, 3, 6, and oo. Under normal analysis the distributions for both ¢, and

ax(2)/s:
t, are the ordinary Student (23). Note that the ¢, densities are more concentrated
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As 2 tends to 1, the distribution shifts and becomes more concentrated. Note
To assess ff; and f3, individually, we examine the component ¢ st

under normal analysis the distribution is independent of d and does not depend
on V. However, under nonnormal analyses the distribution of t dramatically
changes in shape, location, and concentration, depending on the value for d and V
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for A = 6,3, and 1 and do not shift substantially ; also note that the ¢, densities are
more concentrated and do shift substantially to the left:-
Confidence intervals for , and 8, have the form

B2 [b1(y) — trwsy/5, baly) — t1es,/5]

ﬁz: [bz(y) - IZUS},/«/ 1300, bz(y) b tZLSy/./ 1300]

where (t,,, t;y) is a central interval for ¢; and (¢,., t,y) is a central interval for t,.
For example, 95 percent confidence intervals for f, are:

A Confidence interval
1 (0.92, 1.04)
3 (0.91, 1.04)
6 (0.87, 1.03)
o 0.79, 0.99)

Note that we have included the normal-theory least-squares line on the data plot.

0.70—

]
-400 -3.00 -2.00 -1.00 0.00 1.00 2.00 3.00 4.00

Figure 6-5 Density function for t;; 4 = 1, 3, 6, c0.
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0.80

0.70~

—-4.00 -3.00 -2.00 -1.00 0.00 1.00 2.00 3.00 4.00
P
Figure 6-6 Density function for £,; 4 =1, 3, 6, co.

The line based on the Student (2) analysis has the following values:

INTERCEPT = b,(y) — median (t;) s,/5 = 20.45

SLOPE = b,(y) — median (t,) 5,//1300 = 0.9853

Note that the Student (2) line is steeper than the least-squares line and is resisting
the effect of y, and y,,. The Student (1) analysis provides a more robust and
resistant fitting procedure than the usual least-squares procedure.

We find that with normal data the analyses are usually similar for various A
and with nonnormal data the Student analyses are usually quite different; recall
the discussion in Sec. 2-5. The Student analyses with smaller A values seem to
have a very broad based reliability in producing the approximately correct analysis
whatever the true value of A; recall the discussion in Sec. 2-5-1.

The data set was generated using f8; = 20, ff, = 1, 0 = 1.1966, and 1= 3.
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The likelihood functions and distributions were obtained by three-dimensional
integration procedures on the computer. For regression analyses with more than
the two regression parameters various simulation and integration procedures are

under development.
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CHAPTER

SEVEN
COHERENT MODELS

Statistical models and inference bases were introduced in Chap. 1. As our primary
illustration we considered a real-valued response, with location and scale unknown
but with distribution form known or known up to a shape parameter J. For this
we discussed in Sec. 1-2-3 how the distribution form could be known—that the
distribution form was by itself an objective element of the system under
investigation and was amenable to direct sampling, or more informally, that it
could be observed directly apart from where it was located and how it was scaled.
We now use the term coherence for this property of the system being examined,
and we call the corresponding model coherent.

In this chapter we investigate random systems that have this objective
characteristic of distribution form—that have coherence. We then develop models
that involve a description of this objective form, the structural models, and we
discuss some basic methods of analysis for the corresponding inference bases.

7-1 THE STRUCTURAL MODEL

In this section we consider a random system for which the distribution form is
objective and we develop the corresponding coherent model, a model that includes
a description for this identifiable form. The model is called a structural model.

7-1-1 Identifying Distribution Form

In Sec. 1-2 we considered a real-valued response, with location and scaling
unknown but with distribution form known or known up to a shape parameter /.

133
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Now more generally let Y be the response variable for a random system with
sample space .%. Given the specification for the system we now consider how the
distribution form can be known—how the distribution form can be identified as
an objective element of the system, amenable to direct sampling.

In the pattern of Sec. 1-2-2 let Z be a variable for some standardized or
nominal presentation of the distribution form, and let the one-one functions 4 from
& onto & with hin a class @ give the various presentations hZ of the distribution
form. The shape or form of the distribution can then be given by the equivalence
class

(hZ:he ®) (7-1)

This records the various presentations hZ but does not formally keep a record of the
manner of presentation ; accordingly we can consider the equivalence class

{(hZ, h): he @} (7-2)

This keeps a record of the manner of presentation h, but does, at the same time,
single out the original nominal presentation. The formal way of not singling out the
original nominal presentation is to reexpress (7-2) using an arbitrary initial
presentation hZ:

((khZ.K):ke ¥} (7-3)

where W = ®h~' = {Wh™': W e ®}, and then take the equivalence class over the
various h in ®. However, rather than being so formal, we follow the pattern in
Sec. 1-2-2 and take the distribution form to be the equivalence class (7-1) of
different presentations but with, implicitly, the interconnections provided by the
various h in @.

We now investigate whether the distribution form by itself is objective and
amenable to direct sampling. As part of this the class @ cannot be too big—
the possibilities represented by the elements of @ cannot be more numerous than
the possibilities for a sample, for some sample size. Accordingly, we make the
following assumption:

Assumption 7-1 There exists a sample size n such that the images hZ,, ..., hZ,
from the initial points Z,, ..., Z, completely determine the function h in ®.

In other words, for a sample size n or larger there is at most one transformation
carrying an initial vector point into a final vector point.

Now suppose that a sample (Yy, ..., Y,) is available from the response Y
but that the particular manner of presentation ¢ in ® (as Y = ¢Z) is unknown.
Welet (Z4, ..., Z,) designate the corresponding values for the nominal presenta-
tion mentioned earlier. The various samples corresponding to the distribution
form (7-1) are then given by the equivalence class

{(hZy, ..., hZ,) he®} = {(h¢ 'Y, ..., h¢ ' Y,): he ®} (7-4)
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If this class of samples is available from the observed sample (Y7, ..., Y,) then the
choice of trial ¢ for use in (7-4) cannot affect the expression (7-4). For a sample
size n, larger than that specified by Assumption 7-1, the preceding gives that

D7 = D3 (7-5)

for any ¢, ¢, in ®. Conversely, we have of course that the condition (7-5) ensures
that the choice of trial ¢ in (7-4) does not affect the expression (7-4).

Consider theimplications ofequation (7-5). Theclass ®¢ ! contains the identity
¢d1¢7 . An element ¢,¢; ' has the inverse ¢;¢; ' which belongs to the right-
hand side and hence to the left-hand side. For a pair of elements ¢3¢; ' and
¢,¢1 ! we can reexpress ¢3d1 ' as d4p; ! by (7-5) and thus verify that the product
Gaps P P27t = Pap7 ! belongs to @y L. It follows that for any ¢, Ppi' =G
is a group of transformations and that

D = G, (7-6)

This says that we can represent each ¢ in @ as 6¢; with 6 in the group G. Conversely,
it is clear that (7-6) gives (7-5).

We thus see that the distribution form is objective and can be sampled
directly if and only if the class of presentations ® = G¢, is essentially a group of
transformations. By using ¢;Z in place of Z for the initial nominal presentation
we have that the distribution form is directly observable if and only if the new
class of presentations is a group G of transformations on the sample space . This
objectivity of distribution form is one of two slightly different ways of defining
coherence.

7-1-2 The Structural Model

Consider a random system with sample space % and response variable Y. In the
pattern suggested by Sec. 7-1-1, we suppose that the particular presentation 8 of
the response is unknown with respect to the transformations ofa group G but that
the distribution form is known or known up to some shape parameter 1 in A.
Following the development in Sec. 1-2-2 we would typically choose some
standardized presentation for the distribution form ; accordingly, we suppose that
some reasonable standardization has been applied. Let Z be the variable
corresponding to this standardized presentation ; then the response presentation is

Y =0Z (7-7)

with 8 in G. We call Z the variation, but, formally, the variation refers to all the
equivalent presentations (7-1).
We now have the following variation-based model called a structural model :

'//V=(Qaya&/91/1G) (7'8)

where Q = {(6, )} = G x A, .« is the appropriate ¢ algebra, ¥" is the class of
distributions for variation with parameter 1 in A, and G is a group of transforma-
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tions or presentations. We can abbreviate this as

Y =60Z withfin G

Z has distribution in the class 7~ (7-9)
For completeness we record the form of the corresponding response-based
model: g

where % is the class of distributions obtained by applying the class G of
presentations to the standardized distributions in ¥~ (compare with Sec. 1-2).

Earlier versions of the structural model may be found in Fraser (1965, 1966,
1968Db).

7-1-3 Identifying Events for Variation

Consider an inference base using the structural model .#y and an observed
response Y°:

S = (My, YO (7-11)

For the location-scale model in Sec. 2-2 and for the regression model in Sec. 6-1
we have seen how a certain function of the variation is observable. We now
examine this for the general inference base (7-11).

Or more generally consider the situation examined in Sec. 7-1-1. For this we
consider a value Z on a space . and suppose that the only information concerning
Z is the value

Y =¢Z (7-12)

obtained from some unknown function ¢ in a known class ® of one-one
transformations of % onto &. We now investigate whether the information
concerning Z is equivalent to having the value of a well-defined function on the
space for Z. As part of this we obtain the results for the preceding paragraph and’
in addition obtain a modified version of coherence.

Clearly Z must be one of the values in the antecedent set:

AY)=0 'Y= {¢ 'Y:pc®} (7-13)

The alternatives for Y based on an arbitrary element in ® then give the alternative
set:

T(Y)= 0D 'Y = {¢,¢1 ' Y: ;e @} (7-14)
The information concerning Z from a response value Y can be displayed as
D@,Y)={(¢ 'Y ¢):pe®} (7-15)

which records possible preimage points ¢~ 'Y, each with the corresponding
function ¢. We are familiar with how the functions j and Xy; are equivalent in the
information they provide concerning an antecedent y ; the equivalence is based on
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a one-one onto transformation on the range of the functions. Accordingly, for our
purposes here let 2 be the group of one-one onto transformations of & onto .
We make the display of information (7-15) independent of reexpression on the
response space by saying that D(t®,tY) is equivalent to D(®, Y) for any ¢ in the
group 4. Formally this gives the information

I(®,Y) = {D(t®, tY): t € B}

concerning Z from the response Y.

The information concerning Z is equivalent to having the value of a single
function if each of the possible values for Z as recorded in (7-13) lead to the same
information, that is, I(®, - ) is constant valued for points in the alternative set (7-14).
This means that D(®, Y') is equivalent to D(®, Y) for Y’ in T(Y), or that D(®, Y') =
D(t®, tY) for some one-one function having Y’ = tY, or that the functions ¢ such
that ® = t® are transformations that generate the set T(Y) from Y, or that the
class of transformations ¥ = {t:1® = @} generates the set T(Y) from Y.

The class of transformations ¢ = {¢:1® = ®} is easily seen to be closed under
the formation of products and inverses; it is called the invariant group of ®. Thus
we have that the information concerning Z is equivalent to having the value of a
single function if, and only if, the orbits of ¢ are the alternative sets T(Y). Indeed,
the information can then be written as 9¢,Z = ¢Y for any choice of ¢;.

The condition 4® = ® shows that ® = %¢; as in formula (7-6) or more
generally that

O = U, %0, (7-16)

where the various ¢, each map antecedent sets A(Y) into corresponding alternative
sets T(Y). A class of functions satisfying (7-16) is called event coherent ; we reserve
the term coherence for the special case (7-6) in which distribution form is objective.
For an exploratory version of the methods here see Fraser (1971); f@r the
formal details see Brenner and Fraser (1978). ~

7-1-4 Reduction of the Inference Base

We now consider reduction for the inference base (.#y, Y°) using the structural
model (7-8) and then comment briefly on reduction for (.# g, Y°) using the response-
based model (7-10). For the inference base (.#,, Y°), let Z° designate the
realized value of the standardized variation corresponding to the value Y° for the
response presentation. We have then that Y° = 0Z° for the true value of the
parameter 6 in G.

What information is available concerning the realized Z° without information
concerning 0 in G? We can write Z° = 6~ Y° for some 6 in G. This identifies Z°
as a point on the orbit GY? of the observed Y°. In fact we can write

GZ°=GY° (7-17)

Thus we obtain the observed value of the function GZ of the variation Z. The
results in Sec. 7-1-3 show that the data give no differential information
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concerning where Z° lies on the orbit GY°. The information concerning Z° is
equivalent to the value GY? for the function GZ.

By the necessary reduction method RMj; in Sec. 3-3 we then have the
factorization or separation of the inference base into

(a) The marginal model for GZ with observed value GY°.
(b) The conditional distribution given GZ = GY° describing Z°, together with
the presentation Y° = 6Z° for some 0 in G.

The preceding suggests that the space & be examined in terms of the orbits
GZ and the position of Z on an orbit. For this it is convenient to choose a
reference point on each orbit; let D(Z) be the reference point on the orbit GZ. We
can then record the position of Z on the orbit by finding a transformation [Z] in
G which generates Z from D(Z):

Z = [Z]D(Z) (7-18)

In the cases of interest this transformation will be unique; this is covered by the
following exactness assumption.

Assumption 7-2 The transformation group G is exact on the space <. If
g1Y = g, Y for some g, g, in G and Y in &, then g, = g..

This is Assumption 7-1 with no reference to sample size. For our present purposes
this means that we are modeling a sample size large enough for the original
Assumption 7-1 to hold.

Now let Q = {D(Z): Z € &} be the set of reference points. Then by the precedmg
analysis we have a one-one correspondence

Z ~([Z],D(2)
between & and G x Q. For notational simplicity we will often write
Z (g, D) (7-19)

provided the context identifies g = [Z] and D = D(Z). Note that Y = 0Z =
6[Z]D(Z)=[Y]D(Y) and thus that Y =06Z is equivalent to [Y]=0[Z],
D(Y) = D(Z).

We can now reexpress the factorization or separation of the inference base
(My, Y°) using the coordinates just described. The necessary method RM; in
Sec. 3-3 gives:

(a) (M, D°), where .#p is the marginal model for D(Z) with parameter A in A
and D° = D(Y°) is the observed value of D(Z).

(b) (AP, [Y°]), where .#7° is the variation-based structural model recording
the conditional distribution of [Z] given D(Z) = D(Y°), together with the
presentations [ Y] = 6[Z] with @ in G.
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Now consider briefly the inference base (.#%, Y°) using the response-based
model .#g in (7-10). The separation derived under .#) takes the following form
for M g: ’

(a) (Ap, D°), where 4} is the marginal model for D(Y) with parameter A in A
and D° = D(Y?) is the observed value of D(Y).

(b) (#™°, [Y°]) where .#"° is the conditional model for [Y] given D° = D(Y®)
and [ Y°] is the corresponding observed value.

Under the model .#x we can find the following grounds for examining these
two components from the .#)-based separation. The weak sufficiency principle
in Sec. 4-4 gives some support for the use of the marginal distribution in (a) for
inference concerning 4, and with attention confined to . the necessary method
RM; in Sec. 3-5 requires the use of the marginal distribution in (a) for inference
concerning 4. For inference concerning 6 given 4, the introduction of the ancillarity
principle A in Sec. 4-2 can be used to support the conditional model (b); however,
we recall from Sec. 4-2-4 that the ancillarity principle A is self-contradictory.

In this section we have introduced a general variation-based model, but have
not entered into discussions involving density functions. In the next section, we
develop methods appropriate for use with density functions.

We conclude this section with some comments on the notation for the position
[Z] on an orbit and the labeling D(Z) for an orbit. Consider a first set of reference
points D{(Z) on a cross section Q; with position [Z]; on the orbit, and a second
set of reference points Dy(Z) on a cross section Q, with position [Z], on the
orbit. Let i(Z) be defined by

hZ) = [D:(2)}
Note that h{Z) is a function of the orbits GZ. We then obtain
[Z]. =[Z]:h"(2)  DAZ)= WZ)D:(Z)

This is a right multiplication adjustment for position and left multiplication
adjustment for the reference point.

7-2 CHANGE OF VARIABLE

In Chap. 1 we noted that our emphasis would be on the wide range of problems
involving continuous response variables, and that the discrete problems are far
fewer and do have special simplicities. Now, in Sec. 7-1, we have developed the
structural model, which covers almost all the linearity found in statistical
applications, and all the interesting applications lie with continuous response
variables. Accordingly, we now present the specialized notation for handling
structural models with density functions—for making the change of variable for
the needed marginal and conditional distributions discussed in the preceding
section. For this there are substantial advantages in using the group properties of
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the class G of presentations. We do this by using densities with respect to
measures that incorporate as much of the symmetry expressed by the group as
possible.

7-2-1 Introduction

For most examples the sample space & for the response will be an open set in
the Cartesian product of the reals R". Accordingly we make the following
assumption.

Assumption 7-3 The sample space & is an open set in the Cartesian product
RY of the reals.

A few examples, however, will deviate from this assumption and & will be a
smooth manifold of dimension N embedded in a Cartesian product of the reals.
For this we will use a Euclidean structure on the product of the reals and assume
that local coordinates are derived from the Euclidean structure on the planes
tangent to the manifold.

Now consider a group G acting on the sample space .. We will cover most
of the interesting cases by assuming that the group has continuous differentiability
properties, both within itself and in its action on &.

Assumption 7-4 G can be represented as an open set in R* and the
transformations NG
g=g*g Z=g*gZ

are continuously differentiable with respect to g*, g in G, and Z in .%.

For a few examples we will deviate from this and also allow G to be a smooth
manifold of dimension L in a Euclidean product of the reals. Thus differentiation,
if not with respect to coordinates of R*, will be with respect to local coordinates,
derived from the Euclidean properties of the embedding space.

We have noted in Sec. 7-1-4 that most cases are covered by having the group
G exact on the space ¥—at most one transformation connecting two sample
points. Accordingly, we let D(Z) give the reference point in a cross section Q of the
orbits and we let [Z] in G give position on an orbit:

Z = [Z]D(Z) (7-20)

This gives a one-one correspondence between & and G x Q. We add some
continuity and summarize in the following assumption:

Assumption 7-5 The group G is exact on the space % and the functions [Z]
and D(Z) are continuously differentiable on ..
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This assumption easily covers most of our examples. For any particular
application, however, it suffices to have a local definition for the reference points
D(Z), local to the particular observed orbit; the needed continuity is then
available.

7-2-2 Invariant Volume on &

With the preceding assumptions we are now in a position to develop methods for
obtaining the marginal and conditional distributions. Our first step toward this
is to derive a support measure on & that incorporates the symmetries expressed
by the group G.

On the space & in R" the obvious first choice for support measure is
Euclidean or Lebesgue volume measure:

Vi(A) =j dz (7-21)

Now let us examine the effect of a transformation k in G on this measure. We
have

Inh:2) = =2

th = JN(h: Z) dZ

ohZ
(7-22)

From this point onward we will take all Jacobians to be the absolute value of the
Jacobian and thus positive; for example, Jx(h: Z) = |0hZ/0Z |+ AN

Thus a neighborhood of the point Z has Euclidean volume dZ but the
corresponding neighborhood of 4Z has Euclidean volume that is increased by the
factor Jy(h: Z).

We have introduced a reference point D(Z) in order to give the group position
of a point Z. Accordingly, it seems reasonable to use Euclidean volume in the
neighborhood of the reference point and then to measure “volume” elsewhere
as the Euclidean volume for the corresponding neighborhood of the reference

point.
For this let Jy(Z) be the Jacobian from D(Z) to Z:
In(2) = 1,([2]: D(2)) (7-23)
In passing note that
JIn(hZ)
In(h:2) = -~ 7-
Mh:2) = (7:24)

We then define an adjusted measure:

az
M(4)= JVA In(Z) (729
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In terms of differentials we can write

iM(z) = £

In(Z)

From this we see that the “volume” dM(Z) in a neighborhood of Z is Euclidean
volume as scaled back by the factor Jy(Z)—as scaled back by the volume change
from D(Z) to Z. Thus in effect dM(Z) assigns to a neighberhood of Z the
Euclidean volume of the corresponding neighborhood of the reference point.

First we show that the measure M is an invariant measure with respect to
the group G:

(7-26)

3

dz dhZ
Mhd4) = LA NG J INZ)

_j In(h:2)dz
N aJn(h:2)In(Z)

= M(A) (7-27)

Thus A4 and hA have the same “volume” as measured by M.

Second we show that M measures ordinary Euclidean volume in the neighbor-
hood of reference points D{Z). From our assumptions we have that Jy(Z) is
continuous in Z; also Jy(Z) = Jv([Z]: D(Z)), with [Z] = i, is the Jacobian for
the identity transformation; thus Jy(D(Z)) = 1. For a neighborhood B of the
reference point D(Z) we then obtain

az

M(B) = T Vx(B)

Thus for the measure M we have invariance under the group and we have a
correspondence with ordinary Euclidean volume aiong Q.

Example 7-1: Location-scale group on R* Consider the location-scale group

G={[acl:acR,ceR"} (7-28)
with action z = [a, c]z = al + cz on R". Following our notation from Chap.
2 we have

z=[2s(z)]d(z) = z1 + s(z)d(z) (7-29)
where s(z), d(z) are the residual length and unit residual. Then we obtain
dal + cz
Jn g : = —-{=c"

el = |~
Jn(z) = 5"(2) (7-30)

dz

M(A) =
“ J 5@

d
AM(z) = 37(2;)
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7-2-3 Invariant Volume on G

We now derive a measure on the group G itself, a measure that has symmetry
properties paralleling those for the measure M.
For this consider the equation

g=nhg (7-31)

where g, h, g are elements of the group G. We view this as a transformation h
mapping ¢ to §; a transformation by left group multiplication. Thus we are
viewing G as a transformation group acting on the space G.

A natural reference point for the space G is the identity element i. Then by
the results in Sec. 7-2-2 we define an invariant measure on G that agrees with
Euclidean volume at the identity:

0
suthig)=| %]
Jilg)=Jr(g:1) :
(7-32
d
'u(B) - JB JL(Z)
d
W@=Z% \

The letter L for the dimension of G is used as a label for the Jacobians and B
is used for a measurable subset of G.

The measure u is the left invariant measure that agrees with Euclidean
volume at the identity ; for we have

u(hB) = u(B) (7-33)
for left invariance, and we have

u = | = vm

B

for a neighborhood B of the identity i where V;, gives Euclidean volume on G.

Perhaps the best way of viewing the measure g, either intuitively or formally,
is in terms of the differential dg/J.(g); this gives a clear picture of its formation
in terms of a compensation for the effect of a transformation to g from the identity
i. Any other left invariant measure on G can be examined in the same way and
seen to be a propagation from the identity of a measure element at the identity;
accordingly, any two left invariant measures differ only by a constant multiplicative
factor, the ratio of the measure elements at the identity.

Now consider the equation

g=gh (7-34)

where h is viewed as a right transformation mapping g to g. As before we choose
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the identity i as the reference point and use the results from Sec. 7-2-2 to obtain
the right invariant measure v:

0
JE¥(h:g) = ’ai;
J¥(g) = Jt(g:9) 739
7-35
_| %
Wm_Jgﬁ@
“@=E%

The measure v is the right invariant measure that agrees with Euclidean volume
at the identity ; for we have

v(Bh) = w(B) (7-36)

for right invariance, and we have

d
v@¢f$=n®a
B \\
for a neighborhood B of the identity i. Any two right invariant measures on G
differ only by a constant multiplicative factor, the ratio of the measure elements
at the identity.

Example 7-2: The location-scale group Consider further the location-scale
group discussed in Sec. 7-2-2:

[a,¢] = [a%, c*][a c]

a=a*+ c*a

¢ = c*c
Ji(g*:g) = c*? J¥(g:g%) = c
Ji(g) = ¢ J¥g)=c
dutg) = “5° g = 1 (7-37)
dad dad
u(B) = L aczc v(B) = L “c ¢
u([a, c]B) = u(B) v(B[a, c]) = v(B)

7-2-4 The Change of Variable

For use with the results in Sec. 7-1, we will start with a density function on &
and derive the marginal distribution for the orbit expressed as D(Z) or GZ,
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and the conditional distribution given the orbit as expressed by [Z] relative to
the reference point D(Z). For this we need the change of variable,

Z-([2].D(2) = (9. D) (7-38)

where for simplicity we have written [Z] =g in G and D(Z)= D in Q. The
corresponding Jacobian is
0z

o(g, D)

where g in G < R* has L coordinates and D in Q has effectively N — L

coordinates. As the Jacobian stands we would expect to use tangential Euclidean

coordinates for D on @, and, in fact, we follow this pattern for a few cases. In

general, however, we will adopt an alternative and more convenient choice for

the coordinates and volume measure for D ; we discuss this briefly in Sec. 7-2-6.
We can rewrite (7-38) in three steps:

Zoh'Ze(h g, D)(g,D) (7-40)

J(Z) = (7-39)

The left-hand transformation involves a group element / applied on &, and the
right-hand transformation essentially involves just h~! applied on the group G.
The middle transformation is the original transformation (7-38) but at a different
point. The left and right transformations are relatively easy to work with. We
examine the three-step transformations for general h and then make a simplifying
choice so that the middle transformation is special.

The Jacobian relation from the three-step transformation is

J(Z)=JIn(h: k™ Z2)J(h~*Z)J(h™ ' 1 g) (7-41)
This holds for any h; as a special case we take h = g and obtain

J(Z)=Jn(g:D)J(D)J1rlg™ ' :9)

= IN(Z)J (D)L '(9). (7-42)
Thus the change of variable for the measure element can be expressed as
dZ = Jy(gD)J (D). (g)dg dD (7-43)

This uses Jy and J; which typically are easily obtained from transformations in
which group elements operate on RY or on R”. The factor J(D) is the original
Jacobian, but now needed only along the reference point contour Q. Often we can
avoid calculating J(D), for with the conditional for g given D the factor J(D) enters
as a constant which can be incorporated into the derivation of the normalizing
constant. Note that by using formulas (7-26) and (7-32), formula (7-43) can be
reexpressed as

dM(Z) = du(g)J (D) dD (7-44)
We will give some interpretations in Sec. 7-2-6.

Now consider a distribution for Z with density function f;(Z). We make the
change of variable Z = gD and then determine the distributions described in
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Sec. 7-1—the marginal for D and the conditional for g given D. The change of
variable gives
fZ)dZ = f:(gD)In(gD)J (D)J . *(g)dg dD
= fi(gD)Jn(gD)J (D) du(g) dD (7-45)

First we obtain the marginal distribution for D
h,(D) dD = J 1:(gD)Jx(gD)J (D) dulg) dD (7-46)
G

This gives the model for the inference base (a) in Sec. 7-1-4. Next we obtain the
conditional distribution for g = [Z] given D:
g:(g: D) dg = h; (D) fi(gD)In(9D)J (D) du(g)
= hi '(D)f:(¢D)Ix(gD)J (D) *(g) dg (7-47)

This gives the distribution part of the model for the inference base (b) in Sec.
7-1-4.

Now consider the response distribution for Y = 6Z. We obtain this by the
substitution Z = 07 'Y:

fiZ)dZ = fi(Z)In(Z) dM(Z)
= (671 Y)IN(07 1Y) dM(Y) (7-48)

where we have used the invariance of the support measure M. The marginal
distribution for D(Y)= D(0Z) = D(Z) is of course as given by formula (7-46).
The conditional distribution for [ Y] = 0g given D can be obtained from (7-48) or,
more easily, from (7-47):

gi(g:D)dg = g:(6~'[Y]:D)d6™'[Y]
= g,(07[Y]: D) (0 1[Y]) dubd~'[Y]
= 1 YD) f(0 L [Y]D)IN(0 ' [Y]D)J (D) du([ Y])
= hi {(D) (07 [Y]D)N(0~ ' [YID) (D) H([Y]) d[Y] (7-49)

7-2-5 Left and Right Invariance

The two measures 4 and v on the group G have some useful interconnecting
relations.
Consider a new measure y, defined by

p(B) = pu(Bh) = J . dp(gh) (7-50)

Clearly p, is left invariant, for we have

H(gB) = ugBh) = p(Bh) = un(B)
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| Consequently we have that u, and p differ by a constant factor, say A(h):
un(B) = A(h)u(B) (7-51)
or in differential form
dulgh) = A(h) dp(g) (7-52)

| with g as the variable.
| The preceding constant of proportionality A(h) can be viewed as a function of
h, the modular function A: G — R*. We have the easily verified properties:

Afi) = 1
A(g192) = Alg1)A(g2) (7-53)
Alg™H=A"Yg)

Thus A is a mapping that preserves group multiplication: it is a homomorphism
from G to the positive reals.

Consider a new measure v; formed by using A{g) to adjust the left invariant
measure du(g):

yi(B) = L Ai(%) N (74

We show that vy is right invariant:

dulg) _ J dp(gh)
geB A(gh)

“MFJ;Mm”
JA@@@

5 A(h) A(g)
_ | a9 _
‘LA@‘“®

Also we see that dv,(g) agrees with du(g) near the identity, for we have
A()) = 1; and thus it agrees with Euclidean volume near the identity. It then
follows that v, =v, the unique right invariant measure that agrees with
Euclidean volume near the identity. We thus obtain the relations:

| dug) _
(7-55)
d
o) = % dilg) = Alg) o)

Now consider a new measure v, formed by using y on the inverse elements:

v2(B) = j dulg™h) = L»l du(g) = p(B™") (7-56)
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where B! = {g~!:ge B}. We see that v, is right invariant:
v2(Bh) = p(h !B = (B~ 1) = v2(B)

Also we see that it agrees with du(g) near the identity : take a symmetric neighbour-
hood B of the identity, B= B~ !, and then v,(B) = u(B~ ') = u(B); u agrees with
Euclidean volume near the identity. It follows that v, =v, the unique right
invariant measure that agrees with Euclidean volume near the identity. We thus
obtain the relations:

v(B) = u(B™) u(B) = v(B™1)
dv(g) = du(g™") dulg) = dvig™")

The following are a few bonus relations that can be very useful. From
(7-55) we have

(7-57)

du(g)| ,dg/J 9)| _JE)
Ag) = = = 7-58
9D=1avg)| = a7t ~ 70 (7-58)
Then from (7-57) we have \\
_ |dutg)| _ [dvg™ ’dg-l/mgl) .,
-59
dv(g) ! dv dg/Jt(g) (759
From these we obtain
ldg™*| _Jtg DEg) JEg™H) _Julg™h)
= = = 7-60
g |~ @G @ It (7-69)
The equations (7-58) and (7-60) can be summarized as
Ji(g)
Alg) = ——
JiLlg) (7-61)
’wlg‘1 _Jte™Y _Jug
dg JL(g) Ji(9)

Example 7-3: The location-scale group Consider further the location-scale
group from Sec. 7-2-3:

_5(ac) _c 1
A(fa, c]) = Bac) ~

[}

2 ¢
_ du([a,c])
N dv([a,c]) (7-62)
dla,c]™') et 1
and ’m = —62— = C—S (7‘63)
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We can verify the Jacobian directly:

[a,c] '=[—cac 1]
‘6(—6 a,c™ 1)
d(a, c)

7-2-6 Some Interpretations

Consider the change of variable Z = gD < (g, D) discussed in Sec. 7-2-4. From
formula (7-43) we have

dZ = Jx(gD)J(D)J . *(g) dg dD (7-64)

where dZ is Euclidean volume for Z on & < R", dg is Euclidean volume on
G < RE, and dD is the temporarily chosen Euclidean volume with respect to
tangential Euclidean coordinates on Q.

In the neighborhood of the cross section Q we have th\a\J ~ and J, are
approximately unity, and thus that -

dZ = J(D) dg dD (7-65)

If we remain with dD as volume along Q then the complementary factor J(D) dg
is Euclidean volume measured orthogonally to Q at the point D.

Now consider an alternative and generally more useful way of having
coordinates and volume measures for D on the manifold Q. We now let dD be
Euclidean volume on the orthogonal complement of the orbit GD at the point D. For
this we have a neighborhood of D on the manifold Q; we project onto the
orthogonal complement of the tangent to the orbit GD at D; we calculate the
Euclidean volume of the projected neighborhood ; and we use this as the measure
for the neighborhood of D on Q.

From Eq. (7-65) we now use dD as volume orthogonal to the orbit GD and
thus interpret the complementing factor J(D) dg as Euclidean volume along the
orbit GD in the neighborhood of D. As such

6'gD
o9
is the ratio of volume along the orbit to the corresponding volume on the group;

or more directly it is volume change near the identity from the group G to its
representation on the orbit GD.

JD) =

7-3 INFERENCE, TESTS, AND CONFIDENCE REGIONS

The structural model .#), and the derived response-based model .4y were
presented in Sec. 7-1-2. We now examine statistical inference for a model
My or M g together with data.
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7-3-1 Inference for Shape A
Consider the structural model
My =Q; S, A, G) (7-66)

recorded in formula (7-8). The parameter space Q = {(, 1)} = G x A involves
the parameter A for shape and the parameter 6 for the response presentation of
the basic distribution for variation; ¥~ is the class of possible distributions for
variation indexed by 2; and G is the transformation group recording possible
response presentations. The corresponding response-based model is

recorded in formula (7-10). The class & is obtained by applying the group G to
the standardized distributions in ¥". We will cover most cases of interest by having
the exactness Assumption 7-2 hold.

In this section we examine statistical inference for the inference bases
(My, YO) and (# g, Y°). Recall the reduction of these infeglce bases as discussed
in Sec. 7-1-4. -

For the inference base (.#y,, Y°), we noted in Sec. 7-1-4 that the basic
distribution for variation involves only the parameter A and that the only
observation from this distribution is given by GZ = GY°. Then in the special
notation for the exactness case, we thus obtain the inference base (.#,, D°)
which has the parameter 4 and has the observed value D° = D(Y°) for the function
D(Z) of the basic variation.

The complementary inference base (.#7°, [ Y°]) describes the unobservable
part of the realized variation and relates entirely to the particular response
presentation 6.

The basic distribution involves only 4, and only the function D(Z) is observable
with value D° = D(Y?). The inference base is

(#p, D°) (7-68)

For the location-scale analysis in Chap. 2 we investigated likelihood inference
methods for 4 but we were somewhat sceptical about the feasibility for the more
detailed testing and confidence methods of inference. With one or two exceptions
this seems to be the pattern generally.

For likelihood inference we need density functions and accordingly introduce
the Assumptions 7-3, 7-4, and 7-5 from Sec. 7-2. The likelihood function for A
is available from (7-46):

L(D°; 1) = chy(D°) (7-69)

This can be assessed as discussed in Sec. 5-3 on likelihood ; recall the discussion
for the location-scale case in Sec. 2-2-1.

For the response-based model (.#y, Y°) the situation is not as clear-cut and
a variety of inference procedures may be found in the literature. However, with a
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formal decision to restrict attention to A, the necessary method RM; produces
the inference base (.#p, D°) which we have just discussed. And as we have noted
earlier, only the likelihood methods seem to be available in general.

7-3-2 Tests and Confidence Regions for

Consider further the variation-based model (.#,, Y°) involving the structural
model of Sec. 7-1.

From Sec. 7-1-4 we have the separation of the given inference base into two
component inference bases: the component (.#p, D°) just discussed in Sec. 7-3-1
and the component

(47", [Y°]) (7-70)

to be discussed in the remainder of this section. The inference base (7-70) records
the conditional structural model on the observed orbit GZ = GY?, as well as the
observed response position on the orbit. For notational easeM\gre using in
(7-70) the special notation appropriate under the exactness Assumption 7-2.

Of the two component inference bases only the latter component (7-70)
involves the parameter 6. This component (7-70) typically involves the parameter
J, but only in a noninformative way. Accordingly, the inferences concerning the
parameter § will be conditional on chosen values for A. In practice the choice of
4 values will be guided by the results obtained from the 4 analysis discussed in
Sec. 7-3-1; recall the particular location-scale analysis in Sec. 2-3-2.

First, consider a hypothesis concerning 0:

Ho: 0= 00
On the assumption that § = , the value of Z can be calculated as
Z=0,'Y° (7-711)

This observed value can be compared with the distribution for variation in
AP to see whether it is a plausible, reasonable value, or a questionable
value, or an impossible value; recall the discussion in Secs. 6-2-2, 6-2-3, 2-2-2,
and 2-2-3. We have here the direct calculation of the realized value and for
comparison we have the alleged distribution describing that value. Thus we are
not faced with the usual arbitrariness involved in finding a test statistic for a test
of significance for a hypothesis ; we have the test statistic necessarily.

With the specialized notation following the exactness Assumption 7-2, the
solution (7-71) can be rewritten as

[2] =05 [Y°] (7-72)

This observed value of [Z] is then compared with the distribution for variation
in .#2°, but expressed in terms of the group coordinates. For the model with
density functions in Sec. 7-2, this distribution for [Z] =g is recorded as
g:(g: D°) dg in formula (7-47).
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If the value in (7-72) is extreme, an explanation can be sought in terms of
alternatives to the hypothesis H being tested. Consider an alternative parameter
value, say 0, together with a “reasonable” g value. The corresponding response
value would be 0,g and the value in (7-72) to be tested would be 05 0,9 = dg.
Thus an extreme value as tested can in part be explained by left repositioning
of the basic distribution from (7-47); that is, instead of an extreme value under
g.(g: D°) dg we would be considering a “reasonable” value under the displaced
distribution g;(6~*g: D°)JL(6 'g) du(g) for some 6.

Second, consider confidence regions for the parameter 6. A 1 — o region can,
of course, be constructed by determining a 1 — o acceptance region for each
possible parameter value. Certain confidence regions, however, can be more useful
and meaningful than others; recall the examples in Sec. S%Ifn particular, if the
confidence level is directly interpretable in terms of properties ofthe basic variation
then we have additional useful and meaningful attributes for the particular
region. ]

Accordingly, we consider an acceptance region A for the variation Z that has
1 — o probability under the conditional model in (7-70). Then

PO 'Yind)=1—u«

P[OinS(Y)]=1-u« (7-73)
where

S(Y)={0:6""Ye A} (7-74)

Thus S(Y) is a 1 — a confidence region for § and S(Y°) is the observed 1 — o
region. Note, of course, that this region has 1 — « confidence using the conditional
distribution in (7-70), but as such it will have, of course, 1 — « confidence
unconditionally or marginally.

Now let us take advantage of the notation under the exactness assumption.
For this let 4 now be the 1 — o acceptance region but expressed in terms of the
group coordinates as chosen in Sec. 7-1-4. Then (7-73) can be rewritten as

PO [Y]in H)=1— 2 075
P[OinS(Y)]=1-u«
where
S(Y)={0:0"[Y]e 4}
=[Y]4™! R (7-76)
with A™! = {[Z]:[Z] '€ A}. Thus S(Y) is the 1 — o confidence region and
S(Y%) =[Y%)4 !

is the observed 1 — o confidence region. Again we note that this region has
1 — o confidence conditionally given the identified orbit and, of course, 1 — «
confidence marginally.
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For models involving density functions we have the derived distributions
available from Sec. 7-2. Accordingly, we introduce the Assumptions 7-3, 7-4,
and 7-5. The distribution for g =[Z] given the orbit D(Z) = D(Y°) = D° is
available from (7-47):

g:(g: D% dg = h; *(D°) f:(¢D°)I n(gD°)J(D°) du(g) (7-77)

Accordingly, the acceptance region A satisfies

J g:(g:D°)dg=1—o (7-78)
A

The confidence region for 6 then has the form S(Y°)

=[Y%]A ! as obtained
2,

from (7-76). For examples, see Secs. 6-2-2, 2-2-2, aq§_2-/
7-3-3 Composite Hypotheses for 0
Consider a comi)osite hypothesis:
0c H, (7-79)

where H, is a subset of the parameter space G for 6. The difficulties of testing
composite hypotheses for multivariate problems are well known. Often, attention
is focused just on whether or not some plausible test can be found; questions
then of reliability, merit, or any absolute criterion are ignored.

We investigate here those hypotheses 6 H, that are amenable under the
structure and properties of the coherent models in this chapter. We first find
the amenable hypotheses and then find the form of the appropriate test.

Consider further the inference base from (7-70):

(AP, [Y°]) (7-80)

We have the equation Y = 6Z which relates response values to values for the
standardized variation. On the assumption that 6 € H, we have that

Ze{071Y°:0ecHy) = Hy'Y° (7-81)

This is, of course, a subset of the orbit GZ= GY? that was identified (Sec. 7-1-4)
without the specific information under the present hypothesis.

For the information (7-81) to be useful with the distribution for variation we
need the event identifiability properties investigated in Sec. 7-1-3. There we found
that this requires a group that generates the various presentations in H, and
produces orbits, one of which corresponds to the specific information (7-81). For
our notation here this can be expressed most easily in terms of a subgroup G, of G:
the group G, generates orbits and one of these corresponds to (7-81). It follows
that the set H, has the form

Ho= oGy (7-82)
This is a left coset of the subgroup G, in G. The information (7-81) can then be
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reexpressed as -
ZeGyo'Y® (7-83)

which is, of course, an orbit of the subgroup G;.
Now consider testing an amenable hypothesis

e lpo G 1 (7'84)

as just discussed. On the assumption that 8 is in G, the G, orbit of Z can be
calculated:

G1Z = Gl lp(;l YO (7'85)

This observed G, orbit can be compared with the-distribution for such G, orbits
as derived from .#%° and the hypothesis can be assessed accordingly; compare
with Sec. 7-3-2. The observed G; orbit is an orbit on the previously identified G
orbit of the model .##°, a suborbit of an orbit. Again note the lack of the usual
arbitrariness in forming a test statistic for a test of significance.

We can rewrite the preceding with an extension of the exactness notation,
following Assumption 7-2. For this let D,(Z) be a reference point on the G{Z orbit
and let [Z], in G, be the position of Z on its orbit:

Z= [Z]lDl(Z) (7-86)
For the continuous case we will assume the same requirements as for the main
group G. Also let (Z2); = [D1(Z)] in G be the position of D;(Z) relative to D(Z):
Z=[Z]:D:(2)=[Z](2):D(2) = [Z]D(Z) (7-87)
Equation (7-85) can then be rewritten as
(Z)1=Wo 'Y (7-88)

This observed value of (Z); under the hypothesis (7-84) can then be compared with
the distribution of (Z); under the model .#?° and the hypothesis assessed
accordingly. For the model with density functions in Sec. 7-2, the distribution
for (Z); can be obtained from the Z distribution (7-47) by integrating along the
G, orbits; the details are recorded in the next section.

7-3-4 Distributions Relative to a Subgroup

The test of significance in Sec. 7-3-3 needed a distribution for the orbit of a
subgroup G; of the main group G. We now derive such distributions under the
density function Assumptions 7-3, 7-4, and 7-5.

For the main group G we have

Z =[Z]D(Z) = gD(Z) (7-89)

where [Z] = g gives the position of Z relative to the reference point D(Z) in the
collection Q of reference points. Then for the subgroup G; we have

Z = [Z]1D1(Z) = g1D,(Z) (7-90)
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where [Z]; = g, gives the position of Z relative to the reference point D;(Z) in
the collection, say Q;, of such reference points. The various suborbits G;Z on an
orbit GZ can be indexed by giving the positions of the points D,(Z) relative to
the main reference point D(Z):

D\(Z2) = (2),D(Z) = le(Z)\ (7-91)

with (Z); = k, in G recording the position. Thus the subset-Ky = {k;} of G indexes
the points of Q; on the particular orbit GZ. Typically, we will use the same set
K, on each GZ orbit.

The preceding gives the following representation for a point Z:

Z = g1k, D(Z) = gD(2) (7-92)

where g1 € Gy, k; € Ky, and D(Z)e Q; note that k;D(Z)e Q.

In this section we start with the distribution for g as given by (7-47), and we
derive the marginal distribution for (Z); = k; as needed for Sec. 7-3-3. We also
derive the conditional distribution for [Z]; = g, for use in Sec. 7-4.

For the group G, with dimension L, let x; be the left invariant measure,

dg.
d = 7-93
lul(gl) JLl(gl) ( )
calculated as in Sec. 7-2-3. Now consider formula (7-44) with the measure M on &
replaced by i on G, and with y on G replaced by y; on Gy ; we obtain

dulgiky) = dpi(g) Hilky) dky (7-94)

The standardization of the measure u does not directly correspond to that used for
the measure M : the measure u was standardized relative to the identity whereas
M was standardized relative to the reference point which, here, is k;. The factor
H(k;) thus includes, of course, the factor corresponding to J(D) in formula
(7-44), but also an effect due to the present difference in standardization,

We now make the change of variable (7-92) in formula (7-47) using equation
(7-94):

g.(g: D) dg = h; (D) fi(g1k1 D) x(g1k1D)J (D) dp1(g1)H1(ky) dk,y (7-95)

The marginal distribution for k, is obtained by integrating over the group G,
giving

hi 1(D)h;(ky, D)H (k1) dk, (7-96)

where

hy(ky, D) = J fi(g1ki D) x(g 1k D) (D) dps(g1) (7-97)
Gl

The particular choice of factors to include in the integral is largely a matter of

convenience but does relate to the factors used in the resulting expression for the

distribution in (7-96); note that (7-96) is conditional given D but is marginal for the

suborbits corresponding to the given D.
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The conditional distribution for g, given k, is then obtained by division:
hi *(k1, D) f3(g1k1 D) x{(g 1k 1 D)J(D) dpi1(g1) (7-98)

Note that the notation here does not directly correspond to (7-47) with G replaced
by G ; this is because the Jacobian Jy relates to the reference point D rather than
the reference point D, for the group G;.
The distribution (7-96) with D = D is the appropriate distribution for the test
of significance in Sec. 7-3-3.
\\\
7-3-5 Confidence Regions : Component Parameters

In Sec. 7-3-3 we noted the difficulties of testing composite hypotheses for
multivariate problems. The general difficulties are even greater for confidence
regions. In this section we follow the earlier pattern and investigate confidence
regions for those parameters that are amenable under the structure and properties
of the coherent models in this chapter.

Consider a component parameter y = y(0) for the inference base recorded in
(7-70) and (7-80); we restrict ourselves here to the case satisfying the exactness
Assumption 7-2. To forma 1 — «confidence region for iy weneed a 1 — « acceptance
region for each value of the parameter y. For this we recall the results in Sec. 7-3-3
on tests of significance. To use the available structure we need a subgroup G, that
generates orbits, and we use the marginal distribution for those orbits for the test
of significance. Accordingly, the 1 — o acceptance region for a leue of Y is a set of
orbits of a subgroup G;.

Also, as we noted in Sec. 7-3-2, certain confidence regions can be more
meaningful than others; in particular, if the confidence level is directly interpret-
able in terms of the basic variation then we have additional and meaningful
attributes for the region. Accordingly, we use the same set of G, orbits for each
parameter value . In a parallel way we have that the component parameter
specifies a left coset of the subgroup G, :

0 = yo, (7-99)

with 0; in G; and ¥ in the space ¥ for the component parameter. For a
comparison recall that in Sec. 2-2-2 we used the same interval for the ¢ distribution
for each tested value of the location parameter pu.

We now investigate confidence regions for the component parameter ¥ that
indexes (7-99), the left cosets of the subgroup G; on the parameter space G. Let
A on the space of possibilities for [Z] be a set of G, orbits that has probability
1 — o under the conditional model in (7-70) and (7-80). Then

PO '[Y]inA)=1—u
PO7 ' I [Y]inA)=1-u«
PGy [Y]cA)=1—«
PlyinS(Y)]=1-a
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where B
S(Y) = {y: Gy '[Y] = 4}
— Yy [Y]ed)
={y:yelY]A ™ (7-100)
Thus note that the confidence region is the ¥ section through the set [Y]4™* on
the group G. The set S(Y°) is the observed 1 — o confidence region for the
parameter . \

For models involving density functions we have the derived distributions
available from Sec. 7-3-4. For this we need Assumptions 7-3, 7-4, and 7-5. The
distribution for [Z] = g1k, is given by (7-47). The component variable k; indexes
the G; orbits and has the marginal distribution (7-96):

hi Y(D°)hy(ky, D) H (k1) dk, (7-101)

Let A as described above be a 1 — « region for ¢ and A; be the corresponding
1 — o region for the indexing variable k;. Then

J hy {(DO)hy(ky, DOYH  (ky) dky = 1 — & (7-102)
Ay

The confidence region for y is then given by
S(Y)={y:¢ " '[Y]e 4}
= {Y:(y ' [Y]Die Ay} (7-103)
as obtained from (7-100).

7-3-6 Supplement

In this section we have derived confidence regions for 6 and for the component
Y(6). As noted earlier, a spectrum of confidence regions for a parameter can be
viewed as a confidence distribution for the parameter. For the sake of complete-
ness here we record the confidence distributions for 6. For structural models these
have been called structural distributions; see, for example, Fraser (1968b).

For the parameter 6 the equation [Y] = 60[Z] or 67 '[Y] =[Z] is used to
obtain the confidence region for 6 from the acceptance region for the variation
[Z]. Accordingly, we take the distribution (7-77) for [Z] = g,

hy {(D°) fi(gD®)JI x(gD®)J (D°) dp(g) (7-104)

and transfer it to the parameter space by the substitution g =60 '[Y"]. We
obtain the following confidence distribution for 0:

hi H(D°)£i(0 1 YO)IN(07 1 YOI (D) dp(0~ [ Y°])
= h; (Do) f:(07 " YO)I (07" YO)J(DOA([YO]) dv(0) (7-105)
In this we have used (7-52) and (7-57).
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For the component parameter ¥ the preceding steps are notationally
awkward unless we have certain simplifications. We defer this to Sec. 7-4-5.

The preceding confidence or structural distribution has been derived for a
coherent model as defined in-Sec. 7-1-3. Such distributions on the parameter
space Q are sometimes derived in a similar manner for the pivotal-type models
defined in Sec. 1-2-5, but without the requirement of coherence that we have used
here. Without coherence these “probabilities” on the parameter spaces need not be
unique, and upper and lower probabilities for a parameter set have been defined
by Dempster (1966, 1968); see also Beran (1971

Whether these extended probabilities are in a.reasonable way reliable seems
in doubt; see, for example, McGilchrist (1973) and the comments thereon by
Fraser (1973). The identification of events—the coherence in Sec. 7-1-3—does
seem to be an essential ingredient for calculating meaningful extended
probabilities.

7-4 MULTIPLE TESTS AND CONFIDENCE REGIONS

In the preceding section we examined tests and confidence intervals for a
component parameter y; = ¥;(0). The complementary parameter 0; = 6,(6)
might also be of interest, and we could want tests and confidence regions for it.
We would then have the correspondence 8 < (i1, 8;) and be interested in testing
the components ; and 6;. In a similar way we might have three or more
parameter components and be interested in testing them individually. In this
section we examine the case of three components. This covers the case of two
components by making one component trivial, and it amply illustrates the
procedures to follow for the more general case with more than three components.

As a preliminary, however, consider briefly an aspect of tests and confidence
regions for parameter components—and for this the two-components case
suffices: 0« (1, 0;). Reasonably, we could want to have a test or confidence
region for ¥ and to have a test or confidence region for 0;. Having methods
for both parameters may or may not be possible within the techniques
discussed in the preceding section, but even if it is possible, there is one concern
of relevance. The component levels of significance or the component confidence
levels may well not combine to give an overall significance level or overall
confidence level; the exceptional case would be where statistical independence
effectively separated the parameters.

The separate examination of the component parameters may not be possible
and, even if possible, the overall confidence level is typically not available. The
methods in this section build on the available structure of the model and are
concerned with tests and confidence regions for the parameter components taken
in sequence. One attractive by-product of this sequential approach is the avail-
ability of the overall test or confidence level.
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7-4-1 Model with Three Components

We consider the structural model (7-66) and suppose that the shape parameter A
has been investigated and a value (or values) of A chosen for the subsequent
analysis. We thus obtain the reduced inference base

(A, [YO]) (7-106)

as examined in Secs. 7-3-2 to 7-3-6. This is a structural model with parameter 0
in a group G and with sample space the orbit GY° which, in the exactness case,
is an effective copy of the group G.

As we have shown in Secs. 7-3-3 and 7-3-5 tests and confidence regions can
be derived for a component ¥/ (0) using the structural properties of the model for
the case that

0 =y,6, (7-107)

where 0, is in a subgroup G, and V/, is in a set ¥ that indexes the left cosets of
G;.

The tests and confidence regions were then based on a reverse factorization
of the group coordinates for the orbit:

g =gik: (7-108)

where g, is in the subgroup G; and k; is in a set K; that indexes, by means of
reference points, the orbits of G;. This factorization on the group has a
corresponding factorization on the orbit:

Z =[Z]D(Z)
=[Z].(2):D(Z)
= g1k D(Z)
with g, = [Z]; and k{ = (Z2);.
For a given value of ¢; and for the correspondingly determined reference

point k; for the G, orbit, we can then contemplate a parallel splitting of the
parameter 6, in G;. Accordingly, we consider a component /,(¢)) where

0 =y1920, (7-109)

with 6, in a subgroup G, of Gy and with ¥, in a set ¥, that (with ) uniquely
indexes the left cosets of G,.

The tests and confidence regions for i, would then be based on a reverse
factorization as in (7-108) giving

g = g2kaky (7-110)

where g, is in the subgroup G, and k, is in a set K, that (with k;) uniquely indexes
the orbits of the group G,. This factorization on the group has a corresponding
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factorization on the orbit:
Z = gzk:kD(Z)
= [Z]2(2),(2): D(Z) (7-111)

with g, = [Z],, ky = (Z)2, and ky = (Z);.

7-4-2 Sequential Tests
Consider a sequence of hypotheses concerning 6:
Yi=V10 Yr=VY20 O2=0s0 (7-112)

We consider testing the first hypothesis /; = ¥, 0 as in Sec. 7-3-3. Under this
hypothesis we can calculate the Gy orbit of Z:

kv = (2)1 = W1,6Y) (7-113)

This “observed” value of (Z); under the hypothesis can be compared with the
distribution of (Z); under the model .#?"; the hypothesis can then be assessed
accordingly.

We now consider testing the second hypothesis i/, = /5,0 on the assumption
that the first hypothesis holds, that is, ; = ¥/1,0. Under this hypothesis we can
calculate the G, orbit of Z, obtaining

ko =(Z2), = (h36¥1.6Y") (7-114)

together with the value in (7-113). The “observed” value of (Z), under the
hypothesis can be compared with the distribution of (Z), conditional on (Z), from
(7-113) and using the model .#"; the hypothesis can then be assessed accordingly.

We now consider testing the third hypothesis 0, = 6, o on the assumption
that the first and second hypotheses hold, that is, ¥; = Y10, Y2 = ¥2,0. Under
the hypothesis we can calculate the position of Z on the G, orbit:

g2 =[Z]2 = [02.6920¥16Y°]
= 035[¥5.0¥1,6Y°]2 (7-115)
together with the values in (7-113) and (7-114). This “observed” value for [Z],
under the hypothesis can be compared with the distribution of [Z], conditional
on (Z), from (7-113) and (Z), from (7-114), and using the model AP the
hypothesis can then be assessed accordingly.

The sequential testing here may be found in a more general context in Fraser
and MacKay (1975, 1976).

7-4-3 Component Distributions

We now derive the appropriate distributions for g,, k,, and k; based on the
reduced model .#P° and using the continuity Assumptions 7-3, 7-4, and 7-5 for
the groups G, Gy, G,.
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The change of variable is given by
g = gakak, (7-116)
From formula (7-94) we have
dulgiki) = dpi(g)H(ky) dk, (7-117)

where H;(k,) has a derivation that parallels that for J(D) in Sec. 7-2-4. We then
have the further factorization ¢, = g,k, and can reapply (7-117) to the measure
i1 ; we obtain

dpi(g2kaki) = duz(g2)Ha(kz) dky Hy(ky) dky (7-118)

The change of variable (7-117) and (7-118) can be used in formula (7-47). Then
in the pattern in Sec. 7-3-4 we obtain the marginal distributien-for k, as in
(7-96):

hi Y(D)h;(k1, DYH (k1) dk, (7-119)

where
h;(ky, D) = L filg1k1 D) x(g1k1D)J (D) duyi(g1) (7-120)

The conditional distribution for k, given k, is obtained from the joint for kyk,
divided by the preceding marginal for k, ; we have

hi 'k, D)h;(ka, k1, D)H; (k) dk; (7-121)

where

hi(ka, ky, D) = J‘ Salgakak1D)J n(g2k2k D) J(D) dus(ga) (7-122)

The conditional distribution for g, given ky and k; is then
hi M(ka, k1, D) fi(g2kak1 D) n(g2k 2k D) (D) dpiz(g2) (7-123)

The preceding distributions (7-119), (7-121), and (7-123) are those appropriate
to the tests (7-113), (7-114), and (7-115) in Sec. 7-4-2.

Consider a special case that frequently arises with a group and its subgroups,
G > G, o G,. Specifically suppose that the sets K;, K, can be chosen as sub-
groups of the full group G.

The subgroup K; complements G; within the full group G. Let uf and A%
be the left measure and modular functions for this complementary group K;. From
properties in Sec. 7-2-5 we have that

Alky) At (k1)

are invariant under both left multiplication by elements of G, and right multiplica-
tion by elements of K. Accordingly, they differ by a constant of proportionality:
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dugiki) _ dut(kq) a

TAky H, dps(g1) A (7-124)
Ak

du(g1k1) = dui(g1)H, K’}% dut (k) (7-125)

The modular functions at the identity are equal to 1, and accordingly the
constant of proportionality arises from the local nonorthogonality of the sub-
groups K; and G;. We have thus used group properties to determine the function
Hy(ky):

A(ky)
" At(ky)

In a similar manner let u% and A% be the left measure and modaular functions
for the group K, that complements G, within G;. We obtain

Hi(ky)dky = H dut(ks) (7-126)

Ay (ks
dits(g2k>) = dia(g2) Ha A*Ekzi dpk (kz) (7-127)
Ak _
Hy(kz) dky = H A%(kz)dM(kZ) (7-128)

The preceding determinations of H;(k;) and H,(k,) can be used in the
formulas (7-119), (7-121), and (7-123) for the appropriate distributions for k, k,
and g,.

7-4-4 Sequential Confidence Regions

Consider confidence regions for the parameter components in the order i,
lpZ; 02'

From Sec. 7-3-5 we can obtain the region for ;. Let A, be a set of G, orbits
on the space for Z with a total probability of 8, and let 4; be the corresponding
set for the indexing value k, for such orbits.

P(Z in A;) = P(G1Z < Ay)
= P(k, in A;) = f; (7-129)
Then
S1(Y) = {1:(f1 ' V) in A} (7-130)

is a ; confidence region for the parameter . The region A; can be determined
from the distribution for k; in formula (7-119).

Now consider a confidence region for ¥, conditional on a value for the
parameter ;. The results in the preceding paragraph can be used with G, replaced
by G, and the distribution for k, replaced by that for k, given k; = (Y1 1Y),.
Let A,(k,) be a set of G, orbits on the space for Z conditioned by k; with a total
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probability of 5, and let 4,(k,) be the corresponding set for the indexing variable
k, for such orbits.

P[Z in Ay(ky):(Z); = k1] = P[G2Z = Aslky): k1]
= Plkyin Aa(ky): k(] = B, (7-131)
Then
SoY:y) = {Ya: (Y2 "Y1 1Y)z in Ax(ky)} (7-132)

is a 5 confidence region for the parameter ¥, given ¥ ; note that k; = (Y1 'Y);.
The region A,(k,) can be determined from the distribution for k, given k; in
formula (7-121).

Finally, consider a confidence region for 6, given values for y; and y/,. For this
we use the results from Sec. 7-3-2 with G replaced by G, and the distribution for
g replaced by that for g, given k; = (;'Y), and k,= (Y7 '¢¥i'Y),. Let
As(k,, kq)beasetof Z values on the G, orbit formed with reference point k,kD(Y)
and with a total probability of 3 and let A5(k,, kq) be the corresponding set for
the group variable g, on the orbit.

P[Z in As(kak1):(Z)2 = ko(Z)y = ki] = P[gs in As(kok)kaki] = fs  (7-133)
Then
Sy(Y:ya ) = {0,:0; ' [¥7 Y1 Y], in As(ky, ky)} (7-134)

is a f3 confidence region for the parameter 6, given ¥, ;; note that
ky= (3 "1 ' Y)s, ky = (7 'Y);. The region As(k,,kq) can be determined from
the distribution for g, given k,, k; in formula (7-123).

The preceding gives us a sequence of confidence regions for ¥/, ¥, 0,, each
conditional on values for preceding parameters. Can these confidence regions be
compounded?

For this consider the following. Let A be the compound acceptance region

A= {gzk2k1 ‘g2 € Z3(k2> ki), kye /_12(k1): kie Zl} (7-135)
and let S{Y) be formed as follows:
S(Y) = {y1y20,:0,€ S3(Y: 3, Y1), h2 € So(Y 1), Y1eSy(Y)} (7-136)

We now show that S(Y) is a ;8,5 confidence region for 6 = ;1,0 based on
the acceptance region A.
Note, first, that A has probability ;8,83 on the space for the variation [Z]:

P(A) = P[g, in As(ky,ki):ky in As(ky)ky in A;]
x P[k, in Aa(ky):ky in A;]
% P(ky in A4y)
= B3f2pi (7-137)
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We now verify that S(Y) is the confidence region corresponding to this
acceptance region A:

{(W1920,:0; 'Yy "Y' [Y] in A4}

= (Y 1¥20,:05 ' [Y2 Yy ' Y], in As(ka, ky),
Wz it Y), in Ay(ky), (1 1Y) in Ay}

= {‘//1'//292 20 in S3(Y 42, Y4),
Y2 in Sp(Y :4y), ¥y in S5 (Y)}

= S(Y) (7-138)

where throughout we have k, = (Y3 "Y1 ' Y), and k; = (Y1 ' V).
Thus the compound confidence region has the compound confidence level

B3B2B1-

7-4-5 Supplement

In Sec. 7-3-6 we calculated the confidence distribution for the parameter ¢ but
postponed the calculations for the component parameter (0).

Now consider § = yr,y,0, with the components Yy, ¥,, 8, as discussed in the
preceding sections. We examine the continuous case satisfying Assumptions
7-3, 7-4, and 7-5 for G and for G; and G,. We also assume-that the set ¥,
complementary to G, is a subgroup and that ¥, complementary to G, is a sub-
group. We can then take the index set for G, orbits to be K; ='¥; and the
index set for G, orbits to be K, = ¥, ; compare with the end of Sec. 7-4-3.

The equation [Y] = 6[Z] or 0 '[Y] = [Z] is used to obtain the confidence
regions for 0 and for its components from the acceptance region for the variation
Z. For the components ; and , in this Sec. 7-4 the analysis of Sec. 7-3-6
becomes awkward unless we fit our coordinates on the orbit G compatibly with the
components on the group. For this we choose our reference point D(Y?) in a very
special way; we choose the reference point at the observed Y°. The equation
6 [ Y°] = [Z] then becomes 6~ ' = [Z]. In terms of the components we then
have

03 "Wz Wit = gakaky (7-139)

with 6, and g, in G,, ¥, and k, in the group ¥,, and ¥; and k, in the group ‘¥';.
Equation (7-139) then splits into

0:'=g, Y2l=ks Yi'=k (7-140)

The distribution for k; in (7-119) with (7-126) can be written as

Alky)
At(ky)

Transferred to ¥; by (7-140), this becomes the confidence distribution for ¥/, :

hy Y O)hy(ky, YOH,

dut (k1) (7-141)
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B (YO, YOH, SV gy (7-142)
AW
The distribution for k, in (7-121) with (7-128) can be written as
_ Ak
A YOtk i, YO R, S22 sy (7-143)
A$(k,)

Transferred to W, by (7-140) this becomes the confidence distribution for v
given ¥/;:

A
h ' L YO (s Lyt L YO H, Z?[% dvi(),) (7-144)

The distribution for g, in (7-123) is
h W3 s Y YO falgaws Wi YO n(gays Wi YOI (YO dpa(g)  (7-145)
Transferred to G, by (7-140) this becomes the confidence distribution for 0, given
Yo, Yy
Y L YO) £u(02 N N YO0 Ty Ty YO)J(YOMz,,(Hz) (7-146)

The preceding distributions were obtained by taking the appropriate marginal
and conditional distributions for the right-hand side of (7-139) and then inverting
to the appropriate component on the left-hand side. They can, of course, be
obtained directly from the distribution of 8 in (7-105) by taking the appropriate
marginal and conditional distributions. This route by parameter space integration
does not immediately give the confidence distribution interpretation, whereas our
present derivation does.
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CHAPTER

EIGHT
SOME MULTIVARIATE MODELS

Consider a random system with p response variables yy, ..., y,. In this chapter we
investigate several statistical models with various location-scale components that
can be applicable to such a system. The choice among these models will depend
on the degree of identification of the distribution form for the variation.

8-1 LOCATION-SCALE MULTIVARIATE MODEL

Consider a random system with p response variables y,, ..., y,. We suppose that
the location and scaling for each variable is unknown but that otherwise the joint
distribution form—the identifiable variation—is known or known up to a shape
parameter A.

8-1-1 The Model

Letfy(z1, ..., z,) be the density function describing the objective variation. As part
of this we assume that f; has been standardized with respect to the location-scale
transformations for each coordinate. For example, the standardization for a
particular axis could be such that the marginal distribution for the variation on
that axis would satisfy the conditions recorded in formula (1-18) for the simple
location-scale model.

Let [u1, 04] record the location and scale parameters for the response pre-
sentation of the first coordinate, ..., and [u,, 6,] record the location and scale

167
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for the pth coordinate. Then using the transformation notation from Sec. 1-2-2
we can write
y1 = (10112000 V5 = [ 05125 (8-1)
Let G; be the location-scale group as a transformation group for the ith co-
ordinate:

Gi={[a,c]: aieR, c;eR™}

[a, ci)zi = a; + iz (8-2)
And let G record the transformation group for the full response vector:
G={([amcil,-..,[ap cp)): [ai, ci]€ G}
=Gy x " x Gy (8-3)

([ab C1]5 R [ap9 cl;])(zl: RN Zp) = (al + C1Z15.. ., ap + cpzp)

The class G is a group of transformations, the direct product of the groups Gy,
., G,; the multiplication is coordinate by coordinate

([ALC1]. - [Ap CoD Lar, 1], ..o [ap ¢p])
= ([A1 + C1[l1, ClCl], ey [Ap + Cpap, CpCp])

and similarly for the inverse.
For multiple performances of the system we have an n-vector for each of the
basic variables of the system. The response presentation then has the form

(8-4)

vi = (116120 ¥y = [ 0,12 (8-5)
and the distribution for the variation has the form
iz Zpi) (8-6)
For compact notation we will write
Y=(y1.--,¥p)
Z=(2q,...,2p) (8-7)
0= ({11, 01) .. [pps 05))
k) = N[z, .5 Zpi) (8-8)
We thus obtain the following structural model.
My = (Q; RP", B¢, G) (8-9)

where the parameter space is Q = G x A, #"" is the Borel class on R?", ¥” is class
of densities f;(*) in (8-8), and G is the transformation group (8-3). This can be
abbreviated informally as

Y =0Zwith0in G

Z has distribution in the class ¥~ (8-10)
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The exactness Assumption 7-2 holds provided n > 2 and we exclude a set of
measure zero consisting of points for which some coordinate vector y; lies on the
extended one-vector .Z(1) in R".

8-1-2 The Analysis

We freely use the notation developed in Sec. 2-1:
Zj=n') zj

sHz) =Y (2 — 2

d(zj) = s7*(z))(z; — Z;1) (8-11)
giving the location-scale position [Z;, s(z;)] relative to d(z;) for the jth coordinate:
z; = [z}, s(z;)]d(z))

The corresponding position for the full Z is

g= [Z] = ([21’ S(zl)]a'“’[ép’ S(zp)]) (8-12)
relative to the reference point -
D({): (d(zl)’ cees d(zp)) (8'13)

Note that the points excluded by the exactness assumption are those for which
one of the s(z;) would be equal to zero with the resulting lack of definition for

the corresponding d(z;).
The Jacobians from Secs. 7-2-2 and 7-2-3 are easily calculated:

Jonlg:Z) =(c1...cp)
Il Z) = (s(z4) ... 5(z,))" = (51...5p)"

(8-14)
dM(Z) = L
(81...5p)"
Japlg) = (s1... Sp)z
(8-15)

le dSl e dfpdsp

d'u(g) - (Sl e Sp)z

The special Jacobian J(D) refers to volume change at the point D; we have ﬁ
for each of the vectors z; at d(z;) (because the 1 vector has length /1. Thus

J(D) = n?"? (8-16)

Now consider the inference base (.#y, Y°). We follow the analysis in Secs. 7-1
and 7-2 and make references to the earlier discussion of the simple case in Chap. 2.



170 INFERENCE AND LINEAR MODELS

The observed orbit gives the observed value for the variation:

D(Z)=D(Y°) = D° (8-17)
or
dz)=dy))=d} j=1....p (8-18)
This gives the inference base (a) from Sec. 7-1-4:
(AMp, D°) (8-19)

The distributions in the model .#;, are available from (7-46):

h;v(D) = J Hfﬂ(Zl + Sldli, Caey 2,, + spdpi)(sl ves Sp)n—Z H\/ﬁ dZ_J de
¢ (8-20)

This, of course, leads to the observed likelihood function for A from (7-69):
L(D°; 2) = chy(D°) (8-21)

The integrations (8-20) for this would typically require computer quadrature and
simulation methods, indeed some sophisticated techniques even for medium to
large values of p. Again we note that the model for possible likelihood functions
seems generally inaccessible.

The unobservable characteristics of the variation lead to the inference base
(b) from Sec. 7-1-4:

(P, [Y°)) (8-22)
The distributions for the structurél model .#P° are available from (7-47):
hi {DO) TLfo(2) + 515 .0 2y + 5,d%) (515, 2T /ndz;ds; (8-23)

on the group G. This distribution describing the unidentified variation is used
with the transformation

Vi= +012y
s(y1) = J151
.................... (8_24)
Vp=tp + 0pZ,
s(y,) = GpSp
The corresponding observed values for the response characteristics are given by
[Y°] = {32,500, . [ s 1} (8-25)

The methods from Secs. 7-3 and 7-4 are then available for inference concerning
the parameters pq, 01, ..., iUy, Op.

The response distribution corresponding to the identified D(Y) = D(Y°) is
available from (7-49).
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h; I(DO)HJ[/‘V(UI 1[)_71 — M1+ S(yl)dli],-'-ya;l[)_’p — Up + S(yp)dpi])

n—2
§ [S(yz()hs(z:))] T1/n dy; ds(y) (8-26)

To illustrate the method in Secs. 7-3-3 and 7-3-5 suppose we are interested in
the parameter component [, 6, ]. The corresponding group is the direct product
of the location-scale groups for the remaining coordinates and the corresponding
indexing set on the sample space for [ Z] is conveniently given by the location-scale
element [, s(z,)] for the pth variable. The marginal distribution for this is obtained
by integrating over Gy x *** X Gp—y:

hi }(D°) L _ 11 + $1diir- - Zp + Spdpi)
‘\\zg\(sl sy AT dy/n  ds
v 2 d/nz,ds, (8-27)
The corresponding equation is
Vp=tp+ 0pZp

s(yp) = OpSp

This is a simple location-scale reduced model as in (2-16) and can be analyzed
exactly as in Secs. 2-1 and 2-2.

(8-28)

8-1-3 A Normal Example

For a simple example to illustrate the mathematics of the model preceding con-
sider the following normal distribution for the variation (zy, ..., z,):

fo(z1s - s2p) = 20) 2| P| V2 exp (—3ZP " '2) (8-29)

where P is a correlation matrix for the variation; note that the shape parameter
) is the correlation matrix P. We examine this for the bivariate case p = 2, with
cov (zy, z2) = p.

The marginal distribution for the identified orbit for the variation can be
obtained by integration from (8-20). For this let r = (2, ;) = Zdy;d,; be the
correlation coefficient for the bivariate sample for variation:

h,dy,dy) = (2n)~"(1 — 02)—n/2

« J exp lj_ 2(51 + s1dy;)? — 2p(Z; + Zztlixi)(j;;" Sad2i) + (22 + 52d2i)2:]

X (S1S2)n_2 d\/; 2_'1 d\/’;’l- Zy dSl dS2
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1 7t — 2,02122 + z
- fmp[‘ pi= }dﬁ“

y 1 exo | — s% — 2prsys; + Sz:l
QY11 — pHr= D2 p 21— p?)
X (5182)" "2 dsds,

2n— 1(1 _ pZ)(n— 1)/2

fe o)

Jv J' €Xp (—t% - f% + 2prt1t2)(t1t2)n—2 dt1 dtz
0

(zn)n—l
2n—11 2(n 1),’2 ) o . ~
= ((2ﬂ)” )1 / ZO( Z L jJ‘ exp(_t% - t%)(tltz)n 2
0
x dty dl'z

2n 1(1 2)(n—1)/2 i (2,0?‘)1 1
Qnyt So ool 22
0

x exp (—11 — B) (e 3)" T2 dg dil

- pHn 22 Q2pry fr- 1+
(024 o o 2

on= 3(1 _ pZ)(n— 1)/2

H,_
Qny T 1len) (8-30)
where the function H,(f) is an abbreviation for the following power series:
2ty (" +o
A1) = 8-31
)= ¥ T (8-31)

The conditional distribution for the unidentified variation Zy, 81, Z,, S5 is then
available from (8-23):

hi '(ds, do)
Qny(i - p??

(2 + s:d i)z — 2[)(2 + s1d I)(E + s dZi) + (Z + Szdzf)z
X exp [_ Z 1 141 1 21(11_ p;) 2 2

X ($182)" 2 d\/; Z d\/; Z, dsy ds,
1 73 — 2,02122 + z5
=l = o exp[— 31— :,dﬁ Z dﬁ Z,

y 1 exn | — s% — 2prsysy + 52}
L= Haaon) T 20— p?)

X (515'2)"_2 dSldSZ (8-32)
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Thus (ﬁ Z4, ﬁ Z,) is bivariate normal with means 0, variances 1, and correlation
p. The distribution of (s%, s3) is a correlated bivariate gamma independent of the
preceding normal.

The likelihood function for p from d;, d, has the form

2n—3(1 _ pZ)(nv 1)/2
(27[)"7 1

Ldy,dy;p)=c H,-1(p7) (8-33)
This can be taken in ratio to the value of the function at p = 0, giving the represen-
tative likelihood

‘ A= p?) " RH, A (pr)
N Lduoda3 p) = [ (8-34)

From (8-33) it is seen that r is a sufficient statistic for the distribution of (d, d,).
Accordingly, (8-34) is the likelihood function for the marginal distribution of r.
The p = 0 distribution for the correlation coefficient r is easily derived from
simple normal regression theory: the function

t_\/n——2r

a \/ 1—72
has the Student (n — 2) distribution ; thus the p = 0 density for r is

F[(n - 1)/2] =4 _2"A3r2[(n- 1)/2] e
tome-220 " T Ty Y

on (—1, +1); for the preceding we have used I'2p) =2%* 'T(p)I'(p + /T (}).
The likelihood ratio (8-34) then gives the general noncentral distribution for the
correlation r:

2n—3

m (1 — pZ)(n—l)IZ anl(pl’)(l _ r2)(n—4)/2

on the interval (—1, +1). This distribution was obtained here as a simple by-
product of our analysis of the bivariate location-scale model.

Note that we have used a rather sophisticated tool called likelihood modulation
for the derivation of the nonnull distribution of the correlation coefficient r. The
technique was used in Watson (1956) and developed in Fraser (1968). For the
present example we were able to derive the marginal density for (dy,...,d;) on
the Cartesian product of p spheres in R"™! ; we found that the likelihood depended
only on the variable r and thus that we had the likelihood function from the
marginal density for r (Fraser 1976, p. 338, for example); we then used the likeli-
hood from r to modulate the p = 0 density for r to give the general density for r.

The general likelihood modulation technique can be summarized as follows:

(@) Derive the marginal density for some general variable D.

(b) Discover that the density for D involves only a parameter ¢ and some simple
variable r ; this then provides the likelihood function from the simple variable r.

(¢) Use the preceding likelihood to modulate some special ¢ = ¢, density for r.
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8-2 MULTIVARIATE MODEL : PROGRESSION

Consider a random system with p response variables y, ..., y,. We suppose that
the distribution form has been identified or identified up to a parameter A, but not
identified to the degree considered in the preceding section. The model we consider
here has some applications, but our interest in the model is primarily to develop
methods and techniques for the model to be considered in Sec. 8-4.
For the progression model in this section we suppose that for the first response
the location and scale are unknown, that for the second response the location and
—-seale and also the regression on the first variable are unknown, and so on, so that
for each response the location, scale, and regression on preceding variables are
unknown. Clearly the applications for this model have a very special property in
which the variables are ordered and have possible regression dependence on
preceding variables.

8-2-1 On Notation

The response for the random system has p variables, y1,..., y,. With n perform-
ances of the system we then have, in effect, np variables.

For notation in the preceding section we formed an n-vector for each of the
basic system variables and then combined these to form an n x p matrix. This
conforms with the usual notation for the regression model where the vectors are
in R" and the design matrix is an n x r matrix recording an n-vector for each of
the r input variables.

For multivariate analysis there are two conventions: the use of the n x p
matrix and the use of its transpose, the p x n matrix. If we stay with the use of the
n x p matrix then our transformations will be matrix transformations from the
right ; if we reverse and use the p x n matrix then our transformations are matrix
transformations from the left and thus conform to the general notation that we
have been developing. We choose the advantages of this latter approach and
now reverse the notation available from the preceding section.

Lety = (yy,...,y,) designate the p variate response of the system and then
let
Y = (Y1) = [?’.‘.%::‘..y}."] (8-35)
Yp1---Vpn

be the compound response for n performances of the basic system. On the occasions
when we want to refer to an n-vector for a response variable we will write, for
example:
Yi =115 V1n)
8-36
Y2=(y219~~ay2n) ( )
for the first and second variables, these being the appropriate row vectors from
the matrix Y.
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8-2-2 The Model

Consider the random system with the p response variables yq, ..., y,. We suppose
that the location and scaling of y; are unknown but that the distribution form is
known or known up to a shape parameter A, that the location and scaling of y,
and the linear regression on y, are unknown but that the distribution form is
known or knowx up to a shape parameter /4, and so on. Accordingly, we write

Y1 =t + oy

Y2 = Hy + 12121 + 0222
(8-37)

Yo = Up+ Tp1Z1 + "+ Tpp—1Zp-1 T OpZp

or
y=#+Yz=[p Y]z (8-38)

where the residual (after regression) scalings o1, ..., 6, are greater than 0 and
the pand 7 values are arbitrary ; note that the matrix Y is a positive lower triangular
matrix, a matrix for which the diagonal elements are positive, the above diagonal
elements are zero, and the below diagonal elements are real. Also let

fil@) = filzy, .. 2p) (8-39)

be the density function for the objective variation; we suppose that f, has been
suitably standardized using, say, (1-18) on each axis and some reasonable procedure
for the regressions.

For n independent performances we have y; = p + Yz; for the ith performance
and

Y=pl'+YZ=[pY]Z=0Z (8-40)

for the compound response Y and variation Z. Note that 1 is an n-vector of ones
and that [ g, Y] operates on Z column by column as in (8-38). The distribution
for the compound variation is

fil2) =111 fi(z:) (8-41)
The transformations [, Y] form a group:
[a;, T2][a1, T1] = [a; + Tha;, L T1]
[a, T] '=[-T 'a, T '] (8-42)
[0,1=i
where the key item to check is that positive lower triangular (PLT) times positive
lower triangular is positive lower triangular. We then have that
G = {[a, T]:aeR?, T is PLT} (8-43)
is a group. We will see that G satisfies the exactness Assumption 7-2 on the sample
space, provided n > p + 1 and a certain set of measure zero is excluded.
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We thus obtain the following structural model:
'/ﬁV = (Q ; an, '%7}71’1’ st G) (8-44)

where the parameter space is Q = (G x A), 7 is the class of densities f; in (8-41),

and G is tﬁe\transformation group (8-43) with action (8-38). We abbreviate this as
h Y = 6Z with 0 in G
Z has distribution in the class ¥~ (8-45)

and assume that n > p + 1.

8-2-3 The Analysis

For the analysis we can use notation available from Chaps. 2 and 6.
To begin with, consider the first response variable for a single performance
in (8-37) and for the n performances in (8-40). For the n performances we have

Y1 = }111, + U(I)Zl

This is a simple location-scale transformation as in Chap. 2. Accordingly, we let
7, be the average for Z; and s(;,(Z) be the residual length after regression on the
one-vector 1; and we let D{(Z) be the unit residual [see (2-5) and (2-6)]. Thus

Zl = 211, =+ S(l)(Z)Dl(Z) (8-46)

Now consider the second response variable for a single performance in (8-37)
and for the n performances in (8-40). Then for the n performances we have

Yo = ol + 15124 + 022>

This has the regression form in Chap. 6. Accordingly, we let Z, be the average for
Z,, t21(Z) be the regression coefficient on D;(Z), and s2)(Z) be the residual length
after the preceding regressions; and we let D,(Z) be the unit residual. Note that
we are using the descending factorial notation “(2)” in the subscript to suggest
that the “2” also covers the preceding “1,” in this case as a regression residual.
Thus

Zy = 51 + 121(2)D1(Z) + s2(Z2)D2(Z) (8-47)
Continuing in this pattern we have the following for Z,:
Z, =2 + 1,(Z)DUZ) + * + tpp-(Z)Dy-1(Z) + sp(Z)Dy(Z)  (8-48)

where Z,, t1(Z),. .., 1, 1(Z) are the regression coefficients of Z, on 1, Dy(Z),...,
D,-1(Z); s Z)is the residual length ; and D,(Z) is the unit residual. The regression
coefficients are particularly easy to calculate because the relevant vectors are
orthogonal.

The preceding can be collected in the following equation:
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Zy 7 51 01 D1
=l |
Zy Zp Ip1 S| | P
Z = [Z]D(Z) = [z T(Z)]D(2) (8-49)
AN
where
2,
7= |:
B
[51)(2) 0
T(Z) = t“;(Z) s@2)(Z) . (8-50)
_[pl(Z) e p-iZ) s (2)

Thus we have expressed a general point Z on the orbit GZ by means of the trans-
formation [z, T(Z)] in the group G relative to the reference point D(Z) obtained
by successive orthonormalization. The preceding calculations can fail if one of the
residual lengths s1y(Z), ..., s»(Z) is zero. In this case there is linear dependence
among the vectors 1',Z,, ..., Z,; we exclude the corresponding set of measure
zero from the effective sample space.

The Jacobians from Secs. 7-2-2 and 7-2-3 are readily calculated. In the sample
space we have

=[T[" (8-51)

The transformation [a, T'] operates column by column and | T | is the determinant
for any particular column. Thus

IlZ) = | T(2)|"

- 1 (8-52)
dM(z) = [T~ st)(2)...stn(2)
On the group we have
[4, T] = [a, T][a* T*]
= [a + Ta* TT*]
a=a+ Ta* .
T=TT*

The left transformation operates column by column on a*, T*; a determinant
for a column involves the relevant part of the matrix T—specifically the diagonal
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elements that correspond to real coordinates for a column of T*. Thus
J(g:9%) = [say--- sl sy - sod 52 - Soml --- [3w]
=sty...sly ' =[T|[T|a

where we introduce some convenient notation for increasing and decreasing
determinants:

5(1) 0
| Tla= " = st Sty
Ip1 S(py| &
' 8 (8-54)
5(1) 0
| Ty = = sty Sip
Ip1 Spy| v
Thus
J@=|T||T )
(8-55
dadT dadT
du(g)

N |T| |T|A:S<21}---Sp§1

The right transformation carries T to T row by row, and for given T carries
a to a by location change; a determinant for a row of T involves the relevant
part of the matrix T*—specifically the diagonal elements that correspond to real
coordinates for a row of T. Thus

J*(g*:g) = sty [styss] [stystysty] - [s&y - st

=555 = | T* s

J*g)=|Tlv
dadT dadT
dv(g) = = (8-56)

|Tly k... s

sty 8l | Ty

styesty [ TIIT

A(g)

Consider the coordinates [z, T(Z)] as given by (8-49). Rows of Z come from
rows of [Z, T(Z)] ; for any row the corresponding basis vectors 1', D1(Z), ..., D,(Z)
are orthogonal and of length 1, except for the one-vector which has length \/;
Accordingly, we have

J(D) = n?? (8-57)

This uses the alternate interpretation for dD: Euclidean volume orthogonal to
the orbit GD at D (recall Sec. 7-2-6).

Now consider the analysis of an inference base (.#, Y°); we follow the pattern
in Secs. 7-1 and 7-2 and the first application in the preceding Sec. 8-1.
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The observed orbit gives the observed value for the variation
D(Z)= D(Y°) = D° (8-58)
This gives the inference base (a) from Sec. 7-1-4:
(Mp, D) (8-59)

The distribu?i(\)‘ﬁ’s in .4y are available from (7-46):
hyD) = J fa@l' + TD)siy% ... sty P~ n?? dz dT (8-60)
G

This, of course, leads to the observed likelihood for A:
L(D°; 2) = ch;(D°) (8-61)

The integration (8-60) is a [p + p(p + 1)/2]-dimensional integration, as opposed
to the 2p-dimensional integration in Sec. 8-1, and would need rather special
computer techniques except for very small p.

The unobserved characteristics of the variation lead to the inference base (b)
from Sec. 7-1-4:

(P, [Y°)) (8-62)
The distributions for the structural model .#P° are available from (7-47):
hy DO fo(ZV + TD)sl,2 ... siy P~ nP2 dz dT (8-63)

a distribution on the group G. This distribution for the unidentified variation is

used with the transformation
y=u+1YZ
T(Y) = YT (8-64)

The observed values for the response coordinates are given by
(Y] =[¥% T(Y)] (8-65)

The response distribution corresponding to the identified D(Y) = D(Y°) = D°
is available from (7-49):

B YD) A(YH(F — w1l + T(Y)D® Sm(Y)..-s(p)(Y))" n?2 dy dT(Y)
0O 1t — it + 1007 s

(8-66)

-+ Gp)

8-2-4 Inference for Component Parameters

As we have noted in Secs. 7-3-3 and 7-3-5, some parameters may not index left
cosets on G and thus may not be amenable to the strong inference methods
investigated in Chap. 7. In this section we examine two important parameter
components for the model, components that do have the special left coset property.
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We are able to, and in fact will, examine these parameter components separately.
The sequential methods of Sec. 7-4 are also available, however, for the two com-
ponents, in either order.

For the location parameter g we have the separation of the equation ¥ = 6Z
giving a u-specific component:

T V)y-m=T "z=t (8-67)
The full parameter can be separated as
[ Y] = [, 1][0, Y] (8-68)
Note that g indexes the left cosets of the scale group Gs = {[0, T]: T is PLT}:
o (1 Y1Gs = [ 11Gs (569
The group coordinates can be separated in reverse order:
[z, T]=1[0,T][tI] (8-70)

Note that t indexes the orbits (right cosets) of the scale group
Gs[z, T] = Gs[t, T] (8-71)

The marginal distribution for t is easily derived from (8-63) using dz = | T | dt
for fixed T ; the probability differential is

h; {(D°) f FHITEV + DOsint .. sty P dT n?? dt (8-72)
GS

This distribution with equation (8-67) provides for tests and confidence regions
for the location parameter pu.

For the scale parameter Y we have the separation of the equation giving the
TY-specific component

Y IT(Y)=T (8-73)
The full parameter can now be separated as

where 6 = Y7 1 is the coefficient of variation. Note that Y indexes the left cosets
of the location group G, = {[a,I]:aeR¥}:

[#, Y]GL = [0, Y]G, (8-75)
The group coordinates can bé separated in the reverse order, giving
[z T]=[z1][0,T] (8-76)

Note that T indexes the orbits (right cosets) of the location group
G.[Z, T] = G.[0, T] (8-77)

The marginal distribution for T can be obtained by directly integrating z from
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the distribution (8-63); the probability differential is

hi Y(D°) ( fi(Z1' + TD)s{% ... sty P~ ' nP? dzdT (8-78)
v Gy
This distribution with the equation (8-73) provides for tests and confidence
regions for Y.
For location the subcomponents wuy,(tt1, 2), (i1, f2, 13), . .. are amenable to
the strong confidence procedures we have been examining. In a parallel way for
scale, the subcomponents

\ 0'{1) O
~— . 0(1)’ - 5o
T21 0(2)

also are amenable to the method.

8-2-5 Supplement

Confidence distributions are not part of the theme of this book, but they are
rather easily derived; the mathematics is attractive and they have importance.
For this particular development, we choose to avoid them for special reasons.
However, we record several here for their mathematical interest. We also record
some useful relations for measure differentials.

For the full parameter § we obtain the following confidence distribution from
formula (7-105) with (8-63):

by {(DO)£,(XH(YO — pl) [S‘”(Y - 5p(Y°) J

Oy --- O(p

SP(YO) .. sl (Y nP? dpdY (8-79)

sty(YO) .. sl HY®) ahy... 0l

For the location parameter u we can proceed as in Sec. 7-4-5 by factoring the
invariant measure in accordance with the component groups and then using (8-70).
The resulting formula, however, is available directly by integrating Y out of (8-79);
the differential for u is

7 1(D?%) J LY = p1) Mpﬁm
Gy G(1) ---O(p) (8-80)

X St P (Y O)siy P H(Y0) . st P(Y )P dp

For the scale parameter Y we can also use (8-70). Again, however, we can
obtain the formula directly by integrating u out of (8-79); the differential for Y is

hII(DO)j LY — )P dpsEsPHY0) sy P(Y0)
GL

i (8-81)

n+p n+1
o)’ ... Olp)
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For completeness, we record the factorizations of the left invariant measure
needed for the direct use of the results in Sec. 7-4-5. For the location group G, the
invariant measures are

dui([a,I])=da dvi([a,I]) = da (8-82)

Forthe scale group Gs the measures are available by a simplification of the steps
used with (8-55) and (8-56):

dT
dus([0, T]) = rﬂ;
dT
dvs([0,T]) = T (8-83)
T
As([0.T]) = i = }Z
For the factorization
[a, T]=1[0,T][tI] (8-84)
with t = T~ 'a in (8-70), we have, from (7-125),
dadT dT
—— =1 H; dt
T[T [T
(8-85)
_ ATy
| T
where H; = 1 can be verified easily.
For the factorization
“[a, T] =[a,I}[0, T] (8-86)
in (8-76) we have, from (7-125),
dadT o |Tl/|T|[T]s dT
[ T]IT]a CTMITL T
o T (8-87)
I T T]a

where H, = 1 trivially.

The formulas (8-85) and (8-87) are rather routine and hardly need the results
in Sec. 7-4-3. The steps, however, contain some other useful material and do
illustrate the factorization in Sec. 7-4-5.
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8-3 MULTIVARIATE MODEL : NORMAL PROGRESSION

Now consider the multivariate progression model but with a normal pattern for
the variation. As we have noted before, the multivariate normal has so many
symmetries that many distinctions, useful and essential in general, vanish rather
trivially. Fr\om this viewpoint the normal does not provide a good illustration
for the results in the preceding section. The results from the preceding section,
however, give us in a simple routine mechanical way all the basic distribution
theory for the multivariate normal. Accordingly, we examine this normal case in
detail.

8-3-1 The Normal Model

Consider a random system with a p-variate response y. From Sec. 8-2 the pro-
gression model .#; for n performances has the form

Y =pul' +YZ (8-88)

where Y and Z are p x n, u is the location for y, and Y is the positive lower
triangular p x p scale matrix.

In this section we examine a normal distribution for the variation. The
standardization (1-18) together with a reasonable elimination of regressions gives
the standard multivariate normal,

f(@) = 2n)~ P exp (—3Z2})

= (2m)"?"? exp (—477) (8-89)
The corresponding distribution for the sample matrix Z is
f(Z)=(@2r)™"" exp (—1 tr Z'Z)
(8-90)

= 2n)" "2 etr (—3Z'Z)

where tr is the trace function and etr is an abbreviation for exp(tr —). We can
write the preceding in the invariant form

f(Z)dZ = 2n) "2 etr (—3Z'Z)| T |" dM(Z) (8-91)

The corresponding response distribution can be obtained by direct substitu-
tion and the use of the group transformation Z = Y~ }(Y — ul’). For this we need
the following simplification of the quadratic exponent:

Sh=uwZZ
—tr (Y — glyYIY (Y — )
—tr (Y — plYSNY — pl)
=y — I yi— w0

where X = YY" is the covariance matrix for y = u# + Yz and we use | Y|" = |Z|"*.

(8-92)
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The response distribution is
Qm) PR Z |7 etr [ HY — plYETHY — p)]| T(Y)|" dM(Y)
e = Qm) 2| Z| 7" etr [-HY — plYZHY — p1))]dY
T—

(8-93)

Recall that the progression model describes the response variables in a pre-
scribed order taken to be yy, ..., y, and note that the relation ¥ = YY" represents
Y as a PLT square root taken with respect to that same ordering. A different
ordering of coordinates would give a different square root of a variance matrix
2. For an application of the progression model the particular order for the co-
ordinates is part of the specification of the system being investigated.

8-3-2 The Analysis

Consider the analysis of the inference base (.#,, Y°) using the normal model for
variation in Sec. 8-3-1. Following Sec. 8-2-3 we determine the marginal distribu-
tion for D(Z) = D(Y) = D and the conditional distribution for [Z] given D.

For this we need the simplification of the normal exponent

tr Z'Z = tr (ZZ))
— tr (z1' + TD)(a1' + TDY
— tr (znZ) + tr TDD'T’ (8-94)
=trnzZ+tu TT
=32(/nz)+ Y th+Esh

>7

where we have used the orthogonality of 1" with the rows of D and the ortho-
normality of D, that is, DD' = I.
First we obtain the conditional distribution of [ Z] given D:
h™ YD) f(z1 + TD)si5% ... siy Pt n?? dz dT
Ape1... A

= Wf exp (-%anf — %Ztif — %‘ZS(ZJ)) (8-95)

X St 2 sty PV TTd/n 25T dsy T dt
For this we have used the normalizing constant 1/(2x)'/? for the standard normal

density form found for each of the \/; zjand t;;. Also we have used the normalizing
constant for the chi density form found for each of the s;:

. f> 52> 52>f:'2-1d52 i 2\
HES —_ = A o ef 1
: (2 P22 2 T P\ T

A s*\ .
= ®§72- exp <——2—>sf Uds (8-96)
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where A, = 2n///T(f/2) is the surface volume of the unit sphere in R/. In the
preceding distribution (8-95) we have used the volume constants Ay rather than
the usual gamma functions. This allows the associated denominator involving
powers of (271)"/2 to correspond directly to the dimension of the space from which
the variable derives, and leaves the constant A; as the representative of the unit
sphere integration that is appropriate for the particular variable. We can write
the distribution (8-95) more compactly ; in particular, we let

AP = A Ay Ay (8-97)

Note the suggestive use of the descending factorial notation. The distribution for
[Z] given D is

A d/nzdT
I etr (—4nzz — 3TTH| T|" T s
(27'5)"1,/2 ( 2 z i lTHTI
8-98)
: S NCE i ooar
_—_Wetr(—%nzz)d\ﬂlzmmetr(—%TT)]” lm;

This distribution for Z and T can be described very simply. The components
are statistically independent and

\/; z;1s normal (0, 1)

S(1) 0 Yn—1 0
fa1 S Z31 -2

T=|" @ | Sz (8-99)
tpl Ce tp,p*l S(I’) VZPI Zp,p—l Xﬂ—p

where the z variables here represent independent normal (0, 1) variables and the
y variables represent independent chi variables with degrees of freedom as sub-
scribed. The distribution of T is called the triangular chi distribution Ayxp(n — 1).

The conditional distribution (8-98) gives us the distribution component for
the model .#P°. Thus as in Sec. 8-2-3 we obtain the component inference base
(8-62):

(AP, [Y°])

where the model .#2° has the distribution for [Z] given by (8-98) and the
transformation

y=p+1Yz
Y)=

T( YT

relating the response [ Y] = [§, T(Y)] to the variation [Z] = [Z, T]. The observed
values for the response coordinates are

[Y°] = [y T(Y°)]
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Now we obtain the marginal distribution of D. This involves effectively the
integration of the normal and chi components we found in (8-95). That integra-
tion was-trivial as we happened to know the norming constants for the normal
and chi density forms. The resulting constant A(D) can be read from (8-95):

dD
WD) dD = AP, (8-100)
For this, as in Sec. 8-2, we have used the alternative and typically more useful
interpretation of dD from Sec. 7-2-6. Formula (8-100) shows that D has a uniform
distribution on Q relative to our particular choice of measure dD.

Note that D consists of p orthonormal row vectors in #*(1’). Thus D is a
p x n semiorthogonal matrix with rows orthogonal to 1'. The space Q of such
matrices forms a manifold in R?" of dimension p(n — 1) — p(p + 1)/2. It is an
example of a Stiefel manifold. Our calculations here have determined that this
Stiefel manifold has volume A{), as calculated orthogonal to the orbits GD at
each point D on Q. In Sec. 8-3-5 we will obtain the actual volume of the Stiefel
manifold.

The marginal distribution (8-100) gives us the distribution component for
the model .#;. Thus, as in Sec. 8-2-3, we obtain the component inference base
(8-59):

('%D’ DO)

where .4} has the single distribution (8-100). The model .#), however, has no
parameter, and records a fixed probability distribution; the data value D° is an
observed value for that distribution. Accordingly, the inference base collapses by
necessary method RM,; in Sec. 3-2.

The conditional response distribution for Y given D(Y)= D(Y%) = D° is
available from (8-66). For this we first simplify further the exponent from (8-92):

tr Z’Z = tr (Y — pl'YS"YY — ul)
= tr [§ - w1 + T(VDYE [ ~ w1’ + T(Y)D]

— tr Ay — I - ) + tr T T(V)Z ! (8-10)
=trny — WX Y —p) + tr S(Y)Z71
where
S(Y) = T(Y)T/(Y) = T(Y)D(Y)D'(Y)T'(Y)
(8-102)

= (Y —yI')(Y - y1Y

is the inner product matrix for the row vector residuals relative to the one vector;

we have, of course, used the property tr (AB) = tr (BA). The response density
function in terms of [ Y] = [y, T(Y)] is

AR n,_ e 1y s sy (T) T

> exp [——(y — WYZTH - m]etr [—4S(Y)z 1] [Ml]

s €X
(zn)np/Z 2 O(1)--- O(p)
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y d/nydT(Y)
say(Y) .. sEy H(Y)
bl

AP
= (2n)p/2 exXp I;—g(y I‘)Z 1(y ﬂ)}d\/-y(z—metr[ 1S(Y ]
|S(Y)|"=V2  qT1(Y)

lz’(n—l)/z ’T(Y)}A (8'103)

Thus § is N(u;n~ 'Z) and independently T(Y) is a scaled triangular chi distribu-
tion designated Ay,(n — 1: Y), where Y is the PLT square root of £; for this note
the relation

tr S(Y)Z '=tr YTIT(Y) T'(Y)Y' ! (8-104)

8-3-3 The Scale Component

Consider the scale parameter Y. As noted in Sec. 8-2-4 this indexes left cosets on
the parameter space G and we have

[ Y] = [0.Y][6.1] (8-105)

where & is the coefficient of variation. The presentation equation [Y] = 6[Z]
has the scale component

T(Y) =

or
Y IT(Y)=T (8-106)

The marginal distribution for T is available from (8-78) and trivially from

(8-95) and (8-98) by noting the independence ; we have the probability differential

APy a1 dT

@y Vo7 etr {—3TT}|T|"* | L (8-107)

This is the triangular chi distribution Ay,(n — 1) of formula (8-99). This distribu-

tion with equation (8-106) gives tests and confidence regions for the parameter Y.

The analysis of scale for the multivariate normal is usually in terms of the

covariance matrix £ = YY" and the inner product matrix S(Y) = T(Y)T'(Y). We
have one-one correspondences:

YeX=YY
T(Y) - S(Y) = T(Y)T'(Y) (8-108)
TeS=TT

where a left element is the PLT square root of the corresponding right element.
We have distributions for T and T(Y); we now obtain the corresponding distribu-
tions for S and S(Y).
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The transformation from 7T to S given by S = T T’ has a triangular Jacobian
matrix provided we take coordinates of Trow by row from left to right within rows.

Component transformation  Conditional Jacobian

s11 = 54, 251
S21 = I215(1) S(1)
S22 = t31 + 5k 2502, (8-109)
831 = 1318(1) S(1)
S32 = [31021 T [325(2) S(2)
S33 =131 + 132 + 533 25(3)

Accordingly, we obtain

S |
!G_TI = 250)(51)252)) - = 27| Ty

_ 20| s|er2 (8-110)
The alternative form uses the notation
i1 Sl [S11 S12 S13
IS|\7='311| s ls21 S22 S23) "7
2 |531 S32  S33
—|T]? (8-111)
which will be useful later. Then by substitution in (8-107) we obtain
AP X as
e —_ -2
Gy vz St (IS SIT0E
AP , ,
= W etr (—48)| S| - V12 3 r gy (8-112)

This is the standard p-variate Wishart distribution with (n — 1) degrees of freedom,
Wyn — 1).
The distribution of S(Y) is obtained in the same manner from the distribution
of T(Y) implicit in (8-103):
AR,

é;)m ctr [—%S( Y)Z_ 1] |

S(Y)|"= D2 4s(Y)
|z|(n— 1)/2 21:‘5()/)‘(17*“1)/2

(8-113)

This is the general W,(n — 1, Z) distribution, the p-variate Wishart with (n — 1)
degrees of freedom and variance matrix X.
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8-3-4 The Location Component

Now consider the location component g. We examined the scale component in
the preceding section so as to have available some integration results for the
present section. The parameter # indexes left cosets and we have

[ Y] = [ 1[0, Y]
The presentation [ Y] = 6] Z] has the location component
T'Ny—pw=T 'z=t (8-114)

We now derive the marginal distribution for t = T~ 'Z using (8-72), together with
the normal case distribution recorded in (8-98); we record this in terms of the
density for \/ﬁ t. Thus

AP dT

J\G Wetr [—%T(I’ltt, + I)T’] T‘" ‘7T7|A

(8-115)

AP dT
= ——etr (—4TEE'T)|T|"
J Gay o (HTEET TV o
where E = (ntt’ + I)* and we have written M* for the PLT square root of an
inner product matrix M.
For the integration in (8-115) we use the seemingly natural variable TE
together with the relation

dTE = |E|y dT
implicitly available from (8-83) with (7-35); we also use | TE|s = | T'|a| E 5. Thus
AP . dTE |E|a
(2n)np/2 jl;s etr (_%TEE T) l TEl l TE |A ‘E lnIE IV

A;IL) 1 (27'6)"”/2 |E |A (8-116)

T QnyP? AP |E'|El

where we have now used the integration properties available from (8-107).
The density for an tin (8-116) can be simplified using the notation in (8-111):

APy 1 (ER|El A, 1 [T |re
AP |El" |ER A, [T+t |1+ ntt|y (8-117)
A”_p 1 ‘I + ntt’ (p+1)2

Ay [T+ et [0 D502 T ot |y

The distribution of vfr_z t is called a disquised Student or triangular Student distri-
bution; in the final expression it is written as a special case of a more general
matrix distribution and is called the triangular Student Aty (n — 1) with (n — 1)
degrees of freedom.

This distribution with equation (8-114) gives tests and confidence regions for
the location parameter .
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8-3-5 Supplement: Volume on the Cross Section

The reference points D lie on a manifold Q of semiorthogonal matrices. From
formula (8-100) we saw that the “surface volume” of Q was A¥; : the matrices D
were p X n semiorthogonal matrices of p row vectors orthogonal to the 1’ vector
and the volume was calculated at each point D orthogonal to the orbit GD at the
point D. Now consider the volume of Q using the tangential coordinates on Q as
initially suggested in Sec. 7-2-4.

For this we have the expression

TD (8-118)

where T belongs to the scale group Gs of p x p PLT matrices and D is a semi-
orthogonal matrix of p row vectors in #*(1) of R". The matrix TD consists
of p row vectors in #*(1) of R". We are considering measures and volumes based
on Euclidean distance. Accordingly, we can make an orthogonal transformation
of R"toisolate #*(1)and reconsider (8-118)with Dnow an arbitrary semiorthogonal
matrix of row vectors in R"" 1.

We consider the relationship between dD calculated orthogonal to GD at D
and dD calculated tangential to the manifold Q. For this we again make an orthog-
onal transformation of R” ! and represent the point D as

1 O e 0
p=|° ! (8-119)

: L0
0 - 010 -0

The change from D to an adjacent point of Q (actually on the tangent plane)
has the following representation:

0 512 5111—1
-0 0 ’
sp= | . (8-120)
: ) 5;7*1,1)
‘5111 _517*1,17 0 ‘Sp-zﬁl 5p.n*1

for clearly to a first derivative approximation D + 4D is semiorthogonal. In a
similar way a first derivative change in T from the identity I has representation

Ay O 0
AT-D=| 1 -. . : (8-121)
Ay . Ay O .00

If we use the coordinates of 8D above the diagonal, then we have orthogonality
of (8-120) and (8-121). Thus, locally, the above-diagonal coordinates in (8-120)
represent Q projected in the orthogonal complement of GD at D, and the full array
of coordinates represents the tangent plane to the manifold. How do these two
representations differ?
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Consider a special case. Suppose we record x for length on R! and record
(x, x)on R, Unit length for the original is represented as length | /2 on the diagonal
line.

In the more general case we have p(p — 1)/2 coordinates that are represented
(locally) in this double manner. Accordingly, the volume of Q tangentially is
2P(P—1/% times the volume orthogonally.

It follows that the volume of the particular Stiefel manifold in Sec. 8-3-2 is
AP, 2pp= /4 For further discussion see Bishop (1977).

8-4 MULTIVARIATE MODEL : LINEAR

Consider a random system with a p-variate response y = (y1,...,),). For the
linear model in this section we suppose that the location of the response vector
is unknown and that the scale of the response in the form of a positive linear trans-
formation is unknown but that otherwise the distribution form is known or
known up to a shape parameter A.

8-4-1 The Model

We use the modified notation introduced in Sec. 8-2. For n performances of the
system we have y,,...,y, where each is the appropriate p-variate response
vector ; thus

Y Yir " Vin
Y:(ylr“-;Yn): . N
YI’ Yp1 7" Vpn

and Y; is the row vector recording the n performances for the jth response.

For the response y we suppose the location g is unknown ; that the scale I' is
an unknown p x p transformation matrix with positive determinant ; but that the
distribution form is known or known up to a parameter .. Accordingly, we have

y=u+1TIz (8-122)
Y1 231 Vit 0 Pip | |21

or = B (8_123)
Yo | Hp Y1 0 Vep | | Zp

where |T'| > 0 and g€ R?. Also we let
fi@) = filzy, ..o zp) (8-124)

be the density function for the objective variation. We suppose that f; has been
suitably standardized using, say, (1-18) on each axis and some reasonable standard-
ization for the linear transformation.

For n independent performances of the system we then have y;= u + I'z;
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for the ith performance and
Y=pl'+TZ=[pnT]Z2=0Z (8-125)

for the compound response Y and compound variation Z. Note that [g,I']
operates on Z column by column as in (8-122). The distribution for the compound
variation is

Si(Z) =111 fi(z) (8-126)
The transformations [ g, I'] form a group:
[a2, C2][a1, C1] = [a2 + Cray, C2C4]
[a,C] '=[-C'a,C '] (8-127)
[0,I]=1i
Note, of course, that the p x p positive matrices are closed under multiplication
and inverse. We thus have the positive affine group

G = {[a,C]:aeR?,|C| > 0} (8-128)

We will see that G is exact on the sample space provided n > p + 1 and a certain
set of measure zero is excluded.
We thus obtain the following structural model:

My = (Q:RP" B 1, G) (8-129)

where the parameter space is Q = (G x A), " is the class of densities f; in (8-126),

and G is the positive affine group (8-128) with action (8-125). We abbreviate this as
Y=0ZwithGinG
Z has distribution in the class 7~ (8-130)

and assume that n > p + .

8-4-2 The Analysis

For the analysis we use the notation from Chaps. 2 and 6 together with that from
Sec. 8-2.
Consider a transformation [a, C] in the group G:

Z| [ i1t Cip| |4
R R A o EEERRRRR R TR (8-131)
Zy dp o Cppl L2

We find it convenient to view Z as a sequence Zi,..., Z, of p points in R" and to
observe the effect of the transformation on this sequence of p points.
Let #*(1,Z,...,Z,) be the (p + 1)-dimensional subspace of R":

3*(1/,21,...,21,) = {Coll + 0121 + -+ Cpr: CjER} (8-132)
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together with the orientation of the sequence 1, Z, ..., Z, treated as the positive
orientation for p + 1 vectors in (8-132). A group element g = [a, C] carries the
sequence Z1, ..., Z, into the sequence Z1, ...,Zp alsoin (1, Z,,..., Z,), with
the same positive orientation. In fact, from (8-131) we see that we can get any
sequence in (1, Z,, ..., Z,) provided it has the positive orientation.
We wish to choose a basis for the space (1, Z,...,Z,). Let 1’ be one of
the basis vectors and let
Dy(Z)
D(Z) = : (8-133)
D,(Z)

consist of p orthonormal vectors, orthogonal to 1’, and with the positive orienta-
tion. We use 1’ with D(Z) as a basis for the space. The choice of basis must not
depend on Zi, ..., Z, directly, only on the space £ (1, Z1,...,Z,). Such a basis
can be formed, for example, in the following way: take a sequence of p linearly
independent vectors, say the first p coordinate vectors; project them into the
subspace; and orthonormalize them in sequence as done to obtain Dy,..., D,
in Sec. 8-2-3. Such a procedure gives a basis except, of course, for a set of measure
zero for which the projections have linear dependence.

Now let Z = (Zy, ..., Z,), C(Z) together record the regression coeflicients for
Zi,....Z,onV,D(Z),...,D,(2):

Z =7l + C(Z)D(Z)

= [2.CZ)]D@) (8-1349)

where [Z] = [Z, C(Z)] is an element of the group G that gives the position of Z
relative to D(Z) as the reference point.

The Jacobians from Secs. 7-2-2 and 7-2-3 are readily available with less
complication than in Sec. 8-2-3. A transformation on the sample space operates
column by column. Thus, as with (8-51), we have

Jpn(Z) = |C(Z) ln

iz (8-135)

dM(Z) = IC?)V

On the group we have
[, C] = [a,C][a*,C*]
= [a + Ca* ,CC¥]
i=a+Ca* (8-136)
C = CC*
The left transformation operates column by column on a*, C*. Accordingly,

sa=ler (8-137)

dulg) = da dC
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The right transformation operates row by row on C and for given C operates
only by location on a. Accordingly,

J¥g)=|C|”
(8-138)
dad
o) =T |ff
and Ag) =|C|™! (8-139)

Consider the transformation [z C(Z)] and its application giving Z =
[z, C(Z)]D(Z). Rows of Z come from rows of [z C(Z)]; for any row the cor-
responding basis vectors 1', D4(Z), ..., D,(Z) are orthogonal and of length 1, except
for the one-vector which has length | /n; accordingly, we have

J(D) = n?? (8-140)

This uses the alternate interpretation for dD: Euclidean volume orthogonal to
the orbit GD at D (recall Sec. 7-2-6).

Now consider the analysis of an inference base (.#y, Y°); we follow the
pattern in Secs. 7-1, 7-2, and 8-2.

The observed orbit gives the observed value for the variation

D(Z)=D(Y°) = D° (8-141)
This gives the inference base (a) from Sec. 7-1-4:
(M, D°) (8-142)
The distributions in .#j are available from (7-46):

h,(D) = J (@1 + CD) |C |7~ ' n?? dz dC (8-143)
G

At a minimum this gives us the observed likelihood for 4:
L(D°; 7) = ch,(D°) (8-144)

The unobserved characteristics of the variation lead to the inference base
(b) from Sec. 7-1-4:

42, [Y°)) (8-145)
The distributions for the structural model .#®2° are available from (7-47):

hy (D) f3(z1" + CDO)|C "~ P~ nP? dz dC (8-146)

This distribution for the unobserved variation is used with the transformation

Yy=u+T1Z

C(Y) = re (8-147)

together with the observed response position
[Y°] = [2° C(Y°)] (8-148)
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The response distribution corresponding to the identified D(Y) = D(Y°) = D°

is available from (7-49):
n P2 Jg
hy {DO) £:(T[(F — w1’ + C(Y)D]) |C(Y)|"  nP? dy dC(Y)

ir et

(8-149)

8-4-3 Component Parameters

We have noted in Secs. 7-3-3 and 7-3-5 that some parameters index left cosets on
the parameter space G and accordingly give unequivocal tests and confidence
regions expressible directly in terms of the variation. As in Sec. 8-2-4 we derive
the appropriate distributions for use with the location and scale parameters; the
tests and confidence regions are then available from the formulas in Sec. 7-3.

For the location parameter g we have the separation of Y = 6Z giving the
u-specific component

CT'V)Vy—-—pw=C'z=t (8-150)
The full parameter can be separated as
[w.T] = [u.1][0.T] (8-151)
showing the left coset form
[4.T1Gs = [ 11Gs (8-152)
where
Gs = {[0,C]:|C|> 0} (8-153)
is the scale group. The group coordinates can be separated in the reverse order
[z,C]=[0,C][t I] (8-154)
where t indexes the orbits
Gs[z,C] = Gs[t.I] (8-155)

of the scale group.
The marginal distribution of t is easily obtained from (8-146) using dz = |C|dt
for fixed C ; the probability differential is

h; {(D°) f £,(Ct1’ + D) | C [~ 7 dC n?'? dt (8-156)

S

This distribution with equation (8-150) provides for tests and confidence regions
for the location parameter u.

For the scale parameter I’ we have the separation of Y = 6Z giving the
I"-specific component

r-‘c(yy=cC (8-157)
The full parameter can be separated as
[, T]=[0,T][5,1] (8-158)
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where 8 = ' is the coefficient of variation, and we have the left coset form

[0.T]GL=[0,T]G, (8-159)
where

G.={[a,]]:acR?} (8-160)
is the location group. The group coordinates can be separated in the reverse order

[z.C|=[z1I][0,C] (8-161)
where C indexes the orbits

GL[z, C] = G.[0,C] (8-162)

of the scale group.
The marginal distribution for C is easily obtained by directly integrating z
from the distribution (8-146); the probability differential is

m%p%j fi(Z1' + CD%) n?2 dz | C|" Pt dC (8-163)
GL

This distribution with the equation (8-157) provides for tests and confidence
regions for I,

The location subcomponents such as puj, (g, 2) are not amenable to the
strong procedures that are directly variation-based: some analysis shows they
do not have left coset form. In a similar way specific component entries in the
matrix I' do not seem to be amenable to these variation-based methods.

8-4-4 Supplement

As noted in Sec. 8-2-5 confidence distributions are not part of the theme of this
book. However, they are certainly of mathematical interest in relation to what
we have done, and we record several for this reason. We also record some useful
relations for measure differentials.

For the full parameter 6 we obtain the following confidence distribution from
formula (7-105) with (8-146):

o) [C(YO|* 1 n??dpdl

-1 Ny £ (Tr—1(vO _
(D )fﬁ(r (Y ’rln [C(YO)‘ |r!p

(8-164)

For the location and scale parameters we can proceed as in Sec. 7-4-5, or, as
noted in Sec. §8-2-5, equivalently, we can integrate directly on the parameter
space. Accordingly for u we obtain

dar

|F|"+"‘C (YO~ n?% dp (8-165)

hi {(D°) f £T7HYO = u))
GS

and for I" we obtain

—1 - 0o __ ! !’2 mdr
; <D°>L,,ﬁ(r R T T

(8-166)
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For completeness we record the left and right invariant measures for the
location and scale groups; these can be used for the Sec. 7-4-5 analysis and will
be of use later. For the location group we have

dur(a,I))=da  dv.([a I])=da

8-167
Aufa, 1)) =1 (8-167)
And for the scale group we have
acC dcC
dus([0, C]) = [ dvs([0,C]) = ‘C_‘; (8-168)

As([o» C]) =1

8-5 MULTIVARIATE MODEL : NORMAL LINEAR

Now consider the multivariate linear model but with a normal pattern for the
variation.

8-5-1 The Normal Model

Consider a random system with a p-variate response y. From Sec. 8-4 the linear
model .#, for n performances has the form

Y=ul' +TZ (8-169)

where Y and Z are p x n, g is the response location, and I' is a positive p x p
scale matrix.

In this section we examine the model using the standard normal distribution
for the variation:

f(Z)= Qr) P2 etr (—3Z'Z) (8-170)

The corresponding response model for Y is available following the pattern of
calculation in Sec. 8-3-1:

Qm) 2 || 2 etr [—H(Y — plYETHY — pl)] dY (8-171)

where ¥ = I'T” is the variance matrix for Y.

Note that I" is a square root of the inner product matrix X. There are, of
course, many square roots for a given matrix X, including the PLT square root
Y of Sec. 8-2 and the obvious permutation variants on that PLT square root.
This suggests that I is not fully identifiable from sample values —the arbitrariness
or unidentifiability corresponds to the rotational symmetry of the standard normal.
We return to this point later.

In summary we have the following structural model:

My = (Q; R B 1, G) (8-172)
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where Q = G is the parameter space, 7~ has a single distribution (8-171), and G is
the positive affine group. We abbreviate this as

Y=0Zwithfin G
Z is standard normal on R?" (8-173)

8-5-2 The Analysis

We use the results from Sec. 8-4 together with some details from Sec. 8-3.
The change of variables to get coordinates on the orbit is given by

Z =1l + C(2)D(Z) = [z,C(Z2)]| D(Z) (8-174)
where the rows of D(Z) form an orthonormal basis for the complement of 1" in
PV, Zy,...,Z,). The exponent of the normal density involves the following

quadratic expression:
tr ZZ' = tr (z1' + CD)(z1' + CDY
= tr (nzZ) + tr (CC") (8-175)

For the integration on the group and the use of results from Sec. 8-2-3 we will
find it convenient to express C as

C=TO0 (8-176)

where T is positive lower triangular and O is positive orthogonal. The above
factoring of C into positive lower triangular and semiorthogonal is precisely the
factoring of Z — z1’ used for the group coordinates in Sec. 8-2-3. Note that the
p X p size of O and the positive determinants for C and T then gives that O is a
positive orthogonal matrix or a rotation matrix. This change of variable has the
following effect on the quadratic expression:

tr ZZ' = tr(n7)) + tr (TOO'T)
= tr (nzZ) + tr (TT')
=3(/n5)?+ Y 14 + 353 (8-177)
¥

To use the change of coordinates C = TO to facilitate the integration we need
the corresponding effect on the differentials. For this we use results from Sec. 7-4-3
together with the invariant measures from Secs. 8-2-5 and 8-4-4. We also need
properties of the positive orthogonal matrices O ; these matrices form a group

Gr={0:00'=1,|0|=1} (8-178)

Euclidean volume is invariant under orthogonal transformations; accordingly,
we have

dugr(0)=do dvg(0) = dO (8-179)
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where dO is Euclidean volume tangential to the group G as embedded in R?.
Then from formula (7-127) together with (8-83) and (8-168) we obtain

W)= G
= IET% H%dO (8-180)
= % HdO
From Sec. 8-3-5 we can rewrite this as
% - % a0 (8-181)

provided we now interpret dO as volume orthogonal to the orbits of the PLT
scale group. Otherwise we would need to write

ac dT

—plp—1)/4 -182
cp= IT|A2 do (8-182)

where we use the original interpretation of dO as volume tangent to Gg in R
For tidiness of interpretation we use (8-181) with the orthogonal interpretation
for dO (recall Sec. 7-2-6).

We can now determine the conditional and marginal distributions. For
[Z] = [z, C(Z)] given D we have

dz dC
h~Y(D)f(z' + CD) |C|"n"* —
e crer
T
“YD)(2n)" " etr (—3nZZ — %TT’)I TI"‘I n?? dz | T| ao
A
AP 2 _ 1 2 1y .2
= Qnyr? exp[—z ﬁ Z) =2 Z i — 2255
i>J
do
X Sty 2L sty PV Tldy/n 2, T dsg T dt; i A (8-183)
—-;etr _..zl_ii d Z—AL "_lﬂﬂ_
(27'5)”/2 2 n Qn Y= p/2 kT IA A(pp—l)
1 AP, ,_, dC
(2 )p/Z etr< =7z >dﬁ z AP~ (2 1)p/2 ' ‘C\p

This uses (8-95) for the normal and gamma components and it uses (8-100) with
Sec. 8-3-5 for the positive orthogonal component. Note the presence of A¥~ 1
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rather than A%, thus omitting 4; = 2. This is due to the restriction to positive
semiorthogonal matrices O: with p — 1 rows of O given there is only 1 rather than
2 possibilities for the last row, because of the positive determinant. Note for
(8-183) the particular interpretation for dO mentioned after formula (8-181).

The conditional distribution (8-183) gives us the distribution component for
the model .#¥°. Thus as in Sec. 8-4-2 we obtain the component inference base
(8-145):

(4", [Y°) (8-184)

where the model .#P° has the distribution for [Z] given by (8-183) and the
transformation

y=pn+1I2z
C(Y)= rc

relating the response [ Y] = [y, C(Y)] to the variation [Z] = [z, C]. The observed
values for the response coordinates are

(8-185)

[Y°] = [3° C(Y?)] (8-186)

The marginal distribution for D can be read from (8-183):
Aﬁ,’“ 1) ‘
WD)dD = YN dD (8-187)

Note that D has a uniform distribution on Q relative to our particular choice of
Euclidean volume orthogonal to the orbit GD at each D.

The marginal distribution (8-187) gives us the distribution component for the
model .#p. Thus, as in Sec. 8-4-2, we obtain the component inference base

(tp, D°) (8-188)

where ./ p has the single distribution (8-187). This model, however, has no param-
eter; accordingly, the inference base collapses by necessary method RM, in
Sec. 3-2.

The conditional response distribution for Y given D(Y)= D(Y°) = D° is
available from (8-149) together with (8-103), (8-181), and (8-183). For the exponent
of the normal density we have

tr ZZ=tu[(§ — )l + C(Y)D]'Z[(§ — w)1' + C(Y)D]
=trny—p) TNy —u+tr C(Y)C(Y)Z ! (8-189)
=trny —p) Z7HF — @)+ tr S(NZT

where
S(Y)=C(Y)C'(Y)=C(Y)D(Y)D'(Y)C'(Y)
=T(Y)T'(Y) (8-190)
= (Y —y1') (Y —y1)
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is the inner product matrix for the row residuals of Y'; recall (8-102). The response
density function for [Y] = [¥, C(Y)] = [§, T(Y)O(Y)] given D(Y)= D(Y°) = D°
is
AP n,_ e gm _
WCXP[—E(Y —wWI Ny - ﬂ)] etr [—3 S(Y)Z ']
|C(Y)[" d/n§dC(Y)
[rffemp

AP on
T AP 2oy P | T2

|S(V)["> d/n§ dT(Y)
[ [T T(Y)]a

F-—wE G- #)} etr [~3S(V)Z7!]

do(Y)

D21 e
T o

exp [—g(y —WEE - m]dﬁy

(p)
X @I)Ul—wietr [—%S(Y)Zil] |

exp [—%(y — T - u)]dﬁy

AP LISy dcqy)
ol __etr[-4S(Y)Z ! ;
X A(pp* 1) (2n)(n—1)p,’2 et [ 2S( ) ] IZ I(”_ bz 'C(Y) lp (8-191)

S(Y)|["=D2 dT(Y) dO(Y)
i2|(n~1),/2 }T(Y)|A A(pp*l)

}2'—1/2

(27.5)1)/‘2

where we follow the pattern of calculation in formula (8-183). This distribution
agrees with (8-103) for the progression model, but has the additional uniform
distribution for the rotation matrix O(Y).

8-5-3 The Scale Parameter

Consider the scale parameter T'. As noted in Sec. 8-4-3 this parameter indexes
left cosets on the parameter space G and we have

[0, T]=1[0,T][0 1} (8-192)

where & is the coefficient of variation. Correspondingly the equation [ Y] = 0[Z]
has the scale component

r-‘cy)y=c (8-193)

The marginal distribution for C is available from (8-163) and trivially from
the independence in (8-183). The probability differential is

A(np_)l 1 , _— dc
T e ST (—HCCO €

(8-194)
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This distribution is called the matrix chi with (n — 1) degrees of freedom and
designated y,(n — 1).

As noted in Sec. §-3-3 the analysis of the multivariate normal scale is usually
in terms of the covariance matrix £ = I'T” and the inner product matrix S(Y) =
C(Y)C'(Y); the corresponding inner product matrix for the variation is S = CC'.
The factorizations

C=T0 C(Y)= T(Y)O(Y) (8-195)

in (8-176) and preceding (8-191) show that the distributions of T in (8-183) and
T(Y) in (8-191) are exactly as for T in (8-98) and T(Y) in (8-103). Accordingly,
the distributions for S=CC'=TOO'T =TT and S(Y)=C(Y)C'(Y)=
T(Y)O(Y)O'(Y)T'(Y) = T(Y)T'(Y) are the same as given for the normal pro-
gression model in (8-112) and (8-113) in Sec. 8-3.

From a superficial viewpoint we could think of using the distribution (8-194)
with equation (8-193) for tests and confidence regions for I'. Some complications
are present, however.

The multivariate response distribution for Y depends just on g and Z. The
scale parameter I is a square root of £ but there are many square roots. Suppose
we factor I' = YQ into positive lower triangular Y and positive orthogonal Q.
Then

T=IT"=YQQY =YY" (8-196)

We noted in formula (8-108) the one-one equivalence between X and Y. It then
follows that we can view Y in I = YQ as an essential parameter equivalent to X.

Let us now examine the group structure of Y within the present linear group.
We have

[, T]=[0,T][01]
= [0, Y][0,Q] [, 1] (8-197)
=[0,Y][#.Q]

where = Q6 =QQ 'Y lg=Y"1pu
For the variation-based inference methods we need the left coset property
for the component parameters. Accordingly, consider

F={[nQ]:neR" Qe Ggj (8-198)

where the rotation group Gy was defined in (8-178); this is closed under products
and inverses and is accordingly a group. Thus we have

[1T]GE = [0, Y]G} (8-199)

The group coordinates for the sample space can be separated in the reverse
order:

[z,C] =[zI][0,0][0, T]

— [20][0, T] (8-200)
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Thus T indexes the orbits
Gt[7C] = Gt[0, T] (8-201)

For this we have used the factorization C = OT into positive orthogonal times
positive lower triangular ; note carefully that the present definitions for T and O
are different from those used earlier and defined by (8-176).

We now determine the effect of the change of variable C = OT for the differen-
tials. From (7-127) we have

ac 1 dT
A _GO0H
Cl| Tlv/|Ta|T
[cF =TT T, 520
dT
=d0
T

This uses formula (8-83) for the positive lower triangular group and takes H = 1
on the basis of the special interpretation of dO given after formula (8-181).

We now use the change of variable C = OT with the final expression in
formula (8-183):

e AR N " tr (—$OTT0) | T|"* dO e
(2n)1’/2“< 2") "2 e e 1 (73 NT] [T
1 0
_ e[ taz)amz 29,
@) 2 ApD
@
UL etr (—3TT) it s dT (8-203)

X (27.5)("~1)p/2 c

Thus the present T has the distribution described by

S1 0 An—p 0
t21 Z21

T = . c, . =
Ip1 Ipp-1 Sp Zp1 Zpp-1 Kn-1

where the z values here designate independent standard normals and the y values
designate independent chi values with degrees of freedom as subscribed. The
marginal distribution for the present 7 is

AP N L
Zetr(_ITT)_lT‘v

Q2m)n=Dp/
The preceding distribution (8-204) together with equations (8-193), (8-197),
and (8-200) provides tests and confidence regions for Y and thus for X ; this follows

dT (8-204)
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the pattern in Sec. 7-3-5. Equation (8-193) can be rewritten as
GRQ¥ IY_ IC(Y) = GROT

GrY™IC(Y) = GgT (8-205)

Thus the tests and confidence intervals are based on the right PLT component
of Y™ 1C(Y) being equal to T [see formula (7-103)].

8-5-4 The Location Component

Now consider the location parameter g. Again as in Sec. 8-3-4 we can use integra-
tion results from the scale analysis. The parameter p indexes left cosets and we
have

The presentation [ Y] = 6] Z] has the location component
C'VF—mw=C'z=t (8-207)

We now derive the marginal distribution for t = C~'Z using (8-156) together
with l/'l_le normal case distribution in (8-183). We record this in terms of the density
for./nt:

= e
L W@;)Wetr [—3C(ntt + D)C']|C|""7dC
s P

A(p)
_ n 7 r n— ’ n/2
= LA;P"“(zn)”P/Z etr [—3 C(ntt' + DC')|C|"~?|ntt’ + I|"* dC

2,

AP |ntt' + 1|72
n

AP 1

T AP [T+ md |

X

n—p 1

!
Ay [T+t

= % (1 +Zn)™"? (8-208)
For this we have used |I + AB|=|I 4+ BA| where A is r x s and B is s x r.
Note that this distribution corresponds closely to (8-117) but without a final
“disguising” factor; it is called a matrix Student t, 1(n — 1) distribution on (n — 1)
degrees of freedom.

This distribution (8-208) with equation (8-207) gives tests and confidence
regions for the location parameter u.

For some background material on the models and analysis in this chapter
see Fraser (1968, 1973).
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CHAPTER

NINE
DISTRIBUTIONS ON THE CIRCLE AND SPHERE

Response measurements can sometimes be directions on the plane, or in three or
more dimensions. For example, a surveyor measures the direction of a distant
object; a geophysicist measures the direction of the horizontal component of a
magnetic field ; a zoologist records the direction of travel for a type of large turtle
after laying its eggs. These examples involve directions on the plane. As another
example, a mineralogist measures the direction of magnetization in a rock
stratum. This example involves directions in three dimensions.

A direction on the plane or in three dimensions can be recorded as a point on
the unit circle or on the unit sphere. In this chapter we investigate distributions on
the circle and on the sphere. A survey of background material may be found in
Stephens (1962) and Mardia (1972). The approach here is derived from that in
Fraser (1968).

9-1 THE CIRCLE
Consider a random system with a response that is a direction on the plane.

9-1-1 The Model

We can record a direction on the plane by means of a unit vector:

V1
= 'y = -1
y <y2> yvy=1 (9-1)

206
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lying on the unit circle in R?. Alternatively, we can record the direction by giving
the angle y measured, say, positively from a reference direction, for example,

(1,0); thus
y= <y 1) - ( cos y) y in [0, 2m) (9-2)

V2 . sin y
Suppose that the location for the response direction is unknown but that

otherwise the distribution form is known or known up to a shape parameter A.
For this let f,(z1, z2) = fi(z) designate the distribution form as appropriately

standardized and let
7= (Zl) - (cf’s Z) zin [0,27) 9-3)
Z5 sin z

designate the corresponding objective variation. We treat f; as a density function
on the unit circle or on the line segment [0, 27) using dz for length tangentially
on the circle or, equivalently, dz as length on the line segment. A reasonable
standardization is to locate the mode of the distribution in a standard direction
(1,0).

An example of a distribution form is the normal distribution on the circle
proposed by von Mises (1918):

filzi, 22) = - exp (2z1)

27[10(/1)
- exp (4 cos z) -4
T dnlg(n) P ACOs 2
where
1 2n
Iy(2) = —J exp (A cos z) dz ©9-5)
2n 0

is the imaginary Bessel function of zero order. For 4 =0 the distribution is
uniform; for A large it is tightly concentrated about (1,0). Note that this
distribution can be obtained from the standard bivariate normal located at
(4,0) by conditioning to the circle of unit radius, for we can write the sum of
squares in the exponent as

(zy — A +z3 =12+ A2 - 2icos z

for a point (zy, z,) = (cos z, sin z) on the unit circle.

In applications the parameter of primary interest is the location or underlying
direction of the response measurements. With the standardization just mentioned
this location becomes the direction or angle from the reference direction (1,0).
For this let

011 012 0, —06, cos§ —sin 0>
0= = = _
<621 922) <02 61> (sin 0 cos0 (9-6)
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be the rotation through the angle 0 from the reference direction. The primary
parameter is then represented as the rotation @ from the reference direction or,
equivalently, as the angle 6 from the reference direction; this double use for the
same symbol 6 will cause no confusion in actual context.

The response presentations 6 can be assembled as

G {g _ <cos a —sin a):ae [0, Zn)} 9-7)

sin a cos a

These transformations are closed under products and inverses ; they form a group,
the rotation group on R% This is the two-dimensional version of the group Gg
of p x p matrices mentioned briefly in formula (8-178).

For n performances of the system we obtain yy, ..., y, for the response and
Z4, ..., Z, for the variation. We assemble these as 2 x n matrices:

Y= (Yi,---» ¥n) Z= (Z(,...,1,)

:G’u-.-ym> :(Zuu-Zm) (9-8)
21 -+ Yan Z31---22n

The response presentation then has the form

Y=10Z (9-9)
and the distribution for variation has the form
) =11z (9-10)
We thus obtain the structural model
My = (Q; R, 5", 1, G) 9-11)

where Q = G x A, %" 1s the Borel class in R?", ¥ is the class of densities f;() in
(9-10) on the Cartesian product of the unit circles, and G is the transformation
group (9-7). We will sec from the construction procedure in Sec. 9-1-2 that the
exactness Assumption 7-2 holds.

9-1-2 The Analysis

A transformation in G takes n points z, ..., z, on the unit sphere and rotates
them. Accordingly, for position, we consider a rotation to obtain the n given
points from the n points as oriented toward the standard direction (1,0Y.
For this we examine the sum vector

2211

Yz, =Z1 = (222) = (Z)a(Z) (9-12)

where
P(Z) = (Sz1) + (Zz2

o |eosalZ)| (9-13)
a(Z)= [sin a(Z):I = " (Z2)Zz;
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are the squared length and unit vector for the sum vector. The sum vector gives
an average direction for the n points and a large value for its length indicates that
the points are tightly clustered around the average direction. Alternatively, we
could use the first vector z; as giving the position of the n points; this would
avoid the problem (set of measure zero) in which the length /(Z) = 0.

We now take [ Z] to be the rotation from (1, 0)' to a(Z):

2=[on ein) e e O
and for D(Z) we then obtain
DZ)=[z]"'z
=[di(2), ..., d,(Z)] (9-15)
Note, of course, that
2d(Z) = U(Z) <(1)) (9-16)

is a vector in the standard direction (1, 0.
The Jacobians and measures from Secs. 7-2-2 and 7-2-3 are trivially available.
A rotation applied separately to each column of Z is a rotation on R*". Rotations
do not change length, relative angle, or volume. Accordingly, we have
dM(Z)=dZ =T dz; (9-17)
where each dz; is length on the appropriate unit circle and
dulg) = dv(g) = dg = da (9-18)

where dg is just length on the line segment [0, 2x). The special Jacobian J(D)
is the ratio of length on the orbit to length on the group. Consider a change da in
the angle a. The effect on

<cos a —sina

sin a cos a

is a change da for each of the vectors on the right; the linear change is then
\/n da. Accordingly,

J(D)=/n (9-20)

We are, of course, taking dD to be volume orthogonal to the orbit GD at D (see
Sec. 7-2-6).

Now consider the inference base (.#y, Y°). We follow the analysis in Secs.
7-1 and 7-2. The observed orbit gives the observed value for the variation

D(Z) = D(Y®) = D° (9-21)
or d(2)=d,(Y) =d} i=1,...,n (9-22)
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This gives the inference base (a) from Sec. 7-1-4:
(AMp, D°) (9-23)
The distributions in the model .#}, are available from (7-46):

2n
h,(D) = j T1£,(dy; cos a — dy; sin a,dy; sin a + dy; cos a)\/nda  (9-24)

0

This, of course, leads to the observed likelihood function for A from (7-69):
L(D°; ) = ch,(D° (9-295)

The integration (9-24) is trivial for a computer.
The unobservable characteristics of the variation lead to the inference base
(b) from Sec. 7-1-4:

(2, [Y°]) (9-26)
The distributions for the structural model .#P° are available from (7-47):
hy Y(DO)II £5(d9; cos a — dS; sin a, d?; sin a + d3; cos a)ﬁ da (9-27)

in [0,2n). This distribution describing the variation a is used with the trans-
formation

aY)=0+a modulo 27 (9-28)

The corresponding observed response value is a(Y®).
The response distribution corresponding to the identified D(Y) = D(Y°) = D°
is available from (7-49):

hi YD) ILf3[(01a1 + O2a2) d9; + (—01a; + 02a,)d3;,
(—0sa; + 01a3)dd; + (0205 + 0,1a1)d3]\/n da (9-29)

where a = a(Y) designates the location for Y.

The inference base (9-23) is used for inferences concerning the shape
parameter 1. The inference base (9-26) provides the inferences, tests, and confidence
intervals for the parameter 0. For this we have a real-valued distribution (9-27)
for the angle a and we have the equation (9-28), a(Y) = 0 + a, with observed value
a(Y) = a(Y°). This is perhaps the simplest and most direct inference situation in
statistics. :

9-1-3 The Normal Example

The normal distribution on the circle is recorded in formula (9-4). It provides a
simple bell-shaped curve for the variation on the circle. The parameter 4 acts as a
scale parameter. The circle does not have a continuous two parameter group with-
out a fixed point, and thus does not have a location-scale group. A three-parameter
location-scale skewness group is examined in Sec. 9-3.

The marginal density function for the orbit as given by D(Y) = D(Z)=D
is available by direct integration:
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h)(D) = J\[zﬂlo(}»)] on eXp [AZ(ald” — azdzl')]\/z da

= [2nlo(2)]™" er exp [AI(D) cos a] da ﬁ

= - 9-30
PERAII 30
The observed likelihood function ch;,(D°) is easily plotted from (9-30).
The conditional distribution for the position «a is then
1
——— A(D° 9-31
Srlo D0y P (D7) cos d] ©-31)

on the line segment [0, 27). This is the normal distribution on the circle but with
the scale A replaced by /(D). The preceding distribution together with

aY)=0+a

gives tests and confidence regions for 6. Note that the distribution depends on the
length [(Y°) = I(D°) of the sum vector Zy? and not otherwise on D°; larger values
for 1(Y°) mean higher precision.

This is one of the few examples where the distribution for the essential
characteristics on the orbit is available. As just noted, only the length
I(Y®) = I(D°) is needed concerning the orbit D°.

The null distribution (4 = 0) for the length [ is the distribution for the sum of
n unit vectors independent and uniformly distributed on the unit circle. This is
readily available from probability theory:

h§() = lro Jo(lt)J8(0)e dt
[¢]

where Jo(+) is the Bessel function of zero order.

The function I(D) is the likelihood statistic for the distribution (9-30).
Accordingly (9-30), as a function of /, provides the likelihood function for the
likelihood statistic distribution itself. Thus we obtain

A0 = 0
* 2nlo(A)\/n/[271o(2)]"
=] Jo(lt)Jo(t)t d
L oll) J3le)e tznlo(O)ﬁ/[znlo(O)]"

Io(Al ®

= °,,( 4 zj Jo(ID)T3(0)t dt
o(4) Jo

Tests and confidence intervals are readily available for 4, for we are in the relatively

simple position of having a real observed value [°= I(D°) and a distribution

h¥(l) involving a single real parameter A.
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9-2 THE SPHERE

Now consider a random system with a response that is a direction in three
dimensions. For example, the response could be the direction of magnetization in
a rock stratum, the direction of incoming electromagnetic radiation, or the
direction of a temperature gradient.

9-2-1 The Model

We record direction by means of a unit vector
y=1|» yy=1 (9-32)

a vector on the unit sphere in R>.

Suppose that the location for the response distribution on the sphere is
unknown, that the orientation of the distribution about that direction is unknown,
but that the distribution form is otherwise known or known up to a shape
parameter A.

For this let f;(z) designate the distribution form as appropriately standardized
and let

=2, 7z=1 (9-33)

designate the corresponding objective variation. We treat f; as a density function
on the unit sphere using Euclidean area tangential to the sphere. As a possible
standardization, suppose we locate the mode of the distribution in a standard
direction, say (1,0, 0). Then orient some rotational characteristic with a second
standard direction, say (0, 1, 0).

A normal distribution on the sphere has been proposed by Fisher {1953):

fle) = e explizy) (9-34
For / = 0 the distribution is uniform; for large 4 it becomes tightly concentrated
about (1, 0, 0Y. This distribution can be obtained from the standard three-variate
normal located at (4, 0, 0) by conditioning to the unit sphere; see the parallel
discussion for the circle in Sec. 9-1-1. '

The primary parameter for applications is the “location” or direction of the
response distribution. A secondary parameter is the orientation of this distribution
about the location direction. These parameters can be combined in the following
rotation matrix:

Hl 1 91 2 01 3
0=|021 052 03] =(01,0, 05 (9-35)
031 032 033
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with 09’ = I,|0| = 1. This matrix gives direction and orientation by rotation from
the standard direction (1, 0, 0) with secondary direction (0, 1, 0y. Note that 0
carries the standard (1, 0, 0) into 6, and the secondary (0, 1, 0) into ;.

The presentations 6 can be assembled as

dayy dip 13 o =1 l
G={g=|an an a;|=@5a,;a;): |g\-1 (9-36)
sy Qzz da3 g J

These transformations are closed under products and inverses ; they form a group,
the rotation or positive orthogonal group on R?. This group G is three dimensional
but the notation (9-36) presents the group as a manifold embedded in R?; note
that this is the three-dimensional version of the group Gz mentioned in formula

(8-178).
For n performances of the system we have the responses yi, ..., ¥n and the
corresponding variations z;, ..., Z,. We assemble these as 3 x n matrices:
Y= (yls'-'sYn) Z=(Zl,...,Zn)
Vit - Vin 211 -+ Z1n
=1Y21.--Yan =|Z21...Z2n (9-37)
Y31 - Van Z31 -+ Z3n

The response presentation then has the form

Y=10Z (9-38)
and the distribution for variation is
fiz) =1 fi(z) (9-39)
We thus obtain the structural model
My = (Q; R 33" 1, G) (9-40)

where Q = G x A, 2> is the Borel class on R, 7 is the class of densities
f3(+)in (9-39) on the Cartesian product of the spheres, and G is the transformation
group (9-36). We will see from the construction procedure in Sec. 9-2-2 that the
exactness assumption holds provided n > 2 and at least two of the vectors are
linearly independent.

9-2-2 The Analysis

A transformation in G takes n points zy, ..., z, and rotates them. Accordingly, we
define a direction and orientation for such a sequence of points and then relate
these to the standard directions (1, 0, 0) and (0, 1, 0)'.
For a direction for the n points we follow the pattern for the circle and choose
the sum vector
ZZI,'

Yz, = Z1 =| Sz, | = I(Z)ay(Z) (9-41)
2231'
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where
P(Z) = (Bzy) + (2220 + (Bz3:)’

a,(2) = I '(Z)%, ©-42)
are the squared length and unit vector for the sum vector. For a second direction
as an orientation relative to a;(Z) we do not have an immediate and natural
choice. An easily described choice, however, is a,(Z), the unit residual for, say,
z, after regression on a(Z). Then let a3(Z) be the third unit vector forming the
following positive rotation matrix:

[Z] = 0(Z) = [a1(2), 3:(Z). 22)] 9-43)

The sum vector gives an average direction for the n points and a large value for
its length indicates that the points are tightly clustered around the average
direction. Alternatively, we could use the first vector and any other linearly
independent vector to record direction and orientation; this would avoid the
problem (set of measure zero) in which the preceding construction procedure
fails.

We now verify that the transformation [Z] does relate to the reference
directions. For D(Z) we have

D(Z)=[Z]"'Z=[d:(2). ..., 4,(2)]

di1(Z) d12(2) ... d14(2)
= dy1(Z) d22(2) ... d2n(2) (9-44)
0 ds(2) ... dsl(2)

Note from the definition of [ Z] that we have

1
d2)=12) |0 ‘ (9-45)
0

and that d34(Z) = 0 since z, lies in the plane of a,(Z), a5(Z) and correspondingly,
d;(Z) lies in the plane of (1, 0, 0), (0, 1, 0.

The Jacobians and measures from Secs. 7-2-2 and 7-2-3 are trivially available.
A rotation applied separately to each column of Z is a rotation of R3", Rotations
do not change length, relative angle, or volume. Accordingly, we have

dM(Z) = dZ = 1l dz; ’ (9-46)
where each dz; is area on the appropriate unit sphere and
du(g) = dvig) = dg (9-47)

where dg is surface volume on the manifold G embedded in R®. The special
Jacobian J(D) is not readily available, but as we have noted it is not needed for
most of the formulas used for the inference analysis.

Now consider the inference base (.#y, Y°). We follow the analysis for the
general case in Secs. 7-1 and 7-2 and for the circle in Sec. 9-1.
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The observed orbit gives the observed value for the variation

D(Z) = D(Y°) = D° (9-48)
d(2)=d(Y) =4 i=1,...,n (9-49)

This gives the inference base (a) from Sec. 7-1-4:
(4, D°) (9-50)

The distributions in the model .#, are available from (7-46):

”

h;(D) = . f,(OD)J(D) dO

»

= an(Odi)J(D) do

»

= | £,(0D)dO J(D)
G

= k;(D)J(D) (9-51)
This, of course, leads to the observed likelihood function for 4:

L(D%; 2) = ch,(D°)

= cj £,(0D% dO J(D°)

= cj £,(0D% do
G

= ck,(D°) 9-52)

The integration for (9-51) or (9-52) is three-dimensional.
The unobservable characteristics of the variation lead to the inference base
(b) from Sec. 7-1-4:

(47", [Y°]) (9-53)
The distributions for the model .#?° are available from (7-47):
hi 1(D°) £(0D%)J(D°) dO = k; *(D°) f2(OD°) dO
= k; (D)1 £,(0d?) dO (9-54)

This three-dimensional distribution describing the variation O is used with the
transformation

o(Y) = 00
a11(Y) a(Y) ags(Y) 011 012 013 [a11 @12 ais 9-55)
a1(Y)  az2(Y) a3(Y)| =021 62 0,3 Qzy Q2 423

az1(Y) aza(Y) as3(Y) 031 03 033 aszy Az ass
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The corresponding observed value is O(Y?). Note that the transformation (9-55)
relates the three-dimensional response O(Y), the three-dimensional parameter 6,
and the three-dimensional variation O; of course each is three-dimensional but
with coordinates in nine dimensions.

The response distribution corresponding to the identified D(Y) = D(Y®) = D°
is available from (7-49):

hi {(D)£,(0710(Y)D)J (D) dO(Y) = ki (DO)TLL(6 ' O(Y)d?) dO(Y)  (9-56)

where Y = O(Y)D° for responses consistent with the observed Y°.

The inference base (9-50) is used for inferences concerning A. In applications,
only the likelihood function (9-52) may be available computationally.

The inference base (9-53) provides tests and confidence regions for the
direction and orientation recorded in the matrix 0. In contrast with the circle
in Sec. 9-1, the rotation group is now three dimensional rather than one
dimensional and our notation embeds it in R®. The spherical geometry of
astronomy can, however, facilitate calculations.

9-2-3 The Normal Example
The normal distribution (9-34) proposed by Fisher (1953),

i
47 sinh 4

is a direct parallel of the von Mises (1918) distribution in Sec. 9-1. The
normalizing constant is easily verified by integration over the unit sphere:

Ju@) = exp (4zy) (9-57)

jexp (Azy) dz = J‘n exp (4 cos t)2x sin t dt
0

+1
= J exp (Au)2x du

=2 [exp () — exp (~ ]

_ 4 si}1h A (9-58)
2 .
where ¢ is the angle between z and (1, 0, 0) and u = cos t.
The marginal density for the orbit as given by D(Y) = D(Z) = D is available,
except for J(D), by direct integration:

hx(D)
J(D)

= J f:(0D)dO

)vn
= fm exp [ZA(ar1, ar2,a13)d;] dO
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n

_ mjexp [il(D)a;] dO (9-59)

From Sec. 8-3-5 and the discussion near (8-182) we find that the surface volume
of Gis

A(}Z)23'2/4 — A3A223/2

_2n? 2m

TR IO

=4m-2n- 232 (9-60)

On the other hand, a, takes values in the unit sphere which has surface area 4n.

3/2

" Accordingly, the integration of O for given a; produces

ﬁ'%‘ﬂ — 27232 (9-61)
Thus
-4
— C‘%[S;_j%fexp [Al(D)ay] da,
_ 2m-2%7 dzsinh [2(D)] (9-62)
(4r)" sinh” 1 Al(D)

It follows that the likelihood function for /. is

[/1"1 sinh[Z(D)]  if 2#0
sinh” 7 (9-63)

LD;A)=c
ll(D) if A=0

which can easily be plotted for the observed D°. Note that the likelihood function
depends only on the function (D) from D.
The conditional distribution for the position O is then available from (9-54)

with (9-59) and (9-62):
_ (D%
"~ 27232 - 4n sinh [A(DO)]
_ (D%

16./2 « 7% sinh [A/(D?)]

The density depends only on a;;. Accordingly, we can work with, say, the first
column of O and integrate out the remaining coordinates; for this we use the

ki '(D°) f:(0D%) dO exp [A1(D%)ay,] dO

exp [2(D%ay] dO 9-64)
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result (9-61) as in the integration for (9-62). The marginal distribution for a, is

A(DO)

4mwxl) [A(D%ay ] da, (9-65)

The conditional distribution of a, given a; is, of course, uniform on the unit circle
orthogonal to a;. We can then write

21(D%)
47 sinh [AI(D?)]
The distribution for a; is the normal distribution on the sphere with the original

parameter A replaced by AI(D°), and the distribution of a, given a; is uniform.
The preceding distribution together with the equation

o(Y)=00 (9-67)

give tests or confidence regions for 6. Note that the distribution depends on the
length [(Y°) = I(D°) of the sum vectors Zy? and not otherwise on D°.

Consider further the distribution (9-66) in relation to the presentation
equation (9-67):

exp [AI(D%)ay,] da; -‘%2 (9-66)

6~'o(y)=0
0 0, (9-68)
03| [a1(Y),ax(Y),a3(Y)] = |0
A 03

where we now use O;, 0,, O3 for the first, second, and third rows of O. The
parameter 0, is the primary parameter that gives the direction of the response
distribution. For it, we have

012,(Y) = ayy 01a5(Y) = aqz 01a3(Y) = as3 (9-69)

Then, from the remarks preceding (9-65) and (9-66), we note for formula (9-66)
that we could equally have used O; in place of a; and O, in place of a,. Thus
the Fisher distribution with parameter Al(D°) for O, provides the tests and
confidence regions for the primary direction parameter 6.

In particular, if (v, 1) is, say, a 95 percent confidence interval of values for
ayq.

» 4m sinh [4/(D%)] exp {Al(Do)ayy |2ndayy = 0. 70)

based on (9-58), then
S(Y)={0,:01a,(Y) > v} (9-71)

is the 95 percent confidence region for the direction 6. The observed region is

S(Y% = {0,:0,a,(Y°) > v} (9-72)
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Note that the region consists of all the directions that are within an angle having
cosine v with a;(Y).

Just as in Sec. 9-1-3, this is one of the few examples where the distribution
for the essential characteristic of the orbit is readily available.

The null distribution (4 = 0) for the length [ is the distribution for the sum of
n unit vectors independent and random on the unit sphere. This is readily available
from probability theory:

h§() dt

n—1

_ %l ® sin” ¢ sin (It)
o

0 r
= s duld 9-73)

where

1 - n S n—2
6=t 3 (%) (- 1p - 12

=0 \S
t t  ifr=0 9-74)
70 otherwise
The function KD) is the likelihood statistic for the distribution (9-59).
Accordingly (9-63), as a function of 2, provides the likelihood function for the
likelihood statistic distribution itself. Thus we obtain the density:
L(D; 1)
L(D;0)

! 471 sinh (4l)/sinh" 4
= 51 6l :

sinh (2I) /2\"*
" sinh" A (E) éall)
for [ on (0, o). Tests and confidence intervals are then available for 4, for we are
again in the same relatively simple position as for the case of the circle: a

real observed value [° = I(D°) and a distribution h¥(l) involving a single real
parameter.

h#(l) = hg(D)

9-3 THE CIRCLE : GENERALIZED DISTRIBUTION FORM{

Consider a random system with a response that is a direction on the plane. As
before, we record a response value as a unit vector or as a point in the unit
circle.

In Sec. 9-1 we developed a model for such a system. The model allows for an
unknown rotation of a basic distribution form that is known or known up to a

+ With Malcolm Cairns.
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shape parameter A. The shape parameter A could be a scale parameter as in Sec.
9-1-3 or it could be more general. The specification, however, may allow for
scaling and even skewness of the response distribution. Can such scaling and
skewness parameters be included in a transformation presentation of a more
basic distribution form?

Cairns (1975) has developed a model for directional data that provides a
transformation presentation for rotation, scaling, and skewness. We examine this
more general model in this section. An analogous model exists for the sphere in
R* and for the sphere more generally.

9-3-1 The Model

As before we record a direction on the plane by means of a unit vector

Vi cos y yy=1
= =" ’ 9-75
y <y2> (sm y> y in [0, 27). ( )
lying on the unit circle in R?. We suppose that the response distribution is
unknown in location, scaling, and skewness, but that otherwise the distribution

form is known or known up to a shape parameter A.
We let fi(z1, z,) = fi(z) designate the basic distribution form as appropriately

standardized and let
zy COS z 7z=1
£= <22> B (sin z) zin[0,2n) ©-76)

designate the objective variation. We treat f, as a density function on the unit
circle or on the line segment [0, 2n) using dz = dz for length tangentially on the
unit circle. A reasonable approach to standardization is to locate the mode of
the distribution in a standard direction (1, 0) and then symmetrize and in some
way standardize the scale.

A useful example of a distribution form is the projected normal distribution
PN((4,0),1):

filz) = fw $alrzi,rz2 | (A,0),Ir dr
0

* 1 R 1
= L 5, €XP [— E(rzl — AP - E(rzz)z]r dr

1 1, 1 [ 1 )
=5 exp': 22 +2(/1z1) ]L exp[ 2(r—/lzl) Jr dr (9-77)

o0

1
=—exp(—/122§/2)<f e“’z/ztdt+Azlf
2n =2z

@

e—(r— 121)2/2 dr)

0

= %{exp( —223)2) [exp (= 2223 /2) + Jz14/2n®(Azy)]

=L () + Az @iz pliza),
27

7
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where ¢,(z|u, ) is the bivariate normal (u;Z) density, and ¢ and @ are the
standard normal density and distribution functions. In a similar way the bivariate
normal (u; Z) gives the projected normal PN(u; Z). The von Mises normal distri-
bution (9-4) can be obtained by taking a rotationally symmetrical normal on the
plane and conditioning to the circle with radius 1; the present normal is obtained
by projecting radially to the circle with radius 1. The transformations we
examine produce the general projected normal that has a spectrum of possibilities
including bimodal distributions—with different sized modes at various angles of
separation.

For applications, the primary parameter typically records the location of the
response distribution ; the remaining parameters record the scaling and skewness.
For this consider a 2 x 2 matrix

0 cosae —sina) /1 z\/c O
“\sinag  cosa/\O 1/\0 o°!

0., 0
= 030,60, = ( 9“ 0”). (9-78)
21 22

The parameter 05 is a 2 x 2 rotation matrix; 0, is a matrix that skews the plane
parallel to the first axis; and 60, scales in the direction of the first axis by ¢ and in
the direction of the second axis by ¢~ '. For a transformation on the unit circle we
apply 0 to a point z by matrix multiplication and then project the resulting
point radially onto the unit sphere:

Ooz=0z/|0z|. (9-79)

The transformation 6 applied to the projected normal PN[(4,0),I] gives
the projected normal PN(10(1, 0, 00').
The response presentations 6 can be assembled as

G=1{0=030,0,:2¢[0,2n),7eR, e R"}. (9-80)

The product 6,0 is an arbitrary positive upper triangular matrix with determinant
+1; 05 is an arbitrary rotation matrix. The product 038,60, is thus an arbitrary
2 x 2 matrix with determinant + 1. Such matrices are closed under products and
inverses ; they form a group, the special linear group SL,(R) on the plane.

The group G on R? clearly carries rays from the origin into rays from the
origin. Accordingly, the action (9-79) is a transformation group on the rays or
equivalently on the (representative) points on the unit sphere; in fact it is a
transformation on the “double-ended rays” or one-dimensional linear subspaces.

For n performances of the system we obtain yy, ..., y, for the response and
Zy, ..., Z, for the variation:

Y = (yh"‘ayn) Z= (Zl,...,l,,)

_ <y11 ,V1n> <211 Zln) (9-81)
Y21 .-+ Yan 221 -+ Z2n
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The response presentation then has the form
Y=0-Z (9-82)

where 0 operates column by column in accord with (9-79). The distribution for
variation has the form

filZ) = 1 f3(z;) (9-83)
We thus obtain the structural model
My = (Q;R*", #*" ¥, G) (9-84)

where Q = G x A, #*" is the Borel class on R?", ¥~ is the class of densities (9-83)
on the product of the unit spheres, and G is the transformation group (9-80) with
action (9-82) using (9-79). We will see the action is exact, provided n >3 and a
trivial set of measure zero is excluded.

9-3-2 The Transformations

A transformation in G takes n points z4, .. ., z, on the unit sphere and distorts their
relative position—without any change in their relative ordering.

Now consider the Jacobians and measures needed for the analysis. For the
transformation on R" we first examine a single coordinate, in effect, the case
n=1:

gz gz
gez=r——= . (9-85)
lgz|  clg.2)
Consider a two-dimensional neighborhood of a point
zz(rCf)s z) 9-86)
rsin z
in R? and the corresponding neighborhood at zZ = gz; the volume change is unity
0
GEI_ 4, (9-87)
0z

as ¢ is a matrix transformation belonging to the special linear group of matrices
with determinant 1. The effect of the transformation on the radial coordinate is

simple,
N { [cos z:,
r=1i4g .
sin z
as is seen by noting that

. [cos z] [cos z]
z=gr| . =rg| . ;
Sin z Sin z
or coS z
sin z

or
Also note that the coordinates r and z provide orthogonal contours on RZ.

r (9-88)

thus
(9-89)
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Now consider the succession of transformations from a two-dimensional
neighborhood of z on the unit circle, to the corresponding neighborhood of gz,
to the resulting neighborhood of g © z. The first transformation preserves volume;
by (9-89) radial distance is changed by the factor | gz|; accordingly, distance on the
circle through gz is changed by the factor | gz|~'. The second transformation is a
radial projection using the factor ]gzl’1 to obtain a point on the unit circle;
accordingly, distance on the circles is changed by the same factor |gz|~'. The
two transformations together change distance on the unit circle by the factor

dgeoz
dz

= |gz| 2 (9-90)

where we are now viewing z as a point on the unit circle.
We thus obtain the invariant measures

dm(z) = | gz |* dz,dM(Z) = 11| gz;|* dZ (9-91)

using

Ju(2) =11 gz;|* = " X(g,2). ©-92)

For the transformations on the group we depart from our usual pattern of
embedding the matrices in the Euclidean space for all the elements of the matrix
and instead use coordinates based on the reverse of the factorization (9-78):

s 0 1 t|]cosa —sina
G= [0 sl} [O l:l [sin a - cos a} ©-93)
where se R, te R, and ae [0,2n); specifically we examine G as

G=R" xR x [0,2n).

The left group transformation

g=99*
from ¢* to § can be examined in the pattern used for J, and we obtain
J3(g)=s; (9-94)
for the details see Cairns (1975, p. 64). Thus we have
ds dt da
du(g) = P (9-95)

9-3-3 The Analysis

Now consider group and reference point notation for a point Z in the Cartesian
product of the n unit circles. For this we need to have three column vectors in Z
that are essentially different : we call two vectors essentially different if they are not
identical nor the negative of each other, in other words if they are not linearly
dependent. For notation, suppose these are the first three vectors zy, z,, z3 in Z.
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We then define [Z] so that

B [T TE I

where the signs are chosen so that a positive linear distortion can carry the three
vectors directions on the left to the three on the right. It is easily verified that

[Z] = [ki(Z)21, k2(Z)22] (9-97)
where
kl(Z) > O, |k1(Z)Z1, kz(Z)Zz ‘ = 1, (9'98)
and where
1/./2
[ki(Z)zy, ko(Z)2,] (i 1;15%) (9-99)

is a positive multiple of z3. Computationally, we would find a linear combination
of z; and z, that generates z5 (see (9-99)) and then scale (positively or negatively)
the columns of a trial (9-97) to satisfy (9-98).
We thus obtain
Z=[Z]°D(2Z) (9-100)

with
D(Z)=[Z]"t°z

AGEIEG] e

We do not calculate the Jacobian J(D) as it is not needed for our present analyses;
recall the discussion following (7-43).

Now consider the inference base (.#y, Y°) with model .#; in (9-84) and
observed response matrix Y°.

The observed orbit gives the observed value for the variation

D(Z)=D(Y% =D° (9-102)
or d(Z) = d;(Y®) = d? for i = 1,...,n. This gives us the inference base (a):
(A p, D) (9-103)
from Sec. 7-1-4. The distributions in the model .# j, are available from (7-46):
o 0 2n
h,(D) = [ J y I11,(z)c; %s™ ! dads dt (9-104)
—w J0 0

where

(s O 1 t\/cosa —sin a) a/c
L= sJ\0 1)\sina cosa) V"
s O 1 t\/cosa -—sina
= d; |, 9-105
€ ’ <0 sl> (0 1> <sin a cos a) l‘ ( )
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and we are in effect using the modified measure J(D) dD on the reference point
manifold Q; recall that we did not calculate J(D). This, of course, leads to the
observed likelihood for A:

L(D°;2) = chy(D"). (9-106)
The unobserved characteristics of the variation lead to the inference base (b)

in Sec. 7-1-4:
(AP, [Y°)) (9-107)

The distribution for g in the model .#7° is available from (7-47) and (9-105):
hi (DO f(z) le; 2s~ ! da ds dt, (9-108)

a distribution on the group G. This distribution for the unidentified variation is
used with the transformation

<S(Y) 0 > <1 t(Y)> <cos a(Y) —sin a( Y))
0 s Y(yvy/\o 1 sin a(Y)  cos a(Y)
B <cos o —sin oc) (1 r> <a 0 > <s 0 > <1 t) <cos a —sin a>
“\sina  cosa/\O 1/\0 ¢71/\O0 s7'/\0 1/\sina cosa)
(9-109)

The observed values for the response coordinates are obtained from Y = Y°.

The response distribution corresponding to the identified D(Y) = D(Y?) = D°
is available from (7-49) and can be calculated routinely.

In fact inference for 8 would naturally be in terms of the components of 0. In
the pattern of Sec. 7-4 we could make tests or form confidence intervals for the
principal direction o. And then for a given value of a—perhaps, reasonably,
the maximum likelihood value—make tests or form confidence intervals for
the skewness 7. And then for a given value of « and t—perhaps, reasonably, the
maximum likelihood values—make tests or form confidence intervals for the
scaling o.

The distributions for the preceding can be calculated in a very direct manner
by taking the reference point at the observed Y°. Suppose we use Y° in place
of D in the notation (9-96) and (9-101); then Y and Z can be expressed in terms
of transformations

Y=[Y]Y° Zz=[Z]Y°

relative to Y°. The equation (9-109) for the observed response Y? then becomes
1 0\ [cosa —sin y.) 1 1\/o O
0 1) \sinau cosa/\O 1/\0 ¢!
o 0 1 t\/cosa -—sina
0 s7*)\0 1/\sina cosa/
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The marginal distribution for a can be obtained from the revised (9-108) by
integrating out s and ¢:

hi(a)da= j J‘ hy; {YOXIf(z)Mei s~ ds di - da;
0 -

this is a distribution on [0, 27). The preceding distribution can be compared with

the equation

O=a+a modulo 27

involving the “observed value.”

For a chosen value for the parameter o« = —gq, say the maximum density
value @ = —a, the conditional distribution for ¢ can be obtained from (9-108)
by integrating out s:

Wi (t) dt = -1 hy (YOTILf,(z) e s~ ds dt
hi(a) Jo

with the particular value for a substituted. This is a distribution on R which can
be compared with the equation

O=1+t¢

involving the “observed value.”

Then for chosen values for the parameters o= —a, 7= —t, say the
maximum density values &, f, the conditional distribution for s can be obtained
directly from (9-108):

hi(s)ds = hy (YOI f(z) e 2s~ - ds

1
HEIAG
with the particular values for g, t substituted. This is a distribution on R* which
can be compared with the equation

1=o0s

involving the “observed value.”

9-3-4 The Turtle Data

Dr. E. Gould of John Hopkins University School of Hygiene collected data
recording the direction taken by sea turtles after laying their eggs. The data are
recorded in Table 9-1 and plotted in Fig. 9-1.

The usual pattern has a predominant direction which involves returning to
the sea and a secondary direction tending to be opposite to the preceding. We
record the results of the computer analysis obtained in Cairns (1975); the analysis
uses the projected normal and the three-parameter transformation group.

The marginal likelihood for the basic-shape parameter was calculated by
three-dimensional computer integration and is plotted in Fig. 9-2. The likelihood
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Table 9-1 The directions taken by turtles

Angle V1 V2 Angle Vi V2
8.0 0.139 0.990 83.0 0.993 0.122
9.0 0.156 0.988 88.0 0.999 0.035

13.0 0.225 0.974 88.0 0.999 0.035

13.0 0.225 0.974 88.0 0.999 0.035

14.0 0.242 0.970 90.0 1.000 0.000

18.0 0.309 0.951 92.0 0.999 —0.035

220 0.375 0.927 92.0 0.999 —0.035

270 0.454 0.891 93.0 0.999 —0.052

30.0 0.500 0.866 95.0 0.996 —0.087

340 0.559 0.829 96.0 0.995 —0.105

38.0 0.616 0.788 98.0 0.990 —0.139

38.0 0.616 0.788 100.0 0.985 —-0.174

40.0 0.643 0.766 103.0 0.974 —0.225

440 0.695 0.719 106.0 0.961 —0276

45.0 0.707 0.707 113.0 0921 —0.391

47.0 0.731 0.682 118.0 0.883 —0.469

48.0 0.743 0.669 138.0 0.669 —0.743

480 0.743 0.669 1530 0.454 —-0.891

480 0.743 0.669 153.0 0.454 —0.891

48.0 0.743 0.669 155.0 0.423 —0.906

50.0 0.766 0.643 204.0 —0.407 —-0914

530 0.799 0.602 2150 —0.574 —0.819

56.0 0.829 0.559 223.0 —0.682 —0.731

57.0 0.839 0.545 226.0 —0.719 —0.695

58.0 0.848 0.530 2370 —0.839 —0.545

58.0 0.848 0.530 238.0 —0.848 —0.530

61.0 0.875 0485 243.0 —0.891 —0454

63.0 0.891 0.454 2440 —0.899 —0.438

64.0 0.899 0.438 250.0 —0.940 —0.342

64.0 0.899 0.438 251.0 —0.946 —0.326

64.0 0.899 0.438 257.0 —0974 —0225

65.0 0.906 0.423 268.0 —0.999 —0.035

65.0 0.906 0.423 285.0 —0.966 0.259

68.0 0.927 0.375 319.0 —0.656 0.755

70.0 0.940 0.342 3430 —0.292 0.956

73.0 0.956 0.292 350.0 —0.174 0.985

78.0 0.978 0.208

78.0 0.978 0.208

78.0 0.978 0.208

83.0 0.993 0.122

is rather sharply discriminating and has a maximum at 2= 0.7. This value is
used in the following analysis of the presentation parameters.
The distribution for a is plotted in Fig. 9-3. The maximum density value is
a= —0.46 yielding
a=—a=046.
The 95 percent confidence interval for « is (0.26, 0.66).
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Figure 9-1 The n = 76 observations on turtle direction.
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Figure 9-2 The likelihood for the shape A.
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Figure 9-3 The density function for a.

The distribution for ¢ given a is plotted in Fig. 9-4. The maximum density
value is t = —0.08 yielding

t= —t=008.
The 95 percent confidence interval for t is (—0.53, 0.72).
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Figure 9-4 The density function for t.
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Figure 9-5 The density function for s.

The distribution for s given q, ¢ is plotted in Fig. 9-5. The maximum density
value is § = 0.71 yielding

6=5"1=1.38.

The 95 percent confidence interval for ¢ is (1.20, 1.62).
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Figure 9-6 The fitted projected-normal response distribution.
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Figure 9-7 The residuals, the vectors in Do.

The maximum likelihood values are
(&; 1, 6) = (0.46,0.08, 1.38).

The corresponding projected normal PN((1, 0)'; 06') is plotted in Fig. 9-6. It is
bimodal with modes at 61° and 241°. The modes are diametrically opposite
supporting the view “that the turtles have a preferred direction but some are
confusing forwards with backwards” (see Stephens, 1969).

The residuals, recorded as columns in D°, are plotted in Fig. 9-7. They should
appear approximately as a sample from the projected normal PN(0.7(1, 0Y, I)
using the maximum likelihood value 1 = 0.7.

The variation-based model provides likelihood analysis for the distribution
form parameter A. It also provides tests, confidence intervals, and, of course,
estimates for the presentation parameters o, 7, o; the figures record some of
the available distributions.

A response-model analysis using routine maximum likelihood analysis with
a probability mixture of von Mises’ normals gives modes at 63.5° and 241.2° (see
Mardia, 1975).
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CHAPTER

TEN
BIOASSAY AND DILUTION SERIES

A familiar problem in biological and pharmacological investigations is to deter-
mine the effective strength of a drug, chemical, or other stimulus administered to
a living animal. A similar and somewhat related problem is to determine the con-
centration of organisms, say bacteria, in a suspension or solution. Sometimes
these can be investigated directly—by increasing the strength until a reaction
occurs in an animal or by counting the organisms in a sample of the solution. In
other cases such direct methods may not be feasible, or perhaps even possible—
and indeed not advisable if measurements or counts cannot be made accurately.
An indirect approach for the case of a drug is to administer various doses to dif-
ferent animals and to record for each whether or not a reaction occurs; this is
called bioassay. A parallel approach for the case of organisms in a solution is to
sample various dilutions and, for each sample, test with a nutrient and record
whether or not there is sterility; this is called a dilution series assessment.

In this chapter we investigate statistical inference for bioassay and dilution
series. For these problems the traditional methods are less than satisfactory and
involve calculating essentially just the maximum likelihood estimate for the param-
eters. Here we examine more incisive methods (Fraser and Prentice, 1971) that
provide tests and confidence intervals for the primary parameter and the appro-
priate likelihood function for the remaining parameter. In effect this is an accurate
split of the traditional likelihood function into two appropriately specific parts—of
which one is amplified to give the tests and confidence intervals.

In Sec. 10-1 we discuss the background and the model. We find that the
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distribution form apart from its location can be modeled directly. This gives us
an objective distribution for the variation and a location presentation for the
response. In Sec. 10-2 we consider the analysis together with its applications to
data from bioassay and dilution series.

10-1 THE MODEL

In this section we discuss the background and model for bioassay and dilution
series.

10-1-1 Bioassay

Consider a drug that can be administered to a certain type of animal. Typically
the response of the animal may be quite complex. For the cases considered here,
however, the observed response is taken to be just “reaction” or “no reaction.”
In various contexts the reaction of interest may be death, or recovery from a
disease, or remission, or something simpler or more specific.

The amount of drug administered to an animal by weight or volume is usually
called the dose and designated X. Often, however, the effect of a drug can relate
more naturally to the dose in multiplicative units—to the logarithm of the dose.
The more natural measure is called the dosage and designated x; then we have
x = log X, where typically log X = log,, X.

Optimistically we might think of giving a progressively increasing dosage
until reaction occurs and then recording the corresponding dosage x. In practice
the preceding would rarely work ; there is usually a time lag after administration
until possible effect. Also, a progressive dosage is typically different from a dosage
at one time. For example, if water temperature is gradually increased during a
shower the effect goes almost unnoticed, but the same final temperature would
be intolerable initially. Ideally, however, we can think of the threshold dosage x
that gives a reaction for an individual, and then let P(x) be the distribution func-
tion for x in the population of animals under investigation. This is called the
tolerance distribution.

An investigator would like to know the distribution function P or at least its
salient features. In particular, he or she often focuses on the dosage that gives a
50 percent reaction rate in the population, the effective dosage 50 percent ; we call
this the ED50 and designate it 8. Note that the ED50 is the median value for x and

P(ED50) = P(0) = 0.50 | (10-1)

The scaling or variability of x may be of interest.

The ED50 is a standard administration of drug that produces a 50 percent
reaction rate. We define the strength s of an administration of a drug to be the
amount that the dosage x exceeds the ED50; thus

s=x—20 (10-2)
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With a reasonable choice of dosage scale the distribution form for x is often
approximately normal or logistic. Thus

P(x) = G(X———0> e <5> (10-3)
g g

where 0 is the ED50, ¢ is the scaling, and for the normal

G(z) = J L e "2 dt (10-4)
BN 2n

and for the logistic
1

1+e 7

G(z) = (10-5)

More generally we can allow a parametric family {G;: A€ A} for the distribution
function G.

As we have noted, the progressive dosage is typically unrealistic. Rather, an
animal is given a specific dosage and the investigator records whether or not
reaction occurs. For an experimental design consider k dosages xi,...,x; and
suppose that each is administered to n different animals. The total of kn animals
would be randomly sampled from the population and the dosage levels randomly
assigned to the sampled animals. If the available animals are not relatively homo-
geneous with respect to uncontrollable factors, a better arrangement would be a
randomized block design using, say, litters as the blocking factor. Let y; be the
number of reactions at dosage x;. With independence we then have the following
probability function for (yi, ..., yi):

k /n
-11 (y > Pri{x) Q" ilx;) (10-6)

where we let Q(x) = 1 — P(x).

In a typical investigation the dosages xi, ..., X are taken to be equally spaced,
ranging from a “no reaction” dosage up to a “sure reaction” dosage ; these limits
are usually available from preliminary tests and the investigation is the formal
determination of the precise location of the tolerance distribution. Thus with a
spacing interval h we would have the dosages, say, xo, Xo + &, ..., Xo + (k — 1}h.

With equal spacing an important type of experimental randomization is
available. Rather than start from some reference dosage xo the experimenter
randomly chooses a number v from the uniform [0, h) distribution and uses the
dosages

L v—huvv+h... (10-7)

In practice there will be just k of these dosages. However, with the range from
“no reaction” to “sure reaction” we can of course think of the open-ended series
of dosages, but with the appropriate certain results for each end.
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Table 10-1

Dose Dosage x;  Number of reactions y;

10°
10*
10°
10°
107
108
10°

—_
OO NN = O

NoBN-LREN Be NV E - NN VS]

Consider the data in Table 10-1 investigating the effect of a pneumonia
organism on mice. The data with k = 7, n = 10 were made available by D. B. W.
Reid of the University of Toronto ; the initial randomization on the interval [0, 1)
was not formally included in the original design.

On the basis of ascribed sure reactions at the extremes we can present this in
an open-ended form as Table 10-2. In Table 10-3 we record the y values beside
the corresponding strengths s = x — 6 of the administrations. These data are
analyzed in Sec. 10-2.

The probability differential covering the randomization v and the binomial
responses y; = (v + jh) at dosages x; = v + jh has the following form:

I <"> PYi(o + j)Q" (v + jh) do = 1 (y") G-v,-<ﬁ%’—"—8>

Jj=-w J J

ih— 60\ "%
X [1 -G <L>] dv
o

= fa'(x - Q: J’) dl)

= fols, y) dv (10-8)
where, for example, (s,y) is an abbreviation for the extended vector [(s;y;):
j= —o0,..., + o] The randomization v takes values in [0, /) and the y; take

values in {0, 1,..., n}. For small dosages we have P(x) near zero and 1 — P(x)
near 1, giving y = 0 with near certainty; with large dosages we have P(x) near 1
and 1 — P(x) near zero giving y; = n with near certainty. The theoretical aspects
of convergence of the double-ended product are examined in Fraser and Prentice
(1971).

We can display observed data in several ways. An obvious first display is to
plot the reaction proportions y;/n against the dosages x;. This is called a stimulus
response curve. Note that it is an empirical version of the tolerance distribution
function P(x) = G[(x — 6)/c].

A second method of display is oriented toward the location-scale nature of
the dosage ; the function G™' is applied to the proportions y;/n. Note that the
function G~ ! applied to the probabilities gives the standardized dosages (x — 0)/0;
correspondingly, the function G~ applied to the proportions gives an “estimate”
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11-6

Table 10-2 Table 10-3
Xj Vi S Vi
2 0 2—-90 0
3 0 3—¢0 0
4 1 4—-0 1
5 5 5—6 5
6 6 6—0 6
7 7 7-0 7
8 10 8 -0 10
9 9 9—-9 9
10 10 10 -6 10
11 10 10

of the standardized dosages. The second display involves plotting G~ '(y;/n) against
the dosage x;; a fitted line then gives estimates for 6 and ¢. For the normal, the
inverse G™! is called the probit function and is available from tables; to avoid
negative numbers the probit is usually taken to be 5+ G~ *. For the logistic, the
inverse G~ ! is called the logit function and is available explicitly:

G l(u)=1In (10-9)

1—u

For applications in other than the biological areas consider the following:
testing of material under various levels of explosive force; testing of electronic
equipment under various levels of voltage surge ; reconviction of a released convict
under various related conditions.

10-1-2 Dilution Series

Consider a solution or suspension containing bacteria or some other organism
of interest. This could be a water supply containing coliform bacteria; or it could
be a vaccine containing some live viruses; or it could be particular bacilli in
flour. The problem is to determine the concentration of the organism in the
solution. We assume that the organism is uniformly and randomly distributed
throughout the solution.

An obvious first approach is to count the organisms directly, as, for example,
white cells are counted on a blood slide. However, with bacteria in water or
viruses in a vaccine such a visual approach is typically unavailable or, if available,
prone to gross counting errors.

An alternative approach having the same dichotomous 0,1 nature as the
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bioassay design is to take samples at various dilutions and, for each sample,
provide a nutrient under growth conditions and record whether the sample is
sterile as evidenced by no growth or fertile as evidenced by growth. By taking
low-dilution samples with almost sure fertility through to high-dilution samples
with almost sure sterility it is possible to bracket the critical region and to estimate
the density of the organism in the solution.

We now discuss this dilution series method following very closely the pattern
for the bioassay method. However, it is convenient to retain one major distinction
concerning direction. For bioassay we examine a sequence with increasing dosages ;
for dilution series assessment we examine a sequence with increasing dilution,
decreasing concentration, but with increasing dilution and associated increasing
probability of sterility.

Consider a given solution containing a living organism distributed uniformly
and at random throughout the solution. For a derived solution obtained by
dilution we define the dilution factor X to be the final volume divided by the
volume before dilution. We then define the dilution dosage x =log X to be the
dilution factor expressed in logarithmic units, typically base 10.

Ideally we can think of taking an initial sample unit; subjecting it to a pro-
gressive dilution dosage x, retaining just a sample unit; and stopping when the
retained unit becomes sterile. Let P(x) be the distribution function for this threshold
dilution dosage. We derive the form of P(x).

Let / be the average number of organisms per unit volume for the original
solutionandlet 0 = log Abethe log-concentration; the average number of organisms
per unit volume is then 10°. For a derived solution obtained by dilution dosage x
the average number per unit volume is

100-% =10 =9 = 10" (10-10)

We now define the dilution strength of a solution. For a solution with an
average of one organism per unit volume we say the dilution strength is 0 and for
a solution obtained from this by a dilution dosage s we say the dilution strength
is 5. Accordingly we see that the dilution strength is the negative of the log-
concentration.

We now see that the original solution has dilution strength —6 and we then
note that a dilution dosage 0 applied to the original solution produces a derived
solution with dilution strength 0. For a solution of dilution strength s the average
number of particles per unit volume is

107 (10-11)
Accordingly, from the Poisson distribution we have the probability
exp (—1079) (10-12)

that a unit volume is sterile.
Now consider a dilution dosage x applied to the original solution. From
formulas (10-10) and (10-12) the probability that a unit volume is sterile is
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P(x) = exp (— 107>~

Gx—0) (10-13)

where
G(s) = exp (—107%) (10-14)

Note that this is the distribution function for the extreme-value distribution.

The present definitions thus give us a direct correspondence to bioassay. The
formula (10-3) for the tolerance distribution with ¢ =1 becomes the present
formula (10-13), and the normal and logistic distributions, (10-4) and (10-5), are
replaced by the extreme-value distribution (10-14).

The remaining pattern for dilution series assessment corresponds directly with
that for bioassay. For an experimental design we consider k dilutions xi, ..., Xk
and from each obtain n samples of unit volume; we then have kn samples. Note
that the dilutions should be large with respect to the samples in order that the
samples be “independent” samples from the diluted version of the original solu-
tion. Each sample is then tested with a nutrient to determine if the “reaction”
sterility occurs. Let y; be the number sterile at dosage x;. We then have the
probability function

k
ﬂ < >Py (x;)0" ¥(x;) (10-15)
where, of course, Q(x) = 1 — P(x).
In the standard investigation the dilution dosages xi, ..., X, are taken to be

equally spaced, ranging from a “sure fertile” dosage up to a “sure sterile” dosage.
Thus with spacing interval & we have the dosages

Xo,Xo+I’l,...,Xo+(k— l)h

With equal spacing we have available the randomization discussed for bio-
assay. In fact, the randomization was proposed originally by Fisher (1935a) for
the dilution series application. The experimenter randomly chooses a number v
from the uniform [0, ) distribution and uses the dilution dosages

., v—huv,v+h,...

As before we consider the open-ended series of dosages.

Consider the data shown in Table 10-4 investigating the density of rope spores
in potato flour. The data were reported by Fisher and Yates (1963); we have
k=10, n=5, and h = log2 = 0.301. The initial randomization on the interval
[0, h) was not formally included in the original design. The dilutions are based
on a basic unit of 1 gram although examined in a mixture having volume 100 cm®.
Thus we can have negative dilution dosages and the density is recorded as a count
per gram. We view this in the open-ended form used for the bioassay example in
Sec. 10-1-1. These data are analyzed in Sec. 10-2.

The probability differential covering the randomization v and the binomial
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Table 10-4

Dilution
Dilution factor dosage x; Number sterile y;

i —2h 0
3 —h 0
1 0 0
2 h 0
4 2h 1
8 3h 2
16 - 4h 3
32 Sh 3
64 6h 5
128 Th 5

responses y; = y(v + jh) at dosages x; = v + jh has the following form correspond-
ing to (10-8):

I <n> Py + jh)Q" v + jh) dv = H(yn ) Gl =0

j=— \Jj
x [1 = Gv+jh—0)]" ¥dv
= f(x — 6,y)dv
= fls,y) dv (10-16)

where v takes values in [0, h), the y; take values in {0,1,...,n}, and (s, y) designates
the extended vector as in formula (10-8). For a discussion of convergence, again
see Fraser and Prentice (1971). The methods of display for bioassay are, of course,
available here, but with some simplification resulting from having o = 1.

10-2 THE ANALYSIS : THEORY AND EXAMPLES

We now consider the analysis of an inference base involving the bioassay and
dilution model from Sec. 10-1.

10-2-1 The Formal Model

Consider the bioassay model in formulas (10-8) and (10-16) together with the
illustrations provided by Tables 10-2 and 10-4 in the preceding section.

For this model, it is useful to envisage a long laboratory table marked out
with strength scale s. Points along the scale at intervals of length h each have n
independent tests at the corresponding strengths. The randomization v on the
interval [0, 1] has the effect of randomly locating the lattice of points on the
strength scale. The statistical model (10-8) has the form
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fols,y)dv = _fj (;) G%C—i) [1 — G(i—;)]n_yj dv (10-17)

The investigator, however, does not see the strength scale itself. Rather, he or
she sees the corresponding dosage scale

x=0+s (10-18)

which is a displacement + 6 on the strength scale.

We have used the term variation for the objective description of distribution
form. Here the basic variation can be pictured directly on the laboratory table.
For the investigator the only thing not observable is the strength scale itself; he
or she sees the dosage scale, a simple translation on the strength scale.

The randomization was formally applied to randomly locate the lattice of
points on the dosage scale. The purpose of the randomization, however, is to
randomly locate the lattice of strength values on the strength scale. Recall the
discussion in Sec. 3-2-4. Accordingly we do not condition on the “observed”
randomization because the essential randomization on the strength scale is un-
observable.

For notation let ¥~ designate the distributions represented by formula (10-17).
The sample space is

& =[0,h) x {0,1,...,n}k (10-19)

where [0, h) is the interval for the randomization and {0, 1,...,n} is the space for
y; with j running through the integers 1,..., k. However, to be formally correct
for the theory developed below we should record a sample space {0, 1, ..., n} for
each y; with j running through integers from — oc to +cc. Let % be the location
transformations

% ={[0,1]:0eR} (10-20)
which carry the strength scale into the dosage scale (10-18). We then have the
variation-based model

My ={Q; S, AV, G} (10-21)

where Q = {(f,0)} = ¥ x R", o/ is the appropriate c-algebra for the sample
space & in (10-19), ¥ is the class of distributions (10-17) with parameter o, and
% is the location group; or more generally we would have ¢ replaced by 4
covering both scale and form. This is a very simple structural model based on the
location group.

10-2-2 The Analysis
Consider the analysis of an inference base

(My, {x°%y°}) (10-22)
using the model .#, in (10-21) and data {x° y°} such as in Tables 10-2 or 10-4.
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This is a location analysis, a much simplified version of the location-scale analysis
in Chap. 2. For the analysis we need a location statistic and a reference point.

First consider the location statistic and envisage the long laboratory table.
The values of y; for strengths negatively on the scale are surely zero; let r(s, y)
be the first strength coming up the scale at which the corresponding count is
different from zero; and, of course, let r{x, y) be the first dosage coming up the
scale at which the count is different from zero. For example, from Tables 10-2 and
10-3 we have r(s, y) recorded as 4 — 6 and we have r(x, y) = 4. Clearly, in general,
we have

rx, y) =0+ r(s, y) (10-23)

Now consider the corresponding reference value. This is obtained by a location
transformation [ —r, 1]. For the variation this adjusts the scale so that the zero
point is opposite the first count y; that is different from zero. The corresponding
transformation for the responses gives the same result: the zero point is opposite
the first count y; that is different from zero. For this adjusted scale, let

d=s—r(s,y)

— x— (%) (10-24)
Consider the data in Table 10-2; in Table 10-5 we record the counts opposite this
new d scale.

Table 10-5

d; Yi

-2 0

-1 0
0 1
1 5
2 6
3 7
4 10
5 9
6 10
7 10

The observed orbit D is represented by Table 10-5. The distributions for the
orbit are obtained by integrating over the location statistic r = r(s, y):

(D) = f U+ dy)dr
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=r n( )G} (’+d>[1_c;<’+dfﬂ”jdr (10-25)
e \y o o

In the pattern of preceding chapters we then have the inference base
(Ap, D°) (10-26)

If we insert the observed values in (10-25) we obtain the observed likelihood
function for o:

0 0 - 0 yo
ch,(D°) = ¢ J nc;y?(.’iaﬁ>[1 - G<r-;d ﬂ dr (10-27)

The unobservable characteristic of the variation is the location of the first
nonzero count on the strength scale. The distribution for this unobservable
characteristic is

g.(r: D°) = h (DO (} >G» (’ *; do)[1 _ G(” *;d? )]n_y’ (10-28)

This distribution for the variation is used with the transformation
rx,y)=60+r (10-29)

The corresponding observed value for the location of the response is r(x, y°).
This gives the inference base

(AP, r(x, 7)) (10-30)

in the pattern of preceding chapters.
The response distribution for r* = r(x, y) corresponding to the identified
variation is

% __ 0 * __ O\ -y,
h;‘(DO)H<;> Gn(’—iﬂ) [1 - G(r i+ 4; )J (10-31)
J

on the real line.
The usual bioassay analysis is based on the overall likelihood function

cn(y"j) Gy,»(*% [1 - G(Xf ; eﬂmj (10-32)

Our analysis here has factored this likelihood function into two very specific
components. The first component is the proper likelihood function (10-27)

chy(D°)

for the analysis of the parameter o. The second component is the likelihood
version of (10-31). Our analysis goes far beyond a simple likelihood analysis of
(10-31); it admits tests and confidence intervals using (10-31) or using the distribu-
tion (10-28) with the equation (10-29).
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Thus, rather than just a single likelihood function for (6, o), we have a separa-
tion giving the specific likelihood for ¢ and something more than just the specific
likelihood for the parameter of interest 0.

10-2-3 Bioassay Examplet

Consider an investigation concerning the effect of a certain strain of pneumonia
organism on mice. The main purpose of the investigation is one of standardiza-
tion—to find the ED50 dosage of pneumonia organism that produces a 50 percent
mortality rate in mice; with mortality, the ED50 is usually called lethal dosage
fifty and written LD50.

The investigation produced the data in Table 10-6; these data were made
available by D. B. W. Reid of the University of Toronto. Note that these are the
data used for Tables 10-1, 10-2, and 10-3 in Sec. 10-1-1. We have k = 7, n = 10.

Table 10-6

Number of organisms Mortality rate

10° 0/10
10* 1/10
105 5/10
106 6/10
107 7/10
108 10/10
10° 9/10

The usual method of bioassay analysis is based on the likelihood function
and its large sample approximation. The method involves an iterative solution
for the maximum likelihood estimate and was proposed by Fisher (1935b). For a
general survey, see Finney (1971).

The method involves an initial display of the data as a plot of probit or logit
against dosage (see the end of Sec. 10-1-1). A straight line is fitted. This provides
an estimate of standardized dosage

x—0 o 1 Ao
= —<x+ZX=0+1X
6 0

6

as a function of dosage x, and it gives a preliminary estimate for (6, o). The
preliminary estimate is then used with an iterative procedure for obtaining the
exact maximum likelihood estimate (fi, &) based on the probability function (10-32).
The iterative procedure involves the usual local linearization method for solving
nonlinear equations; see, for example, Draper and Smith (1966). This maximum
likelihood procedure is available as a bioassay package at most computer centres.

For the present data the logistic model was used; in practice there seems to
be very little difference between the use of the logistic and the use of the normal.

+ With Daryl Pregibon and Allen McIntosh.
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The weighted straight line regression of logit on dosage followed by several itera-
tions yielded the following line:

T= —5788 + 1.019x = & + 7x

From this we obtain the maximum likelihood estimates

D=—2=5683 ©=

7

= 1.019

[STI

To a first-order approximation the estimated standard deviation for 0 is 0.3224.
An approximate 95 percent confidence interval for 0 is obtained by taking +1.96
standard deviations:

(5.05, 6.31)

This is based on the large-sample theory for likelihood functions.

Now consider the analysis as based on the theory in Chap. 7. As indicated in
Sec. 10-2-2 we have a separation of the likelihood function giving the specific
likelihood component for ¢ or = 1/6, and something more—in fact a full
variation-based model for the primary parameter 0.

1.20

1.001—

I

0.80

0.60-

040

0.20

| L | | ]
0.00 0.40 0.80 1.20 1.60 2.00 2.40

Figure 10-1 Likelihood function for t in the bioassay example.
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Figure 10-2 Density function for the location statistic r in the bioassay example 7 = 0.988.

The likelihood function for t = 1/o is plotted in Fig. 10-1. The parameter t
indicates precision and its reciprocal ¢ is the standard deviation for the tolerance
distribution. The maximum likelihood estimate of t is 0.988 ; this value is smaller
than the value 1.019 obtained from the analysis of the joint likelihood function.

Table 10-7
Level

T in percentage Lower limit Upper limit

0.6 90 483 6.36
95 4.67 6.49
99 4.20 6.71

1.0 90 513 6.20
95 5.02 6.30
99 4.75 6.46

14 90 5.24 6.11
95 5.14 6.18

99 441 6.28
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Figure 10-3 Density function for the location statistic r in the bioassay example t = 0.6, 1.0, 1.4,

The conditional distribution for r is plotted for r = 0.988 in Fig. 10-2. The
distributions for other values of t have a similar shape, but are characterized by
the fact that as t increases the distribution becomes more concentrated ; see Fig.
10-3. Again, interpreting t as precision we see that as precision increases the
inferences re 6 get sharper.

The 90, 95, and 99 percent confidence intervals for the LD50 @ are recorded
for several values of 7 in Table 10-7. Note that the 95 percent confidence interval
obtained here with 7 = 1.0 is similar to that obtained with the large-sample
likelihood method. In general, this is not the case, however, as the density function
for r is usually asymmetric.

10-2-4 Dilution Series Example®

Consider an investigation concerning the density of rope spores (Bacillus mesen-
tericus) in a particular batch of potato flour. The purpose is to estimate the number

+ With Daryl Pregibon and Allen McIntosh.



248 INFERENCE AND LINEAR MODELS

Table 10-8

Dilution factor Number of sterile samples
(re 1 gram/100 cm®)  outofn=735

B — e e

64
128

N Wwhl—, OO o

A of spores per gram of flour. The investigation produced the data in Table 10-8;
the data were reported by Fisher and Yates (1963). Note that these are the data
recorded in Table 10-4 of Sec. 10-1-2. We have k = 10, n = 5. Also recall that the

1.20~

0.80+

0.60—

0.401—

0.20

00 L ! | 1 1 ]
-3.20 ~2.40 -1.60 -0.80 0.00 0.80 1.60
r

Figure 10-4 Density for location statistic in the dilution series example.
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Table 10-9

Confidence level, Lower limit for 2 Upper limit for 4
in percentage

90 459 1205
95 415 1312
98 370 1445
99 341 1542

dilutions are based on a standard unit of one gram although examined in a mixture
having volume 100 cm?.

The usual method is based on the likelihood function and its large-sample
approximation. The likelihood maximization with a single real parameter is
straightforward ; see, for example, Finney (1971, chap. 21). The maximum likeli-
hood estimate of 4 is 766 spores per gram and the approximate 95 percent con-
fidence interval based on large-sample theory is

(431, 1363)

Now consider the exact analysis as based on the theory for the variation-
based model in Sec. 10-2-2. The distribution for the location statistic r is recorded
in Fig. 10-4; note the slight asymmetry of the distribution. The connection with
the parameter 4 is given by r(x, y) — 0 = r where § = log 2 is the log-concentration.

Exact confidence intervals for 8 and then for 4 can be obtained from central
probability intervals for the distribution of r. The median estimate corresponding
to the center of the r distribution is 757 spores per gram—in fact, 756.58.

Note that the approximate 95 percent confidence interval based on asymptotic
normality is (431, 1363) whereas the exact 95 percent confidence interval taking
into account the asymmetry and nonnormality is (415, 1312).

10-2-5 Conclusions

The preceding examination of the dilution and bioassay problems is by no means
intended to be complete. Many books have been written on the subject and no
doubt many more will be written. Our central objective is to describe how drug
strength and bacterial density can be assessed by exact methods using a variation-
based model.

Some natural extensions from our development here are: (1) estimation for
percentage points of the tolerance distribution other than the median; (2) assess-
ment of the relative potency of two competing drugs; (3) examination of a more
exhaustive family of tolerance distributions (robustness); (4) indifference to
maverick observations (resistance); and (5) methods for model assessment (for
example, are bacteria uniformly distributed throughout the suspension?).
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CHAPTER

ELEVEN
EXTENDED LIKELIHOOD METHODS

The more parameters there are in a statistical model, the more complex the problem
is of finding reasonable inference procedures. Indeed, the question often is less
one of finding reasonable, let alone optimum, procedures and more one of finding
some seemingly relevant procedure.

In preceding chapters we have seen how the presence of a variation-based
model provides incisive access to reasonable, indeed the absolute, inference pro-
cedures for many parameters. Specifically, we obtain a separation of an inference
base by means of necessary method RM3 in Sec. 3-3 (see Sec. 7-1). For the shape
parameter we obtain an ordinary statistical model with an available likelihood
function and for the remaining location and structuring parameter we obtain an
unequivocal determination of tests and confidence regions.

With the ordinary response-based model the observed likelihood function is
the particular entity commonly available for inference. The corresponding variation-
based model in effect splits this likelihood into two precise components. As we
have noted, one component is the proper likelihood for the shape parameter and
the other component is the likelihood for the location and structuring parameters —
but the variation-based model makes much more available for these location
parameters, specifically the distributions and relations that give unequivocal
tests and confidence regions.

With the ordinary response-based model the observed likelihood function is,
as just noted, the available entity for inference. The applied context, however,
may support a generalized version of the variation-based model. Some separation
of the likelihood function may then be possible. For this we maintain our inter-
pretation of likelihood as the probability for what is observed. In this chapter we
examine some extended likelihood methods; the methods are extended by using a
somewhat more general interpretation of what is observable.

251
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In Sec. 11-1 we give some background on likelihood components, in Sec.
11-2 we examine the extended likelihood methods, and in Sec. 11-3 we consider
their applications to the transformed regression model.

11-1 SOME LIKELIHOOD COMPONENTS

As a preamble to investigating extended likelihood we first examine two common
methods for obtaining components of the likelihood function. Typically these
methods do not give a component that can be viewed as a probability for what is
observed. Indeed, some examples suggest that these components can be quite
misleading.

An observed likelihood function L(y;0) provides an assessment for the full
parameter 6. In the multiparameter case an assessment for a component parameter
is not immediately available; we briefly examine two common methods for
obtaining component “likelihoods.”

11-1-1 Profile Likelihood

The first method is a commonly used method and involves profiling out unwanted
parameters. Let 0, = h(f) be a parameter component of interest. Then the profile
“likelihood” is
Ly(0,) = sup L(y;0) (11-1)
h(6)=0,

This involves taking the supremum over all 8 values corresponding to the value
0, of the parameter component—that is, over the preimage set h~(0,). If the full
likelihood function is on a product space with one coordinate 6,, then L(6;) is
the profile of the full likelihood as viewed from the 6, axis.

Note that the maximum likelihood value for the profile likelihood is the 04
value associated with the maximum likelihood value for the full likelihood.

Even a simple normal example can illustrate how misleading the profile likeli-
hood can be. Consider a sample yq,..., y, from the normal (g, o). The profile
likelihood for o2 is

Ll(O'Z) = sup C(GZ)*n_IZ exp [_ (I’l - 1)55 _ }’l()_/ _Z,u)z:l
I 20 20
(n— l)sif} (11-2)

= ¢(o?)™"? exp[— 5.2
g

This “likelihood™ function for ¢? depends only on the sample variance s;.
The likelihood function for this component variable, however, is

—1)s2
L(s?;06%) = c(a®) ™" V2 exp [—&?)SVJ (11-3)

Note that the maximizing value for profile likelihood is (n — 1)s?/n, whereas the
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maximizing value for the proper likelihood (11-3) from s7 is s7 itself. With normal
regression models the discrepancy (n — 1)/n becomes (n — r)/n where r is the
number of regression vectors. For larger r the discrepancy can be very serious
and misleading.

As a second example consider the bioassay example in Sec. 10-2-3. The
maximum profile likelihood value for the secondary parameter 7 is 1.019. By
contrast, the maximum likelihood value for the proper likelihood from the com-
ponent variable is 0.988 —showing that the precision for the primary parameter
is in fact lower than that indicated by the profile likelihood.

11-1-2 Integrated Likelihood

The second method is also a commonly used method and involves integrating out
unwanted parameters. Let 0; = h(0) be a parameter component of interest and
Y1 = k(0) be a complementary parameter. Then the integrated “likelihood™ is

Ly(0,) = J L(y: 01, y1) du(y1101) (11-4)

where du(y; | 6,) designates a measure for y; given ¢, chosen in some convenient
or insightful way. In certain ways this is even farther from true likelihood than the
profile likelihood.

If 1(y1 |01) happens to be a probability measure on ; values then certain
difficulties with L, are avoided. However, for most problems there does not exist
a probability measure that, say, eliminates the effect of a parameter—as, for
example, by eliminating some corresponding variable. On the other hand, if
u(y1|0,) is allowed to be a measure uniform in a certain sense then it may be
possible to eliminate the effect of a parameter by eliminating a corresponding
variable ; but then those certain difficulties are not avoided.

Anintegrated likelihood is not in general a likelihood. This raises the question:
what is it? With a full likelihood function that turns out to be hard to analyze, it is
natural to try any plausible techniques. But trying something does not make that
something good. Justifications are needed from somewhere, and the examples for
integrated likelihood are mostly negative.

The integrated likelihood has a place in Bayesian theory. The development in
this book, however, finds no place for Bayesian theory. For some general com-
ments on these integration methods and on Bayesian methods in general, see Fraser
(1972a, 1974).

11-2 EXTENDED LIKELIHOOD

In Sec. 7-1 we examined structural models and obtained the separation of an
inference base by using necessary method RM; from Sec. 3-3. At the beginning
of this chapter we noted how this corresponded to a separation of the full likeli-
hood function.
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We now examine some generalized structural models, models that are struc-
tural if a particular component parameter is specified in value. We then investigate
what is observable and derive a separation of the likelihood function. For further
details on the development of the method see Fraser (1972b).

11-2-1 Generalized Structural Model

We use most of the basic notation for a structural model. Let ¥ be the sample
space with g-algebra .o/ and let ¥~ be a class of distributions for the variation with
parameter 4 in A. As before, we suppose that there is a group G.

For a first generalization we suppose that the action of the group G on the
space % depends on a parameter x. Thus for € in the group G we have the trans-
formation 6, on the space % ; we let G, designate the class of transformations 6,.
In our abbreviated notation we then have:

Y=0.Zwithf0in G
T . (11-5)
Z has distribution in the class #
The full parameter is (6, 2, k) and Q = G x A x K. The model has a parameter
/ for distribution form and a parameter x for the type of response expression ; the
primary parameter 6 gives the particular response presentation.

As a simple example consider the regression model

y=X.p+oz
z has distribution f;(z) dz (11-6)
The group here is the regression scale group examined in Chap. 6. The application
of the group to the response space depends on the vectors of the design matrix;
we suppose that the design matrix X, depends on the parameter . This model
can be appropriate if the proper mode of expression for the input variables is in
doubt ; the parameter x would allow some reasonable range of possibilities.

For a second generalization we suppose that there is a structural model

Y=0Zwithfin G

R (11-7)
Z has distribution in the class ¥~

for some natural response variable for the system being investigated, a variable
giving, say, the additivity and near normality expected with some regression
models. However, the proper mode of expression for the response is not clear and
the given response variable is some reexpression p of the natural response vari-
able; we suppose the transformations p are bijections on .%. This gives the model

Y = p6Z with 0in G, p in I1

Z has a distribution in the class 7~ (11-8)
The full parameter is (0, 4, p) and Q = G x A x Il where IT is the class of possible
response expressions in terms of the natural variable. The model has a parameter
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J for distribution form and a parameter p for the reexpression of the natural
response; the primary parameter 0 gives the particular natural response.
As a simple example consider the regression model but with uncertainty as
to the proper mode of expression for the response. Consider
Py
ply=1| : | =XB+toz
P

z has distribution f;(z) dz

(11-9)

where p ! applied to a coordinate for the given response variable produces the
natural response variable that has the particular linear structure; the possible
transformations p-would be bijections on the real line. As an example for p consider
the power transformations

-1 ¥ p#0
- 11-10
py {My p=0 ( )

but note that these transformations operate primarily on the positive axis and
thus the bijective property could be an approximation for some appropriate
range.

The second generalization can be formally treated as a special case of the first
generalization. For this we write Y = p0Z = pOp~'pZ = 0,pZ, and use pGp™*
as the transformation group and pZ as a modified form for the variation.

The two generalizations, however, can be taken as they stand and combined
to form the generalized structural model. For this it is notationally convenient to
use A for the full parameter other than 0:

Y=120,Zwithfin G

Z has distribution in the class ¥~ (11-11)

The parameter 4 covers the form of the distribution in 77, the action of the group
G, and the reexpression of the natural response. For the natural response variable
we find it convenient to write

Y,=4i'Y (11-12)
Note that for a specified value of / the model is essentially a structural model

(Sec. 7-1) and can be put in the usual form as

Y, =0,Zwithfin G (11-13)

Z has a distribution in the class 7~

11-2-2 The Analysis

For the model (11-11) the parameter A is more complex than with the ordinary
model in preceding chapters. Besides distribution form, the parameter A now
involves group application and response reexpression. However, for given 4 the
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model is essentially the structural model (7-8) and (7-9) in Sec. 7-1; for the con-
tinuous case we will assume the differential properties in Sec. 7-2.

Consider an inference base involving the generalized structural model (11-11)
together with an observed response value Y°. Our approach is to examine this
for a chosen 4 and see what is observable and what is unobservable. As in pre-
ceding chapters we obtainan observed orbit among possible orbits and a conditional
model along the observed orbit. We do, however, reexpress this and examine it
on the given response space.

Forchosen itheobserved Y determines thenaturalresponse value Y = 1~ Y°,
In the pattern of our earlier analysis, this value produces the observed orbit for
the variation

G, Z=G,Y)=G,27'Y° (11-14)

This observed orbit is one orbit among the partition of & into orbits by the
transformation group G,. We can reexpress the preceding on the given response
space by using the transformation 4. We then obtain the observed post-orbit

2G,Z = G, 'Y° (11-15)

among the partition into such post-orbits.

For our analysis we will calculate the probability for the observed post-orbit
(11-15) and express it suitably at the observed response point Y°. In the con-
tinuous case this will give us an observed likelihood function. The model for
possible likelihood functions we have found to be generally inaccessible.

Also for our analysis we will have the conditional model for [Z], given D,
and the equation

Y = EOA[Z}AD;L

together with the observed value Y°. For given / this part of the analysis directly
follows the pattern in the preceding chapters, with the obvious adjustments of
notation.

This leaves us essentially with just the problem of calculating the probability
for the observed post-orbit (11-15). We investigate this in Sec. 11-2-3.

11-2-3 Calculating Likelihood for 4

We now consider the probability for a post-orbit in terms of a volume measure at
the observed response Y. For this we examine the continuous case and introduce
the assumptions in Sec. 7-2-1. The resulting likelihood function is recorded as
(11-27); the reader not particularly interested in the details of the calculations
can proceed directly to (11-27) and Sec. 11-2-4.

The probability element for the variation Z is

fiZ2)dz (11-16)

From Sec. 7-2 we obtain the following ingredients for the calculations. The
marginal distribution in terms of the volume dD; orthogonal to the orbit at the
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reference point D; is
hy(D,)dD; (11-17)
The conditional distribution for the position g, = [Z]; is
hy (D) f9:D)Ixg:D )T L (g2 i(D3) dg.: (11-18)

where dg; is Euclidean volume on the group G; the corresponding equation is
Y = 26,9,D, with the observed value Y°.

We now pursue a reexpression of (11-17) in terms of volume at the observed
response Y. For this consider dZ as a measure but restricted to a set formed as a
compound of a neighborhood of values near D, with a neighborhood of values
for g,. We then re-record (11-17) as a quotient of (11-16) by (11-18):

fA(Z) dz -1 (D )-J};l(g/lDzl) . dz
h; (D) fg DI D)L gD dgs 7

Ji'gy) JuD;)dg,
(11-19)

The use of quotient differentials is straightforward and is based on standard
methods of advanced calculus and linear forms. The reason for using quotients
should now become clear. Under a change of variable both the numerator and
denominator are relatively easily transformed. By contrast a measure orthogonal
to orbits will typically transform to something non-orthogonal. The quotient
provides the means to remain with an orthogonal measure.

We first reexpress the probability (11-19) for the orbit in terms of coordinates
at Y, by using the properties of the invariant measures

Iy ([Y:].D5) dY;
IPR(RARIACATIRAR

We now commence the transformation at the actual response variable Y. For
the full coordinates of Y we have the vector differential

h;(D3)

(11-20)

oA"Y
dy, = dY =J(i ' Y)dY (11-21)
oY
and volume differential
dY,;=|J(2‘1:Y)|dY (11-22)

where J(A™!: Y) is the Jacobian matrix for the transformation A~" applied at the
point Y. For the coordinates Y = A[Y;],D, in terms of the orbit coordinates [ Y;]
on the group we have the vector differential

dY =J YA 1 Y)dY, =J AT Y) WY, d[ Y ], (11-23)
where

6g,D
WilgiDy) = 2 (11-24)




258 INFERENCE AND LINEAR MODELS

is an N x L matrix of partial derivatives. Note that the calculation of W;(g;D;)
at D, is an obvious first step for the direct calculation of J;(D;), a calculation we
have avoided except in simple cases. Then from the footnote to the discussion
preceding (6-25) we have the following relation for the volume differential along
the orbit:

ALY 1D: =[G W]V d[ Y, (11-25)

where the first parentheses give the transpose of the brackets following. We then
substitute in (11-20) and use (11-21) for the numerator and (11-25) for the denom-
inator; the quotient dv = dY/d/[Y;],D; gives volume orthogonal to the post-
orbit at Y. We obtain

ha(D;) Iy ([ Ya]:D)) | [J(A 1Y)
LDy JCNY)) YA ) WYl
We have calculated the probability for the observed post-orbit through the

given response. Using volume orthogonal to the observed post-orbit we obtain
the likelihood for 2.

hA(D;.)'Ji' 1([Y).],1D;.)' [J(;:l: Y)!
JADy JLNY)) [T WI)] T

dv (11-26)

L) =c (11-27)

11-2-4 Some Comparisons

Consider an inference base involving the generalized structural model (11-11)
together with an observed response value Y°. In Sec. 11-2-2 we saw that for given
/ we have an observed post-orbit and in Sec. 11-2-3 we obtained the probability
for this in terms of volume orthogonal to the post-orbit. From this we obtained
the likelihood (11-27) for the parameter A.

We now examine this likelihood in comparison with the profile likelihood
and use a simple example that incorporates most of the complications of the
generalized model.

For the example we use the distribution

Flz)filz2) dzy dzy (11-28)

for the variation on R? and we let (yy, y,) be the given response variable and

(%, v&) = 27 Y(y1, y2) be the natural response variable with the simple location

model )
V=1

yi=0+z,

0cR (11-29)

The transformations A from natural response space to given response space are
assumed to be continuously differentiable.
The likelihood (11-27) for A can be calculated in a straightforward manner:

L) = ¢,(vD)

dyt
— 11-30
dy, ( )
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The likelihood depends only on y;. Note that the density function for y, is

£:(01) ZJ; (11-31)

Thus (11-30) is the likelihood from the variable y, that identifies the orbit.
Now consider the profile likelihood L, given by (11-1). This is obtained by
profiling out the parameter 0; we obtain

dvl d)z

(11-32)

( f(l) f(/)

where a, maxi ,
constant, then the preceding depends only on y; and is the actual likelihood from
y; combined with an extraneous factor f;(a;) recording the modal density. If
there is distortion along the orbit then there is an additional extraneous factor.
For this example the likelihood (11-27) avoids some of the obvious difficulties
that arise with profile likelihood.

On the basis of our discussion in Sec. 11-1 it hardly seems appropriate to
bother with the integrated likelihood L, given by (11-4); for completeness, how-
ever, we record the comparison. The full likelihood function for (4, ) has the
form
dYZ

Cf()

How can the extraneous factors be removed by integration? A uniform distribu-
tion is an obvious way of eliminating the 6 factor; in some cases it may be the
only way. To eliminate the differential factor |dy3/dy, | as well would then require
the adjusted uniform measure
2|4
dys

for the parameter 0. But this measure depends on the observed response! This
measure has been proposed within the Bayesian framework but runs counter to
the Bayesian philosophy by having a prior measure that “depends” on a subsequent
outcome! The integrated likelihood thus seems even less attractive in the context
of the present example.

The example illustrates most of the complications that arise with the general-
ized model. It does not, however, illustrate the case where the post-orbit through
Y changes its direction with 1. We consider now how this affects the likelihood
(11-27) for Y.

For this we consider the generalized model and suppose that the orientation
of the post-orbits depends on 4. We investigate the effect of this by examining a
new response X = h(Y) obtained by a diffeomorphism h of RY on R". Let

Y

K =2x

(11-33)
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be the Jacobian matrix of the old with respect to the new variable. The likelihood
function (11-27) can be recalculated using the Euclidean volume measure for the
new variable X:

chy(D;) Jy '([Yi]aDy) |K(D)] [JA ' Y)]

LDy I Y] | YKTHI TGS )WY |~1?

This differs from the likelihood (11-27) by the factor

| K(Y)[| (.Y [T Y) Wa(Y))] |12
(YK Ie ) Wi

I*() =

(11-34)

This factor arises because orthogonality for X can be different from that for Y.
In conclusion, we note that the likelihood (11-27) handles most of the com-
plications that arise with the generalized model. However, if the post-orbits vary
with A then the likelihood (11-27) can depend on the particular choice of variable
to represent the response. One realistic approach to this phenomenon is to
examine the likelihood (11-34) using a sequence of choices for the response X
and to iterate using at each stage the variable suggested by the preceding stage.
Another approach is available if the reexpressions / form a group ; we investigate
this in Sec. 11-3and also its application to the power transformed regression model.
For further discussions on the methods in this section see Fraser (1967, 1972b).

11-3 GROUP-BASED LIKELIHOOD AND THE TRANSFORMED
REGRESSION MODEL

In the preceding section we examined the generalized structural model and deter-
mined the likelihood function for the secondary parameter A. A key element in
the determination involved the choice of the supporting volume element at the
observed response; we used volume orthogonal to the post-orbit of the under-
lying structural model.

The generalized structural model (11-11) is a composite of two different
generalizations of the ordinary structural model (7-9). One of these (11-5) involved
a parameter for the application of the group G to the basic sample space. The
other (11-8) involved a parameter for a class of reexpressions of the natural response
variable. Arguments can be given that a reasonable class of reexpressions should
form a group (Fraser, 1972b). If they do form a group then there can be a natural
choice of supporting volume element at the observed response. This gives the
group-based likelihood in Secs. 11-3-1 and 11-3-2. Then in Sec. 11-3-3 we illustrate
the likelihood methods by examining the transformed regression model.

11-3-1 Group-Based Reexpressions
Consider the second generalization (11-8) of the structural model:
Y = 20Z with 0in G, 2in A

(11-35)
Z has a distribution in the class 7~
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and suppose that the class A of reexpression transformations 4 is a transformation
group. Note that we are using the combined notation of (11-11) but the parameter
4 now covers just the form of the distribution in ¥~ and the reexpression of the
response. In this section we will work with 2 as a reexpression transformation,
but allow that it may have “spare coordinates” that index the distribution forms
inv".

In the generalized model (11-35) we have Y = /0Z where 0 is in a group G
and now 4 is in a group A. If these combine so that the elements 46 form a group
then we have just the ordinary structural model. Our concern here, however, is
for the more general case where the elements 40 do not form a combined group.

For the generalized model (11-35) we will view 6 in G as giving the basic or
natural response expression and view / in A as allowing for uncertainty as to
the appropriate or natural way of expressing the response.

Our main example later in this section is the transformed regression model.
Let y be the response vector as recorded and 4~ 'y be the natural response vector
with a regression-type model:

P ly = : =
Ly = L Xp+oz (11-36)

z has distribution f;(z)

As a class of response reexpressions consider the power transformations:

o y* i#0
= 11-37
(W"y {lny =0 ( )

For this we are using 4 as a real number in the exponent ; thus to avoid confusion
we write (1) for the response reexpression transformation. The transformation
(2)~ ! maps (0, o) onto (0, =) for 2 # 0 and onto (— «, «) for 2 = 0. A modified
form

—1(,4 _ "
() ly = {}" Or=b A0 (11-38)
Iny A=0

has continuity at 4 = 0, but the range now depends strongly on 4; with the usual
regression model the location-scale adjustment can be absorbed into the param-
eters of the model. The power transformations form a group if A > 0; they also
form a group if 2 # 0. Both cases omit the logarithmic transformation.

11-3-2 Group-Based Likelihood

Consider the generalized structural model (11-35) with a group A of reexpression
transformations. We first examine the effects of the groups G and A on the given
response space.

Let Y be an observed response. For a given 4, the value on the natural response
space is 4~ 'Y, the orbit through 2~ 'Y is G2~ 'Y, and the post-orbit through the
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given response Y is
AGATYY (11-39)

As A varies this post-orbit typically changes its direction of orientation at the
observed Y. In Sec. 11-2-3 we calculated the probability for the observed post-
orbit in terms of a volume measure orthogonal to the post-orbit.

Now with a group A on the given space we have an orbit AY through the
observed Y. This A orbit through Y provides an intrinsic direction or orientation
at the point Y. It is appropriate then to calculate the probability for the observed
post-orbit in terms of volume measures aligned with this intrinsic direction.

To carry out the preceding effectively we need coordinates at Y that are
stable with respect to the group A. Accordingly, we now suppose that A acts
individually on the coordinates Yi, ..., Yy of Y and that it acts exactly on each
coordinate. In a neighborhood of Y we are then able to use invariant coordinates
D ST, ¢

For the ith coordinate let d; be a reference value and <Y;) be the transforma-
tion in A that gives Y¥;:

Y = {Yd; (11-40)
Now let Ji(Y;) be the “Jacobian” from d; to Y;:
d{¥>X
Ji(Y)y=c¢ 11-41
(Y)=c ’ i (11-41)

where ¢; 1s a scale constant to be chosen ; thus

dy;

dXi(Y;) = J~(Y~)

(11-42)

is an invariant measure. We then standardize one axis with respect to another by
considering a transformation A near the identity and choosing the constant ¢; so
that A has the same effect on each axis.

As a first possibility we can calculate likelihood in terms of orthogonal
volume in these new coordinates. For this we have

Ji(¥) 0
a 1
K(Y)= (% = e
0 In(Yy)
= dia Jy(Y) (11-43)

from (11-33) and we can then substitute in (11-34). This gives an invariant likeli-
hood:

Ch)«(D},).J,N—' Y[Y.]D,) . IJ(Y) tJ(i_l : Y)‘

FO="50,) IrnD e Tda g 00T T ) Wi

(11-44)

Note in comparison with (11-34) that 4 does not appear in certain places in the
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above formula ; this follows from the fact that with the present generalization the
application of G does not depend on /.

We can, however, be more incisive in our calculation of likelihood and use a
volume measure aligned with the A orbit—specifically, volume tangent to the A
orbit combined with that orthogonal to the A orbit and G post-orbit.

We have standardized the new coordinates so that a change in A produces
the same change on each axis. Accordingly, in these new coordinates the tangent
vector to the A orbit is the one-vector 1= (1,...,1). We thus want a volume
measure along the 1 vector combined with one orthogonal to the 1 vector and
the G post-orbit.

For this we follow the pattern of argument preceding (11-26). For the
denominator we will need the volume measure along the post-orbit but reexpressed
orthogonal to the 1 vector. Let

P=I1—-n "1 (11-45)

be the projection matrix into #*(1); note that P replaces a column vector by a
deviation vector relative to the average. The analogue for formula (11-25) in
terms of projected volume for the X coordinates is

(.Y[P dia J7 {(Y)J 1A Y) W(Y3)] |12 d[ ;) | (11-46)

Then in the pattern for (11-26) we obtain the following probability for the
observed post-orbit:

hi(D,) Jy (YD, J(¥) |[JG 1Y)

JD,) JOMY)) |C.y[PdiaJT i (RIAT ) WY TR do

(11-47)

where dv, is the volume measure tangent to the A orbit combined with that
orthogonal to the A orbit and G post-orbit. This gives the transit likelihood

L) = chy(Dy) Jy '([Y:]D)) () |J( 1Y)
CJD) IS [C[Pdiads (YT Y)Y WYl
(11-48)

In Sec. 11-2-4 we noted advantages of the extended likelihood (11-27). We
also noted, however, that if the post-orbits varied with A then the likelihood
expression could depend on the choice of variable to record the response. The
use here of the group A has eliminated this dependence in an incisive way.

The likelihood (11-44) and its refinement (11-48) provide assessments of the
various reexpressions / in the generalized structural model (11-35). For given 4
the analysis for the parameter 6 would follow the pattern in Chaps. 6 and 7.

11-3-3 Transformed Regression Model

Consider the transformed regression model (11-36) in Sec. 11-3-1. We examine
this first for a general reexpression 4 in a class A and then specialize to the group
case with the power transformations. We use the notation from Chap. 6.
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We first record some preliminary calculations:

J;d,) = |X’X|1/2 (11-49)
-1
Jn_l{[b(YA)a S(y/l)]dz} — ”7r711 (11_50)
J [y ), S(yi)]} S (y:)
dA~ lyl 0
_ dy,
A= ‘\)" !
JUThy) == 1o
y 0 d;u_ lyn
dyn
(A
-ai (%) (11-51)
A(Xb(y,) + s(y,)d,) :
VV;’. )= B = X’d
) a(b'(y,), s(y)) (X, d) (11-52)
We then obtain the likelihood (11-27):
h;d;) 1 ‘J/l L, y)|
) 11-5
L(Z)= |XX|1/2 g I(YA) D22t y)D, | 12 (11-33)
which for the normal case becomes
_ ! |J "y
M= X[ sty 0600 yp, [ Y
For comparison purposes we record the profile likelihood
n 1.
Ly = ¢ S0P ST 48| 23) 1155)
(¥2)
which for the normal case becomes
n \"? IJ(/"t*:y)]

Now consider the frequently used power transformation group with 4 > 0,
or with 4 # 0. Recall that the group operateson R™.
We first record some additional calculations:
)"y _dy* _ gt
Cdy  dy (11-57)

JUA ™ y] = Mayi ™ = A"y ™!
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Toward finding the invariant measure we consider the transformations (i) with
A > 0or 2 # 0. The transformation (4) acts as

Ay = y*
To simplify the calculations we reparameterize the group with # = 1/4; thus
(my =y" (11-38)
and, in particular,
y>=(ny) (11-59)
carries e into y:
(yPe=emy=y
We then have
i) =242 =
=ny" !
J(y>:e)=1Inyeny-1
=lnyye !
For simplicity we choose ¢ = e and obtain
Jy)=e|lny|ye t=|lny|y (11-60)

Also note that
JNLA ™ iy = |Inyi | yidyt !

= A|In y;|y? (11-61)
= yt|In yi|
We can now calculate the likelihood (11-48):
K= i) 1 |yl
| XX 12 s" " Ny,) |(.)Y(Pdia™! yi|Inyf| D)1
(11-62)
which for the normal case becomes
1 Iy |In y{
L= XX s ) [P -t J}Hlﬂ ylf\pm-m
(11-63)

This likelihood provides an assessment of the various reexpression powers A
for the transformed regression model. For given A the analysis of the parameters
B, o proceeds as in Chap. 6.
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The profile likelihood method has been applied to the transformed regres-
sion problem by Box and Cox (1964); an integrated likelihood method was also
used. The extended likelihood in its standard form (11-53) and transit form (11-62)
may be found in Klass (1970) and Fraser (1967, 1972b).

REFERENCES AND BIBLIOGRAPHY

Box, G. E. P, and D. R. Cox: An Analysis of Transformations, Jour. Roy. Stat. Soc., ser. B, vol. 26,
pp. 211-243, 1964.

Fraser, D. A. S.: Data Transformations and the Linear Models, Ann. Math. Stat., vol. 38, pp. 1456—
1465, 1967.

: Bayes, Likelihood, or Structural, Ann. Math. Stat., vol. 43, pp. 777-790, 1972a.

: The Determination of Likelihood and the Transformed Regression Model, Ann. Math. Stat.,

vol. 43, pp. 898-916, 1972b.

: Comparison of Inference Philosophies, in G. Menges (ed.), “Information Inference and
Decision,” D. Reidel Publishing Company, Dordrecht, Holland, 1974.

Klass, W.: Extended Marginal Likelihood, Ph.D. thesis, University of Toronto, 1970.




CHAPTER

TWELVE
MULTIVARIATE REGRESSION MODELS

We commenced this book with a detailed investigation of the ordinary location-
scale model. In Chap. 6 we replaced the simple location parameter by a regression
dependence on a variety of input variables. Then in Chap. 8 we generalized in a
different direction and replaced the simple scale component by a matrix
dependence on a vector variation. In this concluding chapter we bring together
these two generalizations; we examine a vector response—with regression
dependence on input variables and with matrix dependence on the basic variation.

The location-scale multivariate model from Sec. 8-1 can be combined in a
straightforward manner with the regression dependence on input variables ; we do
not bother to record this combination.

The multivariate model with progressive variation from Secs. 8-2 and 8-3 can
be combined with the regression model from Chap. 6; we examine this in Secs.
12-1 and 12-2.

The more general multivariate model with linear variation from Secs. 8-4 and
8-5 can be combined with the regression model; we examine this in Secs. 12-3
and 12-4.

12-1 MULTIVARIATE REGRESSION MODEL WITH
PROGRESSIVE VARIATION

In this section we examine the multivariate model with progressive variation from
Secs. 8-2 and 8-3 as combined with the regression model from Chap. 6. In the
next section we specialize this to the normal case.

Consider a random system with p response variables yi,...,y, and with
input variables that can be changed by the investigator; the investigator wants
information on how changes in the input variables affect the responses.

Suppose that the background information on the system specifies that the
only effect from the input variable is on the location of the response and is linear

267
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over the appropriate range for the input variables. Also suppose that the
distribution describing the variation has the rather special progressive form
discussed at the beginning of Sec. 8-2. For the first variable the distribution has
known form apart from location and scale ; for the second variable, the distribution
has known form apart from location, scale, and regression on the preceeding
variable; and so on.

12-1-1 On Notation

We fo}low the pattern in Sec. 8-2, and let y = (y1, ..., y,) designate the p-variate
response and let

Y=t 0 ¥n)= |, (12-1)

designate the compound response for n performances of the system. As before
we will use Y, for the first row vector in Y, ¥, for the second row vector, and so
on. Recall from Sec. 8-2 that we altered our notation from that with the sample
index 1 to n down a column to that with the sample index 1 to n across a row.
This was a shift from the usual convention of regression analysis to a convention
of multivariate analysis most appropriate to our development here, and it provides
a reasonable accommodation between the ideal of a fully unified notation and the
usefulness of a notation for a particular area.

Now let xy, ..., X, be input variables; some of these variables may actually
be combinations of other input variables, thus allowing the usual polynomial
and interactive regression models. For the response we let x= (xy,..., x,)
designate the r-variate input and let

X = (Xyos X) = e o (12-2)

designate the compound input for n performances of the system. We will use X,
for the first row vector in X, X, for the second row vector, and so on. Note that
the matrix (12-2) is the transpose of the matrix introduced as (6-2) for the
regression model. The matrix X is called the design matrix. Note that the inner
product matrix here is X X', in contrast to X'X in the Chap. 6 notation. This
change in notation is simple and straightforward and has the advantage of
keeping X as the “design matrix.”

12-1-2 The Model

Consider the regression-type location for the response and the progressive
pattern for the variation—as described rather generally in the introduction.
Recall the comments at the beginning of Sec. 8-2 that the progressive pattern of
variation has some applications but that our interest is primarily to develop
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methods and techniques for the more general linear pattern for the variation. We
examine the regression linear case in Secs. 12-3 and 12-4.

Let f;(z) be the density function for the objective variation, with a possible
shape parameter /A taking values in a space A. We suppose that f; has been
suitably standardized as discussed in Sec. 8-2-2.

For the presentation of the response y we now combine the notations from
Chap. 6 and Sec. 8-2:

yi=fu1x1 + -+ Buxe + 01y2s
y:z = f21x1 + -+ BarXe + 2121 + 02)22 (12-3)

Vp=BpiXy + 0+ BpXe + Tp1Z1 + 0+ Tpp-1Zp-1+ OpyZp

or
y=%x+Yz=[% Y]z (12-4)
where the regression coefficient matrix is
Bui - B
e (12-5)
Bor - B
the scaling matrix is
o(1) 0
Y= |7 e (12-6)
Tp1 - Tpp—1 O¢p)

and the transformation [%, Y], with % as p x rand Y as p x p PLT, is defined
implicitly by (12-4) with (12-3).

For n independent performances we then have y; = #x; + Yz; for the ith
performance and

Y=3X+YZ=[%,Y]|Z=0Z (12-7)
for the compound performance. The distribution for the variation Z is
fi(Z) =11 f,(z) (12-8)
The transformations [4, Y] form a group:
[By, L] [B1, Ti] = [B: + TuB1, L T1]
[B,T] '=[-T'B, T "] (12-9)
[0, 1] =i
where as before the key item is that PLT times PLT gives PLT. Thus
G={[B, T]:BeR™ Tisp x pPLT} ’ (12-10)
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is a group. We will see that G satisfies the exactness Assumption 7-2 on the
sample space R?" provided n > p + r and a set of measure zero is excluded.

This gives us the structural model

My = (Q; R, /™ V", G) (12-11)

where the parameter space Q = (G x A), ¥~ is the class of densities f; in (12-§),
and G is the transformation group (12-10) with action (12-7); note the use of
/P" for the Borel class to avoid confusion with the regression matrix. We can
abbreviate the model as

Y=0ZwithfinG

(12-12)
Z has distribution in the class 7~
and we assume that n > p +r.
12-1-3 Preliminary Analysis
Consider an inference base
(My, Y°) (12-13)
using the model (12-11) with data Y°. We have the observed orbit
GZ = GY° (12-14)

together with the corresponding model, as described by (a) in Sec. 7-1-4, and
we have the conditional model for Z given GZ = GY? together with the equation
[Y] = 0[Z] and the data [Y°], as described by (b) in Sec. 7-1-4. We now put
together some convenient notation using that developed in Chaps. 6 and 8.

We examine the action of the group G on the space R From (12-3) and
(12-7) we see that the transformation

Z=BX+TZ (12-15)
can be written as

21 = BIX +S(1)Zl
ZZ = BzX + t21Z1 + S(Z)Zz

‘ (12-16)
Z; =B, X+t Zi+ -+ sply
Thus, under the action of G we see that
Z, isin £¥(X;Z,)
21 isin ¥7(X;Z,;Z,) (12-17)

Z,isin Y(X;Zy,...;Z,)
where #* (X ;y) is defined by (6-14).
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We now build up the reference point and transformation sequentially using
the methods available from Sec. 6-1-3. Let B,;(Z) be the regression coefficients
for Z, on the rows of X, s;)(Z) be the residual length, and D;(Z) be the unit
residual ; thus, for example, we have

B(Z)=Z,X'(XX) ! (12-18)
which is the row vector form of the usual formula (6-16). We obtain
21 = BI(Z)X + S(l)(Z)DI(Z) (12-19)

Similarly, let B,(Z) be the regression coefficients of Z, on the rows of X, ¢,(Z)
be the regression coefficient on D;(Z), s2(Z) be the residual length, and D,(Z) be
the unit residual ; thus

By(Z) = Z, X' (XX')~! (12-20)
We then obtain
Zz = Bz(Z)X + tz](Z)Dl(Z) + S{2)(Z)D2(Z) (12—21)

We continue in this way and let B,(Z) be the regression coefficients of Z, on
the rows of X, [tp1(Z),....tp,-1(Z)] be the regression coefficients Z, on
Dy(Z), ..., D,-1(Z), s;»(Z) be the residual length, and D,(Z) be the unit residual.
We then obtain

1

Z,=B,2)X + pi 1,/ Z) DAZ) + s»(Z) D(Z) (12-22)

The preceding can be collected in the following:

Z, B1(Z) s)yZ) ... 0 D,(Z)
= X+ o : (12-23)
Z, B,(Z) ti(Z) ... spZ)] [DZ)
Z = B(Z)X + T(Z)D(Z)
= [B(Z), T(2)]D(Z2) = [Z]D(Z) (12-24)

where [B(Z), T(Z)] is a transformation variable that gives the group position of
Z relative to the reference point D(Z); note that
By(Z)
B(Z)= : =ZX' (XX ! (12-25)
B,(2)

records the regression coefficients of the rows of Z on the rows of X and
S(l)(Z) P 0 —‘
TZ)= : o :

: . : (12-26)
tpl(Z) e Ip,p—l(Z) S(p)(Z)J
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records the regression coefficients of the rows of Z on the sequentially con-
structed unit residuals D(Z), ..., D,(Z). Note that

Z — B(Z)X = T(Z)D(Z) (12-27)

is the PLT orthogonal decomposition of the matrix that records the deviation
vectors from regression on X.

For exactness the preceding analysis must be feasible ; accordingly, we require
n = p + rand we eliminate the set of measure zero in which X, ..., X,, Z,, ..., Z,
are linearly dependent.

As in preceding chapters we have, of course, the separation of the inference
base (12-13) by the necessary method RMj in Sec. 3-3. Using the preceding
notation we have the separation into

(a) The marginal model for D(Y) = D(Z) with observed value D(Y°).
(b) The conditional distribution for [B, T] = [B(Z), T(Z)] given D(Z) = D(Y®) =
DO together with the presentation equation

[B(Y), T(V)] = [4, Y] [B. T] (1228)
or B =4+ YB (12-29)
(Y)= YT

and the observed value [ B(Y?), T(Y?)].

In Sec. 12-1-4, we derive the appropriate distributions.

12-1-4 Density Functions

The Jacobians and measures from Sec. 7-2 can be calculated as in Sec. 8-2.
. The transformation g = [ B, T] applies column by column to the matrix point
Z. Accordingly,

Jpn(g: Z) = | T |" Jpn(Z) = l T(Z) In

(12-30)
dM(Z)=|T(Z)|""dz
The equation g = gg™* has the form
B=B+ TB*
~ (12-31)
T= TT*

The left transformation operates column by column on B*, T*; for a column of
T* only the relevant part of the matrix T is used (compare with Sec. 8-2-3).
Thus
J(G:9%) = (). SV ey -3 -5 = | T[| Tla
J@)=|T|'|T|a (12-32)
dBdT

WO TpTL
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The right transformation operates row by row on T and, for given 7, by location
only on B. Thus in the pattern of Sec. 8-2-3 we have

J*(g*:g) = sE5...s56) = | T* |y

J*(Q)Z!T|V
dBd 2-33
dv(g>=|’%|j (12-33)
1Tk
MO =TT T

The basic Jacobian J(D) recording volume change on orbit relative to change
on group is easily obtained by noting that on the orbit the rows of X are used as
basis vectors and X need not be a set of orthonormal vectors. From Sec. 6-1-4 in
the pattern of Sec. 8-2-3, we obtain a factor |X X'| 12 for each row of Z and thus

have
J(D) = |XX’ |"/2 (12-34)

Now consider the analysis of the inference base (.#y, Y°). The observed orbit
gives the observed value for the variation:

D(Z)=D(Y% = D° (12-35)
This gives the inference base (a) from Sec. 7-1-4:
(M p, D°) (12-36)

The distributions in .#, are available from (7-46) together with our present
calculations:

h,(D) = J fi(BX + TD)si5y" ' .. sty " P| XX'|P2dBdAT  (12-37)
G
with integration over R for each coordinate of B, T except over R* for the
diagonal elements of T. This, of course, leads to the observed likelihood for 4:
L(D°; A) = ch,(D°) (12-38)

The unobserved characteristics of the variation are given by [B,T]=
[B(Z), T(Z)]. For these characteristics we have the inference base (b) from Sec.
7-1-4:

(47, [Y°]) (12-39)

The distributions for the structural model .#7° are available from (7-47)
together with our present calculations ; we have the density

hi YD) fu(BX + TDO)siy "~ .. sty 7| X X'|P? (12-40)

for B, T on the group G. This distribution for B, T is used with the trans-

formation
B(Y)=%+ YB

T(Y)= YT

(12-41)



274 INFERENCE AND LINEAR MODELS

The observed values for the response coordinates are given by
[Y°] = [B(Y®), T(Y°)] (12-42)

The response distribution consistent with the identified D(Y)= D(Y?% = D°
from the actual response is available from (7-49) in the pattern of (8-66):
S(1y--- S(p)}n !XX’ 'p/Z dBdT

hy YD), (YT U[(B — #)X + TD°
( )f( [( )X+ ]) ‘:0'(1)...0'(17) ’THT'A

(12-43)

where for this particular formula we have written B for B(Y), T for T(Y).
and S for S(i)(Y).

12-1-5 Inference for Component Parameters

We have noted in Secs. 7-3 and 8-2-4 that some component parameters may not
have the special left coset form and thus not be amenable to the strong inference
methods developed in Chap. 7.

There are, of course, various ad hoc, intuitive, and theory-based methods
for seeking out tests and confidence regions for component parameters ; for some
discussion see Fraser and Ng (1977). However, as we move from the one- and
two-parameter cases to more complicated models we find these methods to be more
elusive and less fruitful.

With left coset parameters we are involved with parameters that are in
certain ways natural and fundamental. The corresponding tests and confidence
regions have the strong and unequivocal properties that we have discussed in
preceding chapters.

However, in discussing these properties we have perhaps not emphasized
some important and relevant points. There are a wide range of left coset param-
eters for multivariate problems, and these parameters do have certain natural
and fundamental characteristics. For any particular left coset parameter we have
a direct correspondence that gives us unequivocally the appropriate tests and
confidence regions. In addition, the appropriate distribution theory is available
in a straightforward manner. For details, recall Secs. 7-3-3 and 7-3-5 and
Sec. 7-4.

In this section we restrict our attention to the basic location and scale

parameters.
For the location parameter # we have the separation of the equation
[B(Y), T(Y)] = [#, Y] B, T] (12-44)
giving the unique #-specific component
T YY)[B(Y)-#]=T 'B=H (12-45)

We can see that # indexes left cosets by noting the factorization

[2,Y] =[#,1][0,Y] (12-46)
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Thus 4 indexes left cosets of the scale group
Gs={[0,T]:T,.,PLT} (12-47)
Note that the group coordinates can be separated in the reverse order:
[B,T]=[0,T][H,I] (12-48)

and thus that H indexes right cosets or orbits on the sample space.
The marginal distribution for H is obtained from (12-40) by using

dB= |T|"dH (12-49)
for fixed T. The probability differential is

h;l(DO)J‘ S(THX +D)|T] a1 | XX’
T | T|a
This distribution together with equation (12-45) and the observed values provides
tests and confidence regions for the location parameter 4.

For the scale parameter Y we have the separation of the basic equation giving
the unique Y-specific component

Y 'T(Y)=T (12-51)

»2 JH (12-50)

The full parameter can be separated as

[#,Y]=[0,Y][E 1] (12-52)
where = = Y~ !4 is the coeflicient of variation; thus Y indexes left cosets of the
location group

G, = {[B,I]: BeR"} (12-53)
Note that the group coordinates can be separated in the reverse order:

[B.T]=[B.1][0. T] (12-54)

and thus that T indexes the right cosets or orbits on the sample space.
The marginal distribution for T is obtained from (12-40) by directly integrating
out the location variable B. The probability differential is
dT
hi {(D°) J fi(BX + TD®) | XX'|P*dB|T|""" |—T—|— (12-55)
B A
This distribution together with equation (12-51) and the observed value T(Y®
provides tests and confidence regions for the scale parameter.
The response distribution of T(Y) consistent with the observed T (Y°) from
Y? is obtained from (12-55) by direct transformation using the invariant measure
dT/| T |, from (8-83). We obtain
|T|" dT

hi {(D°) J B £ XTI [ XX B e e (12:56)

where for this formula we have used T for T(Y).
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12-2 NORMAL MULTIVARIATE REGRESSION MODEL
WITH PROGRESSIVE VARIATION

In the preceding section we developed the multivariate regression model using
the progressive variation from Sec. 8-2. We now examine this for the special case
of a normal pattern for the variation. As noted in Sec. 8-3 many important dis-
tinctions vanish when a normal pattern of variation is used. Nevertheless, we are
able to illustrate some points from the preceding section, and we do obtain in a
simple mechanical way all the basic distribution theory for the multivariate
normal regression model.

12-2-1 The Normal Model

Consider a random system with a p-variate response y. From Sec. 12-1 the multi-
variate regression model .#) for n performances has the form

Y = 23X +YZ (12-57)

where Y and Z are the p x n response and variation matrices, £ is the regression
coefficient matrix relative to the design matrix X, and Y is the PLT scale matrix
for the variation.

We examine this model using the standard normal model for the variation.
From (8-90) we have

f(Z2)dZ = 2n)y " etr (—4Z'Z)dZ (12-58)
We can rewrite this in the invariant form
(2m) "% etr (—3Z'Z) | T(Z) |" dM(Z) (12-59)
where
dz
dM(Z) = ——— (12-60
D= i )

and T(Z) is the PLT matrix (12-26) appropriate to the multivariate regression
model with progressive variation.

The corresponding response distribution can be obtained by direct substitu-
tion utilizing the invariant form (12-59). For this we have

tr Z’Z = tr (Y — 8X) Y'Y YY — #X)
=tr (Y — ZXY =YY — BX)

where X = YY", as in Sec. 8-3-1, is the variance matrix for the response Y =
#X + YZ. We then obtain the response distribution

| T(Y)|"
Y]

= Qn) PP T | etr [ (Y — BXY 7YY — BX)] dY

(12-61)

Q@r) "2 etr [—3(Y — BX)Y U Y — £4X)] dM(Y)

(12-62)
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Some general comments are given at the end of Sec. 8-3-1 concerning progres-
sive variation with the normal as the distribution form.

12-2-2 The Analysis

Consider the analysis of the inference base (.#,, Y°) using the normal model for
variation. In particular, we determine the marginal distribution for D(Z) = D(Y) =
D and the conditional model for [Z] given D.

For this we need a simplification of the normal-density exponent expressed in
terms of the position variable [Z] = [B(Z), T(Z)] = [B, T]:

trZ'Z =tr 27’
=tr (BX + TD)(BX + TD)
=tr BXX'B' + tr TDD'T’
=tr BXX'B +tr TT'

(12-63)

where we use the orthogonality XD’ = 0 and orthonormality DD" = I.
First, we obtain the conditional distribution of [Z] = [B, T] given D:

h™Y(D)f(BX + TD) s}~ = st "7 | XX'|?* dB dT

1
= (W €Xp ('—%ZBJXX/BIJ) IXX/ lp/z dB

AR,

x e etr (—3TT)siy" teesty 2dT (12-64)

Pedit . AP,

T lnvr

etr (=3TT) 7]
A

aTr

We have used the normalizing constant | XX'|'? 2m)~ " for the multivariate
normal with inverse variance matrix XX’ and we have used the normalizing
constants for the standard normal and chi densities as in Sec. 8-3-2. The condi-
tional distributions for B and T can be described simply. The rows B; and the
matrix T are statistically independent and

B;is normal [0'; (XX')" ']

(12-65
S(1) 0 An—r 0 :
I21 S . z o
T = .1 (2) ' ] = 201 An—r—1
fpr " Ipp-1 S Im Zpp—-1 Xn—r—p+1

where the z variables are independent standard normals and the y variables are
independent chi variables with degrees of freedom as subscribed. The distribution
of T is the triangular chi Ay,(n — r) discussed in Sec. 8-3-2.
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The conditional distribution (12-64) gives us the distribution component for
the structural model .#®°. Thus as in Sec. 12-1-4 we obtain the component infer-
ence base (12-39).

(up’, [Y°)) (12-66)

where the model .#P° has the distribution for [Z] given by (12-64) and the
transformation
B(Y)= %+ YB

T(Y)= YT

relating the response [Y] = [B(Y), T(Y)] and the standardized variation [Z] =
[B, T}; the observed values for the response components are

[Y°] = [B(Y®), T(Y?)] (12-68)

The conditional response distribution for Y given the observed D(Y)=
D(Y®) = DO is available from (12-43). For this we use (12-67) with the exponent
(12-63) and simplify:

trZ'Z=tr BXX'B +tr TT'
=tr {Y [B(Y) — #]XX [B(Y)— #]Y "1}
+tr YT'T(Y)T (Y)Y ! (12-69)
—tr [B(Y)— Z]XX [B(Y)— )T '+t T(V)T' (V)£ !
=tr [B(Y) — #]XX [B(Y)— ]S ! +tr S(Y)=~*

(12-67)

where
S(Y)=T(V)T'(Y)= T(Y)D(Y)D' (V)T (Y)
=[Y - B(Y)X][Y - BY)X] (12-70)

is the inner product matrix for the deviations from regression on X. The prob-
ability element for the response distribution is

(p)

Gy ot (3B — F1XX [B(Y) — B2} etr [—3S(V)E ]

y [5(1)(Y)---5(p)(Y)J" PodlE dB(Y)dT(Y)
O(1)--- Oy StHHY) ... sty P(Y)
(12-71)

_xxp s (—3[B(Y) — #]XX'[B(Y)— #]'E "'} dB(Y)

(271)"’"2

(p)
AL, s etr [—4S(Y)Z 7] |

y S(Y) [ 12 dT(Y)
(Zn)("_")p'f

IR

We can then read the conditional response distribution from the differential (12-71),
or from equation (12-67) in relation to the standardized expressions in (12-64)
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and (12-65). We have that B(Y) and T(Y) are statistically independent and that
B(Y)is N[#;(XX) ' ®Z]

T(Y)is Ay,(n — 1Y) (12-72)

For this we recall the definition of the scaled triangular chi distribution in Sec.
8-3-2 and we note that B(Y) has a normal distribution located at # with variance
matrix (XX)"! ® £ and inverse variance matrix (XX') ® £~ '. This treats B(Y)
as an extended vector formed by taking the columns in succession and it uses the
Kronecker product

aB - a.B
A®B) '=A'@B ! (12-73)

Now we obtain the marginal distribution of D. This involves, of course, the
integration accomplished in (12-64) which needed only the simple normalizing
constants for the normal and chi density expressions. Thus in the pattern of Sec.
8-3-2 we obtain

dD
h(D)dD = YN (12-74)
where we continue with our interpretation of dD as volume calculated orthogonal
to the orbits of the group G. Thus D has a uniform distribution relative to the
volume measure just described.

Note that D consists of p orthonormal vectors in .#*(X). The space Q of
such matrices forms a manifold in R?" of dimension p(n — r) — p(p + 1)/2; com-
pare with Sec. 8-3-2 with n — 1 replaced by n — r. Also from Sec. 8-3-5, note that
the surface volume of the manifold is 277~ V/* times the orthogonal volume which
is A2 .

The marginal distribution (12-74) gives us the distribution component of the
model .#,. Thus as in Sec. 12-1-4 we obtain the component inference base

(Mp, D°) (12-75)

where .#p has the single distribution (12-74) and thus no parameter. Accordingly,
the inference base collapses as in Sec. 8-3-2.

12-2-3 The Scale Component

Consider the scale parameter Y. As noted in Sec. 12-1-5 this indexes left cosets
on the parameter space and we have

[#,Y] =[0,Y][Z 1] (12-76)

where == Y14 is the coefficient of variation. The presentation equation
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separates, giving the Y-specific component
Y IT(Y)=T (12-77)

The marginal distribution. of T is available from (12-64) and (12-65); we have
the probability differential
AP, dT

Wetr (—%TT[) E T["ir t T|A

(12-78)

which is the triangular chi Ay,(n — r) of formula (12-65). This distribution with
equation (12-77) gives tests and confidence regions for the parameter Y exactly
as in Sec. 8-3-3.

As noted there the analysis of the multivariate normal is usually in terms of
the variance matrix ~ = Y'Y’ and the inner product matrix S(Y)= T(Y)T'(Y).
The discussion there applies equally here but with the degrees of freedom n — 1
replaced by n — r.

For example, the distribution of S(Y) is Wishart W,(n — r;X) with density
as indicated by (8-112) and (8-113) but with n — 1 replaced by n — r.

12-2-4 The Location Component

Now consider the location component 4. As noted in Sec. 12-1-5, % indexes left
cosets on the parameter space and we have

[#.Y] = [#.1][0.Y] (12-79)
The presentation equation separates, giving the #-specific component
T -YY)[BY)—#]=T 'B=H (12-80)

The marginal distribution of this matrix t-type variable can be obtained from
(12-64) using (12-50). In the pattern of Sec. 8-3-4 we obtain the density function

ﬂetr [—4T(I + HXX'H)T'] Tl | XX'|P2dT
Gy 2m)i? ? ITlA
12-81)
A;Plr s all n dT ’ (
= J\G Wetr(—%TEET)‘T| W,XX |I’/2

where E = (I + HXX'H')" is the PLT square root of the “inner product” matrix
I+ HXX'H'. The integration then duplicates the pattern in Sec. 8-3-4 and we

obtain
2

AP, pl
(27'[)"1’/2

dTE |E|s| XX’
TE, [EPTE

J etr (~3TEE'T') | TE|" |
GS

Aﬁlp_)r (2n)"p/2 !E|A -
CQr? AP [E[|El XX
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_ AP, 1 [ELIEL
S AP [EP|ER

P2

XX’

(p+1)/2

AP, 1 |+ HXX'H
AP I+ HXX'H'" |1+ HXX'H

»l2 (12-82)

XX

v

Note that the “standardized” variable H(X X’)* has the preceding density function
with X X' set equal to the identity. The standardized distribution is called the
matrix triangular Student At,. .(n — r) with (n — r) degrees of freedom (compare
with Sec. 8-3-4). The distribution of the matrix H is called the scaled matrix
triangular Student At,«,.[n—r,(XX')*] with (n—r) degrees of freedom. See
Fraser, Lee, and Streit (1968).

This distribution with equation (12-80) gives tests and confidence regions for
the location matrix 4.

12-3 MULTIVARIATE REGRESSION MODEL
WITH LINEAR VARIATION

In this section we examine the multivariate model with linear variation from
Secs. 8-4 and 8-5 as combined with the regression model from Chap. 6. In the
next section we specialize this to the normal case.

Consider a random system with a p-variate response and with input variables
that can be changed by the investigator. The investigator wants information on
how changes in the input variables affect the responses.

As in Sec. 12-1 suppose the background information on the system specifies
that the only effect from the input variables is on the location of the response
and is linear over the appropriate range for the input variables. Also suppose that
the distribution describing the variation has the linear form discussed at the
beginning of Sec. 8-4—that the scale of the response variation is unknown to
the extent of a positive linear transformation but that otherwise the distribution
form is known or known up to a shape parameter A

12-3-1 The Model

Lety = (y1,...,y,) be the response for a single performance and
Y Yir - Vin
Y=(yp,....¥)= | | =] (12-83)
Y, Ypr oo Vpn

be the compound response recording y;. ..., y, for n performances of the system.
Similarly, let z and Z be the corresponding variables for the variation.

Now let xi, ..., x, be the input variables. For a particular response y we let
X = (x1, ..., x,) be the corresponding values or settings for the input variables,
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and for the compound response Y we let

X1 X111 .. Xin
X=(Xp,...,X)= | [ =] eeeeememens (12-84)
Xr Xr1 cee X

be the corresponding settings for the input variables. The matrix X is called the
design matrix; recall the comments in Sec. 12-1-1 concerning the name design
matrix for this X or its transpose.

The basic model for a single performance has the presentation

y=%x+1T1z (12-85)
where # is p x rand I'is p x p with |T"| > 0. Also let
[i(@) = filz1, ..., 2p) (12-86)

be the density function for the objective variation. We suppose that f; has been
suitably standardized in some appropriate way as indicated in Sec. 8-4-1.

Then for n independent performances we have y; = #x; + ['z; for the ith
performance and

Y=3X+TZ=[%T]Z=0Z (12-87)
for the compound response in terms of the variation Z. The distribution for Z is
filZ) = 111 fi(z) (12-88)
The transformations [, '] form a group:
[B2,C2][B1,Cy] =[B2 + C3B;,C,C]
[B,C] '=[-C 'B,C] (12-89)
[0, 1=

Note that the positive p x p matrices are closed under multiplication and inver-
sion ; compare with (8-127). We then have the regression affine group

G = {[B,C]: BeR™,|C|> 0} (12-90)

We will see that G is exact on the sample space provided n > p + r and a set of
measure zero is excluded.
This gives us the structural model

My = (Q; R, /7 47, G) (12-91)

where Q = (G x A), ¥~ is the class of distributions f; in (12-88), and G is the

transformation group (12-90) with action (12-87). We abbreviate this as
Y=0Zwith0inG
Z has distribution in the class ¥~ (12-92)

and assume that n > p + r.
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12-3-2 The Analysis

Consider an inference base

(My, YO) (12-93)
using the model (12-92) with data Y°. We have the observed orbit
GZ = GY° (12-94)

together with the corresponding model, as described by (a) in Sec. 7-1-4. And we
have the conditional model for Z given GZ = GY? together with the presentation
[Y] = 0[Z] and the data [ Y°], as described by (b) in Sec. 7-1-4. We first assemble
notation from Chaps. 6 and 8, following the pattern in Sec. 12-1.

We examine the action of the group G on the space R”. From (12-85) and
(12-87) we see that the transformation

Z=BX+CZ (12-95)
can be written
Z, X, Z,
=Bl | +Cf (12-96)
Z, X, z,

Let £%(X1,..., X Z1,...,Z,) be the (p + r)-dimensional subspace
p
P Xy s XpnZay oo Ly = {Zb, X+ Z¢;Zj: by, cjE R} (12-97)

together with the orientation of Xi,...,X,,Zy,...,Z, treated as the positive
orientation for the (p + r)-dimensional subspace. A group element [B, C] carries
asequence Z;,...,Z,intoa sequenceZl,...,Z,,, alsoin 2 (Xy,.... X0 Z1,-- -, Z)p)
and with the same positive orientation relative to the fixed Xy, ..., X,; recall that
]C | > 0. In fact, from (12-95) we see that we can get any sequence of p vectors
in the subspace £* (X4, ..., X,» Z1, ..., Z,) provided it has the positive orientation.

We wish to choose a basis for the subspace ¥ (X4,..., X Z1,..., Z,). The

vectors X4, ..., X, are the obvious first choice. Let
Dy(Z)
D(Z)= : (12-98)
Dy(Z)

consist of p orthonormal vectors orthogonal to the rows of X and with the positive
orientation. We use X, ..., X,, D{(2), ..., D,(Z) as a basis for the subspace. Note
as in Sec. 8-4-2 that the choice of basis must not depend on Z,, ..., Z, directly,
only on the space ¥ (X1,.... X, Z1,...,Z,). Such a basis can be formed, for
example, in the following way, paralleling that in Sec. 8-4-2: take a sequence of
p linearly independent vectors, say the first p coordinate axes; project them onto
the subspace ; and orthonormalize them in sequence as done to obtain Dy, ..., D,
in Sec. 12-1-3. Such a procedure gives a basis, except of course for a set of measure
zero for which the projections have linear dependence.
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Now let Bj(Z), Ci(Z) record the regression coeflicients of Z; on X;,..., X,
Dy(Z),..., Dy(Z) and write

By(Z) Ci(2)
BZ)=| Cz)y=| : (12-99)
By(Z) Cp(2)

We then have
Z = B(Z)X + C(Z)D(Z)

= [BZ), C2)]D(Z) = [2]D(2) (12-100)
where [Z] = [B(Z), C(Z)] is a transformation variable that gives the group posi-
tion of Z relative to the reference point D(Z).

For exactness the preceding analysis must be feasible; accordingly, we
require that n > p 4+ r and we eliminate the set of measure zero in which
Xi..., X, Zy, ..., Z,are linearly dependent.

As in preceding chapters we have, of course, the separation of the inference
base according to the observed

D(Z) = D(Y) = D(Y°) (12-101)

and the unobserved [Z] given D(Z)= D(Y°). We first derive the appropriate
distribution for the component inference bases.

12-3-3 Density Functions

The Jacobians and measures from Sec. 7-2 can be calculated as in Sec. 8-4-2 but
with the regression component as in Sec. 12-1-4.

The transformation g = [B, C] applied to the matrix Z operates column by
column. Accordingly, we have

Jpn(g: Z) = ‘ C |" Jpn(Z) = | C(Z) In

(12-102)
dM(Z)=|C(Z)| "dZ
The equation g = gg™* has the form
R _ *
B=B+CB (12-103)
C=  Cc*

The left transformation operates column by column on B*, C*, and the columns
of C* are fully effective. Thus

Jg:g)=|ClrJ([Z) =|Cc@)|

dB dC
|C|p+r

(12-104)

du(g) =
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The right transformation operates row by row on C and, for given C, by location
only on B. Thus in the pattern of Sec. 8-4-2 we have

J*g*:g)=|C*[F  J¥g=|C]F

B
drlg) = LBLC
€] (12-105)
i
Alg) = W

The basic Jacobian J(D) recording volume change on orbit relative to change
on group is easily obtained by the same argument as in Sec. 12-1-4:

J(D) = | XX |7 (12-106)

Now consider the analysis of the inference base (.#y, Y°). The observed orbit
gives the observed value for the variation

D(Z)= D(Y°) = D° (12-107)
This gives the inference base (a) from Sec. 7-1-4:
(#p, D°) (12-108)

The distributions in .#p are available from (7-46) together with our present
calculations:

P2 dBdC (12-109)

h,(D) = J f[(BX + CD)|C|"*”7'|XX'
G
with integration over R for each coordinate subject only to |C|> 0. This, of
course, leads to the observed likelihood for 2:
L(D°: ;) = chy(D%) (12-110)

The unobserved characteristics of the variation are given by [B,C]=
[B(Z), C(Z)]. For these characteristics we have the inference base (b) from Sec.
7-1-4:

(", [Y°]) (12-111)

The distributions for the structural model .#7° are available from (7-47)
together with our present calculations; we have the probability differential

hi YD) fo(BX + CD%)|C|" 77| XX'|"* dBdC (12-112)
for B, C on the group G. This distribution for B, C is used with the presentation
B(Y)=2+T1B
(12-113)
C(Y)= rc

The observed values for the response coordinates are given by

[Y°]=[B(Y%,C(Y?] (12-114)
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The response distribution consistent with the identified D(Y) = D(Y% = D°
from the actual response is available from (7-49) in the pattern of (8-149):

—1poy £ (F-1 oqy 117

hi '(D°) (T '[(B — #)X + CD°)) TIrpE

where for this formula we have written B(Y) = B, C(Y) = C.

| XX'|P?dBdC (12-115)

12-3-4 Inference for Component Parameters

Some component parameters may not have left coset form; see the discussion
in Sec. 12-1-5.

In this section we restrict our attention to the basic location and scale
parameters; for this, note the concluding comments in Sec. 8-4-3 relative to
the linear pattern for variation.

For the location parameter # we have the separation of the presentation

[B(Y).C(V)] = [#.T][B, T] (12-116)
giving the unique #-specific component
C YY)[B(Y)-#]=C 'B=H (12-117)

where H is a matrix ¢-type variable extending the vector t in Sec. 8-4-3 to a matrix,
in the pattern of (12-45). We see that # indexes left cosets by noting the
factorization

[2.T]=[%,1][0,T] (12-118)

Thus % indexes left cosets of the scale group
Gs = {[0,C]: Cis p x p with |C|> 0} (12-119)

as given by (8-153). Note that the group coordinates can be separated in the
reverse order:

[B.C]=[0,C][H,1] (12-120)

and thus that H indexes the right cosets or orbits on the sample space.
The marginal distribution for it is obtained from (12-112) by using

dB=|C|"dH (12-121)
for fixed C. The probability differential is

72 4H (12-122)

dc
hi (D% Lﬁ(C(HX +DY%) |C |"W | XX’

This distribution together with equation (12-117) and the observed values
provides tests and confidence regions for the location parameter.

For the scale parameter I’ we have the separation of the basic equation
giving the unique I'-specific component

r-'c(y)=C (12-123)
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The full parameter can be separated as

[4,T]=[0T][E 1] (12-124)
where = = ' 148 is the coefficient of variation; thus I indexes the left cosets of
the location group

G. = {[B,I]: BeR"} (12-125)
Note that the group coordinates can be separated in the reverse order:

[B,C] =[B,1][0,C] ‘ (12-126)

and thus that C indexes the right cosets or orbits on the sample space.
The marginal distribution of C is obtained from (12-112) by directly
integrating out the location variable B. The probability differential is

hﬁ(DO)j £(BX + CD%|XX'|?? dB|C|" P77 dC (12-127)
., .

This distribution with the presentation (12-123) and the observed value C(Y?)
provides tests and confidence regions for the scale parameter.

The response distribution for C(Y) consistent with the observed C (Y°) from
Y? is obtained from (12-127) by direct transformation using the invariant measure
dC/|C? for the p x p positive matrices (available from the case r=0). We
obtain

cpr dc
T ICh

h; l(DO)J fi(BX + T7'CD%)| XX |"*dB (12-128)
B

where for this formula we have used C for C(Y).

12-4 NORMAL MULTIVARIATE REGRESSION MODEL
WITH LINEAR VARIATION

In the preceding section we develop the multivariate regression model using the
linear variation from Sec. 8-4. We now examine this for the special case of a normal
pattern for the variation.

12-4-1 The Model

Consider a random system with a p-variate response. The multivariate regression
model with linear variation has the form

Y=3X+TZ (12-129)

for n performances; Y and Z are the p x n response and variation matrices,
4 is the regression coefficient matrix relative to the design matrix X, and I is the
positive p x p scale matrix for the variation.
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We examine this model using the standard normal model for the variation.
From (12-58) we have

f(Z)dZ = Q2n) " etr(—32Z')dZ (12-130)
We can rewrite this in the invariant form
(2m)~"e? etr(—%ZZ’)]C(Z)["dM(Z) (12-131)
where
dZ
MZ)= ——— 12-132

is the invariant measure on the sample space and C(Z) is the positive scale matrix
defined by (12-99) and (12-100).
The corresponding response distribution can be obtained by direct substitution
using the invariant form (12-131). For this we can write
tr ZZ' =tr(Z2'Z)

=tr(Y — 2X)T ‘T~ YY — 3X)

=tr(Y — XY~ YY — 4X) (12-133)
where T = I'T” as in Sec. 8-5-1 is, of course, the variance matrix for Y; recall the

comments there concerning the square roots of a variance matrix. The response
distribution is

Qr) "2 etr [—4(Y — ZX)YE 1Y — #X)] !C(rﬁ)nf" dM(Y)
= Qn) 2| etr [~ (Y — 2X)ZNY — 2X)]dY (12-134)

which of course agrees with (12-62) from Sec. 12-2 using progressive variation.
In summary we have the following structural model:

My = (Q; R, 7,7, G) (12-135)

where Q = G is the parameter space, ¥~ has a single distribution (12-130), and
G is the regression affine group (12-90). We abbreviate this as

Y=0Zwithfin G

12-136
Z is standard normal on R?" ( )

12-4-2 The Analysis

Consider the analysis of the inference base (.#y, Y°) using the standard normal
model for the variation. We first determine the marginal distribution for D
and the conditional distribution for [Z] given D.

The change of variables to get coordinates on the orbit is given by

Z = B(Z)X + C(Z)D(Z) = [B,C]D (12-137)

where the rows of D(Z) are orthonormal and orthogonal to those of X. The
exponent of the normal density involves the following quadratic expression:
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tr ZZ' = tr(BX + CD) (BX + CDYy
=tr BXX'B' +tr CDD'C
=tr BXX'B +tr CC’ (12-138)

where we have used XD'=0and DD" = I.
For the integration on the group we find it convenient to use the PLT
orthogonal factorization as used in Sec. 8-5-2:

C=TO (12-139)
where T is PLT and O is a p x p rotation matrix. We can then further simplify
(12-138):

tr ZZ' = tr BXX'B' + tr TOO'T’

= tr BXX'B +tr TT’ (12-140)

Recall then that tr TT" is just the sum of squares of the elements of the PLT matrix
T. The change of variable for the differential is given by (8-181):

dc dT

W: _—lTlAdo (12-141)

where dO is interpreted as volume orthogonal to the orbits of the PLT scale group
in the space R?’ for p x p matrices. For the alternative volume measure tangential
to the manifold of the rotation matrices see (8-182).

We can now determine the conditional and marginal densities. For the
conditional distribution of [Z] =[B,C]=[B, TO] given D we have from
(12-112) with (12-140):

h=YD)f(BX + CD)|C|" » | XX'|?? dBdC

p/2 dBd—TdO

| Tl

~1(D) (2n)*"1’/2 etr (—4BXX'B)etr (—3TT)|T|""| XX'|?"* dB

= h YD)(2n) "2 etr [-¥BXX'B + TTH]|C|" "| XX’

dT
ki
1
= s ot (~3BXX'B) | XX [P dB
A(p_) . . d0
(W etr (—=3TT)styy) ™t oosip” AT —— Ap~ A1)
(2 )r'p/Z etr (—3BXX'B) lXX'lp/2 dB
AP
e et (—3CC)[C[TrTrdC (12-142)

X AP DQm)e e
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where we have used integration results from (12-64) and (8-183). The conditional
for B, T, O can be described simply: the rows of B, the matrix T, and the matrix
O are statistically independent and

B;is normal [0;(XX")" ']

S(1) 0 An—vr 0
T = Iz.1 S52) . : _ ZZ.I Kn=r-1
Ipr .- Lpp—1  S(p) Zp1 co Zpp—1 Xn—r-pt1

(12-143)
O is uniform on the rotation group (Secs. 8-3-5 and 8-5-2)

where the z variables are independent standard normals and the y variables are
independent chi variables with degrees of freedom as subscribed. The distribution
of T is the triangular chi Ay,(n — r) distribution discussed in Sec. 8-3-2.

The conditional distribution (12-142) gives us the distribution component for
the model .#2°. Thus, as in Sec. 12-3-3, we obtain the component inference base
(12-111):

(4P, [ Y] (12-144)

where the model .#7° has the distribution for [Z] given by (12-142) and the
presentation

B(Y)=%+TB
C(Y) = rc

(12-145)

relating the response [Y]=[B(Y),C(Y)] and the standardized variation
[Z] = [B,C]; the observed values for the response components are given by

[Y°]=[B(Y),C(Y")] (12-146)

The conditional response distribution for Y given the observed D(Y) =
D(Y°) = DP is available from (12-115) and (12-142). For this we use (12-145) with
the exponent (12-133) and simplify as for (12-69):

tr Z'Z =tr BXX'B' + tr CC’
= tr (T '[B(Y)— #] XX'[B(Y) — #]T" "}
+ tr T 'C(Y)C(V)I' !
=tr {[B(Y)— Z]XX'[B(Y)— #]= '} + tr C(Y)C'(Y)= ™!
=tr {[B(Y)— Z]| XX'[B(Y)— #]Z" '} +tr S(Y)=7! (12-147)
where
S(Y)=C(Y)C'(Y) = C(Y)D(Y)D'(Y)C'(Y)
=[Y - B()X][Y - B(Y)XY (12-148)
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is the inner product matrix for the deviations from regression. The probability
element for

[Y] = [B(Y),C(Y)] = [B(Y), T(Y)O(Y)] (12-149)
1S
AP,
A(p—l)rizn)np/z etr {— 3[B(Y) — Z1 XX'[B(Y)— #]Z ' = 3S(Y)Z '}
[CON]" | 0 o2 4B AC(Y)
’r‘n ’ { {C(Y)’p'”
A(p_)r i . -
= A‘TW etr {— 3[B(Y)— Z]XX'[B(Y)— ] ' = 3S(V)Z !}
[T o w2 dT(Y)dO(Y)
I | XX'|?? dB(Y) T
11 p/2 —r2
= %ﬁ'—etr {—4[B(Y)— #] XX'[B(Y) — #]'S "'} dB(Y)
AP, . 4 SN[ dT(Y) dO(Y)
X Gy etr[—3S(V)EZ 1] ST [TV AP (12-150)

where we have followed some of the steps in formulas (12-71) and (8-191).
We can then read the conditional response distribution from (12-150). We have
that B(Y), T(Y), O(Y) are statistically independent and that

B(Y)is N[2;(XX)) ' ®X]
T(Y) is Aypln — 1, Y) (12-151)

O(Y)is uniform on the rotation group

where Y is the PLT root of . This agrees with that for progressive error in
(12-72) but has the additional uniform distribution for O(Y).

We can now obtain the marginal distribution of D. This can be obtained by
solving for h(D) from the expression (12-142):

(p—1)
An

dD (12-152)

Note that D has a uniform distribution on the reference point manifold Q using
our particular choice of Euclidean volume orthogonal to the orbit GD at D;
Q is an np — rp — p* = (n — r — p)p-dimensional manifold of semiorthogonal
p X nmatrices.

The marginal distribution (12-152) gives us the distribution for the model
My As in Sec. 12-2-2, the corresponding inference base (.#p, D°) has no
parameters and thus collapses.
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12-4-3 The Scale Component

Consider the scale parameter I'. As noted in Sec. 12-3-4 we have the separation
of the basic equation giving the I'-specific component

r'c(y)=C (12-153)

Also, we have that I is a left coset parameter relative to the location group
(12-125) and that C indexes the right cosets or orbits on the sample space.
The marginal distribution of C is available directly from (12-142):
AP,

APy o (= 3€C)

clrrrdc (12-154)

This is the matrix chi distribution y,(n —r) on (n — r) degrees of freedom;
compare with (8-194).

Note that the equation (8-193) in Sec. 8-5-3 is the same as the present
equation (12-153) and that the distribution (8-194) is the same as the present
distribution (12-154) but with n — 1 replaced by n — r.

In Sec. 8-5 we discussed inference for T and for £ using a linear expression
for normal variation. All the results there are applicable here, with just the
appropriate replacement of the degrees of freedom n — 1 there by n — r here.

12-4-4 The Location Component

Now consider the location component #. As noted in Sec. 12-3-4, 4 indexes
left cosets of the scale group (12-119) on the parameter space. Also, we have the
separation of the basic equation giving the #-specific component

C Y Y)[B(Y)— #]=C 'B=H (12-155)

The matrix t-type variable H indexes the corresponding right cosets or orbits on
the sample space.

The marginal distribution for H can be obtained from (12-122) together with
(12-142) and the integration result (12-154). The probability differential is

AP,
J‘ Wetr(—%CHXX'H’C’—%CC’)fo"_"dClXX/V/z dH
Gy p

A(,,P) o
- L A Dy [—$CU + HXX'H)C]
AP,
X ‘C‘n—PII + HXX/H/ n/2 dC 14””7) |I + HXX/H/'_"/Z‘XX/‘P/Z dH
AP
= /{l(np)” ’I + HXX'H' —n/2 ’XXx!p/z dH
(r)
o |1+ HXX'H |72 | XX|* dH (12-156)

AP
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The adjustment between the last two expressions is a simple cancellation or
insertion of factors.

Consider the preceding distribution in the standardized or canonical case with
X X' = I For this canonical case we have the probability element

AP,
A(np)

where we have used the identity
|I+ HH'|=|I+ HH| (12-158)

in which the first I is p x p and the second I is r x r. This distribution (12-157)
for H is called the matrix Student ¢, ,(n — r) distribution on (n — r) degrees of
freedom; note that H' is the matrix Student t,,,(n — p) distribution. The
distribution (12-156) is a right scaled matrix Student distribution.

Tests and confidence regions for the location # are available from the
distribution (12-156) together with the presentation equation (12-155) and the
needed observed values C(Y°) and B(Y?).

For some background information on the models and analysis in this chapter
see Fraser (1968a), Fraser, Lee, and Streit (1968), and Fraser and Haq (1969,
1970).

AL,
A

|1+ HH'|™"2 dH = 22 |1 + H'H|™"* dH (12-157)
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Information Model, 2
no direct, 85 definition of, 3, 4

Imput variable for the investigation, 3
random choice of, 59 for the system, 2

Invariant group, 62, 66 pivotal type, 12

Invariant measure response based, 6, 7
left, 143 variation based, 11, 12
on sample space, 142 Modular function, 147
right, 144 Multinomial

Investigation, 1 see distribution

Jacobians Necessary reduction, 5, 49
group, 145 by reexpression, 61
group element to inverse, 148 factorization, 59
location-diagonal scale, 169 on the parameter space, 49
location scale, 142, 144, 148 on the sample space, 54
location-square scale, 193 parameter component, 65
location-triangular scale, 177 Normal
regression-square scale, 284 see distribution
regression-triangular scale, 272 )
triangular to inner product, 188 Options set, 50

Personal preferences, 5
Pivotal function, 13

. . Poisson

Lieblein and Zelen data, 31 see distribution
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Likelihood, 98 Presentation, 11

conditional, 101 Probabilistic property, 3
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consistency principle, 102 Probit function. 237
extended, 253 robit tunction,
%ntegr_ated, 253 Randomization, 2, 56
invariant, 262 Reduction, 137
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Reexpression transformations, 7
extended, 258 b

Reference point, 138

profile, 100, 252 Regression model, 109
section, 100 nonnormal variation, 125
transit, 263 normal, 119
Likelihood function, 70, 71 restrictéd variation, 51
L@kel@hood map, 71 transformed, 263
Ll‘kel%hood dell_laYIOH, 173 Regression-scale transformations, 111
Likelihood principle Reid data, 236
strong, 99 Resistance, 37
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Location distribution Rope spores data, 247

location-scale, 21

multivariate, 180, 195
multivariate regression 275, 286
on the circle, 211, 226

on the sphere, 218

Sample size,
random, 57

Sample survey, 56

Scale distribution

regression, 116 location-scale, 22
Location-scale model, 16 multivariate, 180, 196
Logistic multivariate regression, 275, 287

see distribution
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Logit function, 237 regressio,

Serial correlation, 120
Specification, 1
Measuring instrument, 56, 93 Spurious observation, 42
Mixed population Standardization, 9
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Strength, 234, 238
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Sufficiency principle, 74
Sufficiency reduction, 70
weak, 84
Sufficiency (), 81
Sufficiency-ancillarity reduction, 82
Sufficient statistic, 71
minimal, 72
System, 1
random, 2

Tests of significance, 89, 151
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Tolerance distribution, 234
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Transformations (continued)
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