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EIGHT

RESPONSE MODEL METHODS

il UNBIASEDNESS: BY TAKING AVERAGES

The theory of estimation is concerned with finding a func-
tion on the sample space whose values will cluster in some
reasonable manner about the value of a parameter of interest.
In an application there would then be substantial hope that the
calculated value of such a function was a good approximation to

the true value of the parameter.

The very wealth of functions on a sample space leads to
major problems in choosing a function that is in some sense
best., The concept that has been most fruitful theoretically
and for applications is that of unbiasedness - to be examined
in the first three sections of this chapter. There are other
approaches such as the decision theoretic which provide exten-
sions and alternatives but none with the immediate relevance

and fruitfulness of the unbiasedness approach.

For notation let y be the response with values in a
sample space S and 6 be the parameter with values in a
parameter space £ . And let {Pe : 8 ¢ 2} be the class of

measures for the response y .
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Now suppose we are interested in some particular real valued
parameter R(6) and t(y) is a real valued function that we

are considering as an estimator for B8(6) . Then we define
D t <s an unbiased estimator for B if
E{t(y) |6} = B(8) For all 6 in Q .

Note that t is a function from $§ into IR and that R is a

function from £ into IR . This definition extends easily to
cover a vector estimator E(y) = (tl(y), ey tr(y)]' of a

vector parameter B(6) = (B, (8), ..., Br(e))' :

D t Zs an unbiased estimator for B if

~

E{ts(y)|8} = B (8) for all 8 in Q@ and for s =1l,...,r .

Example 1. Let (y,, ..., y,) be a sample from the normal dis-
tribution (u, 0?) with 6 = (y, ¢%) in @ =R x RY . For the
parameter U (first coordinate projection) we can consider, say,

the sample average y and the sample median § :
E(yle) =u , E(vle) =u .

(We have not discussed the distribution of the sample median but
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we can argue generally that the distribution of § -u is
symmetric about zero, and then E§ = u) . For the parameter
6 = (4, 02) we can consider say th@ sample average and sample

variance (¥, s;] :
E[(?, s;]: SJ = (u, o2) .

Of course we can construct many other estimators for these para-
meters and our concern in the first three sections of this
chapter will center largely on finding unbiased estimators that
are best in some sense. To the degree however that we accept
our model, we will limit our attention to estimators based on
the likelihood statistic which is (¥, s;) . We need consider
then only those functions that are effectively defined on the

space R x R of (¥, s;]

(a) Comparison of estimators.

Consider further the example involving a sample [yl, SO0, yn]
from the normal (p, 0?) . The unbiased estimator ¥y has
variance o0%/n and normal distribution form. The unbiased
estimator ; can be shown to have variance mo?/2n (approximately)
and normal distribution form (approximately}. It is reasonable
then to compare the estimators on the basis of variance and to
prefer y which has smaller variance. 1Indeed reciprocal

variance provides a somewhat reasonable indicator of the precision
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of an unbiased estimator. And we can then numerically compare

estimators of the basis of reciprocal variance. This gives

one definition for the comparitive efficiency of two estimators:

D The efficiency of an unbiased estimator t, (of B(B)] with

respect to an unbiased estimator t, (of B(8)) is

1/var(t,)
Eff(t,, t,} = ——— .
l/Var(tz]

For the sample average and sample median (normal case) we have
Eff (X, X) = =4— = = = +64 ,

The definition of efficiency has an interesting interpretation
for the common cases where variance is proportion to reciprocal
sample size. For example, if § is based on a sample of 100

and y is based on a sample of 64 ; then
~ o g2 _
Var(y) = 37700 - 64 var (y) ;
and we can say that ; uses 64% of a sample in comparison

with vy .

For the case of vector unbiased estimators the comparison
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by means of variance becomes more complicated. Each coordinate
has a variance and in addition there are covariances. Consider

two unbiased estimators t

t, and t, of a parameter 8 ; let

Z. (B) and I

11 #) be the variance matrices of the two

22(

estimators. Then we will say that t, is better than t, <if

2,,(8) = L, ,(8)

18 positive semi definite; and we then say that 211(8) i8

smaller than L 8) writing £,,(0)= 822(6) . Note that a

22(

symmetric matrix M is positive semi definite if the quadratic

expression

L o
=
| v
o

all & in IR ,

or if M is the covariance matrix

M = VAR (w)

of a distribution eay indicated by w or if M is the inner

product matrix

of the row veetors in an r X r matrix B . These equivalences
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are available from matrix theory. We can then say that t
18 better than t, if the ellipsoid of coneentration of El
i8 contained in the ellipsoid of concentration of t, (ellipsoid

of concentration defined by Four: Problems 56, 57.) or if

-1
22(

-1

Ell(e) - I 8)

ie positive semi definite. Note that we obtain a partial
ordering — on the positive semi definite (symmetric) matrices;

the reverse ordering holds on the inverse matrices.

(b} Combining estimates by weighted averages

Suppose we have two unbiased estimates t, . t, of B(8)
and wish to consider linear combinations as possible estimates
of B(0)

Theorem 1. If &, , t are unbiased for R(0) , then

2

(1) A4ny linear combinations of t, and t, that is unbiased
for B(8) has the form at, + (l-a)t, (the sum of the weights

g 1)

(1i) Among such linear unbiased estimate the one with smallest

variance at the parameter value 6, has

a/'[Var(tlleoJ - cov(t,, tzlﬂo)]
1/ [Var(tzleo] - cov(t,, t2|eo]]

a
l-2a
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(Weight by reciprocal excess of variance over covariance).

Proof: (i) Consider a linear combination at, + bt, . If

this is unbiased for g£(8) then

E(at, {y) + bt,(y)]e)

= ap(8) + bp(8) = B(86)

and hence b =1 - a , provided of course we exclude the ultra

trivial R(8) = 0 .

{ii) The variance of at1 + (l—a)t2 at 90 is

a’var(t,|6,) + 2a(l-a)cov(t,, t,|8,) + (1-a)?var(t,|e,) .

Setting the derivative with respect to a equal to =zero gives

Ea[Var[tlleo) - CoV(tI: tzleo)]

= 2(1-a)[Var[t2|80) - COV(tl, t2|90)]

which is equivalent to the quoted condition. Another method of
proof involves completing-the-square in a to form a quadratic

expression plus a constant.
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Note that with uncorrelated estimates, minimum variance

is obtained by weighting by reciprocal variance.

Example 2. Suppose that t1 and t2 are unbiased estimates

of 6 and that

Var(t,) = +1260% , var(t,) = +27602 ,

COV(tl, tz] = -+1000% .

Then the best linear unbiased estimate is

1+1_1t1+t2
226 *376 *226 376

There is an analogous theorem for vector estimates. For
simplicity here we give the special version for uncorrelated

estimates:
Theorem 2. If t, , t, are uncorrelated unbiased estimates for
B(8) (with 81(6), S 000 Br(e) linearly independent), then

(1) any linear combination of t, and t, that is unbiased

for B has the form

“~

A, + (1-B)t,
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where A <& r xy and I <{is the r X r identity.

(ii) Among such linear unbiased estimates the estimate
-1 =5 Il G =h
(60 + 5550,)] (ETh00,)E, + TTh(e,)E,

has smallest covariance matrix at 6, -
Proof: {(i). Consider a linear combination At + Bt, where

A and B are r X r ; unbiasedness gives
E(At, +Bt,) = AR + Bf = (A+ B)B

and hence A+B =1 .

(ii) The differentiation approach does not adapt easily to

the vector case. The alternative approach by completing a
quadratic expression is relatively straightforward but some
manipulation is required to then obtain the quoted expressions;
it is a special case bhat—igx the gauss-markov theorem later in
this section and can readily be omitted. The variance matrix

of

ek

At, + (I-A)t, = (A, I-A)

et
~

is
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VAR(At, + (I-A)t,)

The cross terms AZ,, , I,,A' determine the term in the brackets

and thus determine the remainder term:

VAR (At + (I-A)t)

-1
+ Ly, - Ezz(zll+ zzzJ Z22
1 -1,-1_ -1 -1 1)
= [A-—(E“+222] 11][}311+222][A-(2“+222]E“]
-1 -1,~1
+ (211+222]

where the algebra of the final step is justified in the next
paragraph. Each term in the final expression is an inner product

matrix and the first term can be eliminated by choosing



with the result that the minimized variance matrix is

(27 +2

-1 -—1
11 22] *

The missing algebra is given by

-1

-1 =1 -1
E22[211'+Zzz] = Z22222(211222"'I)
= —-1,"1
= (222'F211] 11 ¢
and
-1 =4 -1,=1
DI 222[211-+222] Z,, =L,y - [822 +Z11) 2,%,,

(c) Combining potential estimates by weighted averages

Suppose that we know that the mean of a response

VIII-1l1

. 13 L] - .
y = (yl, seey yn] lies somewhere in an r dimensional subspace

formed by vectors Xyo weer X and that the variation about the

mean is scaled by a common standard deviation o¢(8) and has

zero correlation between coordinates:
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r N r 1( 3 r 1
Y, Xy, *tt Xg. sl(e) u,
tl=) Dl [ re@

yn‘ anl v xnerBr(e)J tunJ

. +
where (B8, o) 1is in RY xR , and the U oy oeeey un have zero
mean, unit variance, and zero correlation. This is called the
linear model with homoscedastic uncorrelated error. It can be

presented in vector matrix notation as
y = XB + ou

and X 1is called the design matrix.

In an application the vectors x ceer X would represent

1’
the patterns that one might expect in the general level for the
response vector: the model presents the mean or general level
of the response vector as an element of L(x,, ..., x ] . The

response vector y deviates from the general level Xg due to
a response scaling o of the vector u describing the internal
variation in the system. Sometimes the space for the mean

response is not linear but can be approximated over a reasonable

range by the linear space represented by an XB .

Each of the coordinates y; can be thought of as an

ingredient of an estimate for the R's ; certainly the mean of
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each Y is linear in the B's . The following gauss markov
theorem is concerned with using linear combinations of the y's

to estimate the g's .

Theorem 3. (i) A linear construct Ay 18 an unbiased estimate
of B <f AX = I ., (ii) Among such linear unbiased estimates,

the estimate
B = (X'ka'g
has minimum covariance matriz; the minimum covariance matrix is
(x'x) o2
Proof: (i) 1If Ag is unbiased for § then EAX = AX§ = § :
hence AX = I . (ii) Consider the minimization of the variance
matrix of Ay .
VAR(Ay) = A VAR(y)A' = AIo?A' = o%an' ,
or equivalently the minimization of the matrix

AA' = (A— s e )(A— e )' 4+ eos

where we seek entries on the right side that utilize the relation

AX = I ; this suggests



VIII-14

' = a-cx'y@a-cx")' + K
=AA' -C-C' +Cx'XC' + K.
The right side simplifies if C = (K'X)—1 and K = C :
A= a-x'n X )A-x"0Tx) w7,

Each term on the right side is an inner product matrix and the

first term can be elimated by choosing

A= (x'x) 'x'

. . a0 -1
with the result that the minimized variance matrix is (X'X) c? .

The estimate obtained by the gauss markov theorem is the
least squares estimate due to Gauss. The least squares estimate
is obtained as the point Xb closest to Y in the sense of
least squares (the euclidean distance). The least squares estimate

can be derived by the same method of completing a quadratic

expression: the squared distance from y to Xb is
(y = Xb) ' (y - Xb)
=Db'X'Xb - b'X'y - y'Xb + y'y

= (b—oou ).X'X(b—-o. )+oo|
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= (b - x'07x'y)"x'xp - @'07x'y)
+ ¥'¥ - g'X(X'X)_lx'y .
thus the closest point is obtained with

b=5b= (x'x)"'x'y

~

and the minimized distance is

w
nN
——
<
Sor®
]

(y - XB) ' (y - Xb)

1

=y'y - y'x@x'x)" X'y
=y'y - y'xb .

See Figure 1.

Now consider the generalized linear model

where X has rank r and u has zero mean and variance

matrix Mo? . Then the generalized gauss markov theorem is

Theorem 4. (i) A linear construet Ay 18 an unbiased estimate

of B if AX =1, (ii) Among such linear unbiased estimates,
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Figure 1l: The point Xb in L(X) that is closest to y has
b = (X'X)_lx'y . The projection xb ; the orthogonal comple-
ment gy deviation vector y - Xb .

the estimate
~ v =1 =1 4. =1
B = (xVv x) x'v'y
has minimum covagriance matrix; the minimum covariance matrix is

(x vix)"lo? .



VIII-17

Problems

1. Consider the sample average y and median § for a
sample (yl, ey yn) from the normal (9, oi] . The covariance
of § and § is o0%/n . Formally derive the best linear com-

bination of y and § as an estimate of 0 .

2. Let §1 be an estimate of u based on a first sample
of m and let §2 be an estimate of 1w based on a second
sample of n from the same distribution. Derive the linear com-
pound of §1 and §2 that has minimum variance (assume the vari-

ance of the underlying distribution exists).

3. Let I ARERY tk be independent unbiased estimates of

8 with variances of, ceey G; . Show that

-2 Y N N =12 -2 . . y
(7% + »o0 4 oy )77 (o] b+ e+ o0y tk] is the minimum variance

linear compound that is unbiased for 6 .

4, Let t and u be independent estimates of £ with

variance matrices

respectively. Determine the unbiased linear compound of t and

u which has minimum variance matrix.
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5. Use Theorem 3 to prove the special case given by Theorem

2,
6. Let t,, ..., tk be uncorrelated unbiased estimates of
g with variance matrices L, @), .., Ekk(e) . Show that
- -1 - = - .
(Z,, + *++ + i) 1(21151 + oeee + EkLE) with matrices evaluated

at 0, gives the best linear compound having minimum variance

matrix at 60 . Use Theorem f;*

~

7. Let y = Bx + oe where the e's have unit variances
and are uncorrelated. Present the model in general linear model

form and show the best linear unbiased estimate of B 1is

~ - Vs 1
< inyi/’zxi .

v
8. Let Y, = (Y00 ey Ynl) =#l+u and Aeromeans ,
;\.’2 = (Ylll' “ sy yn]_]' = ]J2 %+ Y?. where the u's and v's haven

common variances o? and zero covariances. Present the combined
model in general linear model form and determine the unbiased
estimate of (u , u,)' which is linear in y, and y, and has

minimum variance matrix.

9. Let y =al + Bx + ge where the e's have unit
variances and are uncorrelated. Present the model in general

linear model form and show that the best linear unbiased estimate
2

of (a, B) has a =3 - Bx and B = z(x;-%)y; 7Tlx,-%) .

Determine the covariance matrix of (a, B) .
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19. Consider the method of least square for finding Xb
in L({X) closest to y . Show that the projection of Y into
the subspace L{X) is obtained from the transformation matrix
X(x'%x)"'x" and that the projection of y into LJTX) is

obtained from the transformation matrix (I -X(x'x)x'} .

11. Continuation. A projection matrix P has the idem-
potent property P = PP . Check that the projection matrices

in Problem 10 are idempotent.

12. Another proof of Theorem 2, Note that 4 = t1 - t,
is an unbiased estimate of zero. Show that

-1 -] . .
u = 811(60]51 +I,,(6,)t, has zero covariance with d . Show
that Au + Bd generates all linear compounds of t and t2 .

Determine A ,B to obtain the minimum variance matrix (at 6,)

unbiased estimate of B8 .

13. Extension of Theorem 2 for the case of possibly correlated
estimates., Show that the proof as given can be modified in

detail and Lhe besl eslimale uses S11 = 211 - 212 and

8,, =L,, = I, in place of z,, and I, . Note that S |
and 8, , are no longer symmetric. Rule: Weight by the inverse

of the excess of variance over covariance.

1l4. Prove the general gauss-markov Theorem 4.
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15. Show that the best linear unbiased estimate é in

: The
the generalized gauss-markov theorem isAweighted least squares

solution obtained by minimizing (u -Xb)'V_l(y-Xb) .

l16. Consider the normal linear model where y = XB + oe

-~

and e is a sample from the standard normal and X is the

~

design matrix with rank r . Show that the maximum likelihood

estimate of B is B = (X'X) 'X'y which also is the minimum

~

variance linear estimate (gauss markov) and is the least squares

2

estimate. And show that the least sguares estimate of o is
~2 . . -1 . . . .
o ={y'y -~ y'Xb)/n whichis n time the minimized sum of

squares.
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2. UNBIASEDNESS: BY ANALYZING LOCALLY

Unbiasedness was discussed in Section 1 from the point of
view of obtaining best averages among given estimates or
potential estimates. In this section we discuss unbiasedness
from the point of view of a small neighbourhood on the parameter
space. We discuss it as if we knew that the true parameter value was
in the small neighbourhood; we search for the best estimate in
the restricted problem that has this very small parameter space.
This approach does produce solutions for the original model

with a full parameter space.

For notation let y be the response with values in a
sample space S , and let 6 be a real valued parameter with
values in 2 =IR . We assume that the class of measures can
be represented by a density function satisfying the general
assumptions in Seven: Section 1 and the differentiation

assumptions in Seven: Section 5(i), (ii}.

Now consider unbiasedness for a parameter space that con-
sists of a small neighbour of some value 60 . The rcgular
definition of unbiasedness for a function t(y) can be expressed

as.:
E(t(y)fe)= o, + (6-6) all & in @ .

We now define local unbiasedness (90) as satisfying the preceding
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O-

pfirst derivative at 86 :

up to )

D t is locally unbiased (60] if

(i) E(t(y)]e ) =6, ,
(ii) =% E(t(y)|6) pmp, = 1 -

Obviously a (globally) unbiased estimate is locally unbiased
at any parameter point. On the other hand a locally unbiased
(80] estimate need not be unbiased for other parts of the para-

meter space.

(a) A variance bound for locally unbiased estimates

In Seven: Section 5 we differentiated

[ evlo)ay =1
g
m[s(yle)le] = o
var[s(yle) o] = (o)

s[5 191

For the present context we view y as the full response under
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consideration and correspondingly S(y|6) and I(6) as the
full score and information functions; if there is a sample then

it is represented here by the response vy .

Now let t(ys be a locally unbiased (6,) estimate:
J t(y)£(yle)ay = 6, + (6~6,) + o{6-8,) ;

and assume that its variance exists for 6 near 8, « In order

to apply our differentiation routine on the preceding integral we

assume

(iii) |32n £(y|6). 98|2£(y|6) < M{y) in a neighbourhood of 9,
and M(y) <is integrable,

and use Four: Problem 4 and Section 1 (9). Now differentiating

the integral at 6, and using

29D svie)etyle)

we obtain

fl
l_l

Jewistie)etvle,)ay

or

I
[

eov[t(Y): S(Yleo)leo]
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The covariance inequality in Four: Section 2 can now be used to

obtain
Var(t(y)]GO]Var[S(yleo]|80] > 1
or equivalently:

Theorem: If t 1is a locally unbkbiased (60) estimate for a
model satisfying (i), (ii) in Seven, Section 5, and (iii) in

this section, then

1

6,)

var (t(y)|8,) >

with equality <if and only if tly) and S(yleo) are affinely

related.

This information inequality gives a lower bound to the variance

of a locally unbiased (6,) estimate.

Corollary: If t <8 an unbiased estimate of 6 , then

var (t(y)|e) > TT%T

with equality at some © values if and only if

t(y) and s{yl|8) are affinely related at those & values.
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Example 3. Let (y,s «.., yn] be a sample from the normal dis-

tribution (6, o.) with 6 in Q =R . We have

L(y., - 8)
s(y|e) = —5——,
~ ol
n
I(0) = — ;
0’Ci
and hence
2
Oy

Var (t (y) l8,) > =

for any locally unbiased [Bu] estimate. But we know that y
is a (globally) unbiased estimate with variance ci-'n at the
information lower bound. Thus y has uniformly (re 6) minimum

variance among unbiased estimates of 8 ; it is UMV unbiased.

(b) The best locally unbiased estimate

Consider the locally unbiased [Bo] estimation of the
parameter © . The theorem on the information lower bound con-
tains a clue as to how to construct the best locally unbiased

estimate. We consider affine functions

a + bs[y|80]



VIII-26

of the score and try to determine a, b so that the function
is locally unbiased (eo} ;i 1if we are successful then we have a

locally unbiased (8,) estimate that has minimum variance.

The first property of a locally unbiased (90) estimate gives

Elat+bs(yle )fe,| =8, .

But the mean of S 1is zero; hence a = 6, . The second property

of a locally unbiased (6,] estimate gives

= E[a +bS(y]8°)|9]| =1 .
6=0
[i]

Again applying our differentiation routine through the sign of

integration we obtain

I
'_J

[[a+psvlog)sivle)elvle,)ay
bJSz(y]eo)f(yleo]dy =1 ;

-1
hence b =1 (6, ) . Thus the estimate

1

0, + I (0,)s(v]e,)
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is locally unbiased (6, ) and it has minimum variance I_I(Bn]
among locally unbiased (

6,) estimates.

Note the very interesting property that this best locally
unbiased estimate uses only the score S(y|6,) ; the score is
all there is to the likelihood function if we restrict our para-
meter space to first derivative change at 6, . This is consis-

tent with our éarlier argument that only the observed likelihood

function should be used with the model for purposes of inference.

Example 3 continued. Consider the sample [yl, ceey yn) from
the normal (8, o2) with 6 in R . The best locally

unbiased (8 ) estimate is

t(ly) = 8_ +

Note that it does not depend on 6, . Thus we have obtained
an estimate that is the best locally unbiased (6,) for all
8, i accordingly, it is the globally UMV unbiased estimate of

e -

As a simple corollary to the preceding analysis we obtain:
If t Zs an unbiased estimate of O with variance at the

information lower bound then
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t(y) = 6 + I (0)s(y]e)

and the right side is independent of 6 .

{c) What models have information-bound estimates?

Under the assumptions (i), (ii) and (iii) we now consider
what models adhit unbiased estimates at the information lower bound.
If t is an unbiased estimate of © with variance at the informa-

tion lower bound then t has the following form
tly) =6 + I ' (8)s(y]6)

or

s{yle} = T(8)t(y) - eI(8) .
Integration with respect to 6 then gives
en £(y]e) = pO)Itly) + $(8) + k(y)

where k({y) is the constant of integration and ¢ and ¢ are

the obvious indefinite integrals. Thus

£(yle) = v(8)exp{t(y)v(8)}h(y)

and the model is an exponential model with one ¢ function.
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Thus only the exponential model admits unbiased estimates

at the information lower bound.

Now consider an exponential model

£(y|8) = exp{¢(8) + t(yIw(6)}h(y)

with 6 in © =R . The parameter 6 may not have an unbiased

estimate at the
parameter ¢ ' (9)

tion bound.

information lower bound. 1In fact only the

/¢'(8) has an unbiased estimate at its informa-

(d} With a vector parameter

Now conside
. r ,
in £ =1IR or i

the vector analo

An estimate

(i)  E(t(

. . 3
T3

S

where ass' =1

From Sevent

r the case of a vector parameter 60 = (91, “oey er]'
r
n a connected open set of IR . And suppose that

gues of the assumptions (i), (ii), (iii) hold.

t of 6 is locally unbiased (8,) <f

~

y) 8, = 8,
ss!

E(t_, (y)]e) o=e, = ¢

if s =s' and = 0 otherwise.

Section 5 we have
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<
s1]
I
—_—
: N
—
kg
t <D
—
@
—
It

1(6)

3s(v|8) ]
TR

where I(Q) is now the information matrix for the full sample.

And by the differentiation routine the local unbiasedness gives

COV(yy),g[le]] S

the r x r identity matrix.

The information inequality for a locally unbiased (0,)

estimate is
VAR(t(y)[8,) = 171 (5,)

The best locally unbiased (06,] estimate is

-~

o + 171 (0,)s(v]0,) .

- -~

An unbiased estimate at the information lower bound has the form

~

tly) =8+ 17 (9)s(yle) »
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and this occurs only for an exponential model with r P

functions.
Problems

17.  Let (x,, ..., xn) be a sample from the bernoulli
distribution with p in § = (0, 1) . Derive the minimum vari-

ance locally unbiased [po] estimate of p . What about a

UMV unbiased estimate?

18. Let y have a poisson distribution (6) with 8 in
R* . Derive the minimum variance locally unbiased (80] estimate

of 6 . What about a UMV unbiased estimate?

19. Let (y,, «.., yn] be a sample from the exponential
distribution £(y|68) = 6 'exp{-y/6} on ®' with 6 in & =m' .
Derive the minimum variance locally unbiased [60] estimate of

0 . What about a UMV unbiased estimate?

20. Let (yl, ey yn) be a sample from the normal
(Mys 0%} with o2 in R’ . Dperive the minimum variance locally
unbiased (02] estimate of o¢? . What about a UMV unbiased

estimate?

2l. Consider a statistical model f(y|6) satisfying the

assumptions in Section 2 and with a real parameter 8 in Q =1R .



VIII-32

Now let B8{8) be a continuously differentiable monotone increasing
function mapping £ into Q¥ ¢cRR , and let b(6) = d6(g)/d8 .

Then show that the score function and the information function(relativ:
to B8) are s(y|8)b(8) and I(8)b2(8) .

22. Let (y,, ..., y,) be a sample from £(y|6) = oyt

on (0, 1) and = 0 otherwise with 6 in & =IRT . Derive
the minimum variance locally unbiased (60] estimate of 6 .

What about a UMV unbiased estimate?

23. Let (¥,s «v., yn] be a sample from the normal (u, o?)
with 8 = (r, 02) in R xR’ . Calculate s(vle) and 1(0) .

24. Continuation. Derive the minimum variance-matrix
locally unbiased (6,) estimate of 6 . What about an unbiased

-~

estimate with variance matrix at the information lower bound?

— 2
25. Continuation. Calculate the variance matrix of (Y, sy]

and compare with the information lower bound.

26. Continuation. Show that the only parameter R with
an unbiased estimate at the information lower bound is (u, u?4 o?)

(or an affine equivalent).

27. Consider independent models: £, (y|¢) with s, (v|e)

and I,(8) ; and f£,(y|68) with s§,(y|8) and I,(8) . For
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local unbiased (6,) estimation we have 6, + 1"‘(eo]sl(y|e]
from the first model and 6 + Izl[eo]sz[y|eo] from the second
model. Combine these local estimates by the methods in Section
1 and show that the combined estimate is the best locally

unbiased (6,) estimate from the combined model.

28. Continuation. The vector version: f;(Y1l§] with
S,(v|8) and 1(8) ; and £,(y|e) with §,{y|6) and information
matrix J(8) . Combine the best locally unbiased (8,) estimates
by the methods in Section 1 and show that the combined estimate is

the best locally unbiased (§,) estimate from the ocombined model.

29, Let I Dbe the variance matrix of [g] and let

~

pX z
11 2
{ % ] be the corresponding matrix partition. 1If Ell is
0% z
21 22

non-singular, then prove the generalized covariance inequality:

-1

Z = 221211

22 Z,, ™ 0 (zero matrix) with equality if and only if

y = a + Bx . Compare with Four: Problem 105.

30. Continuation. Prove the vector form of the information
inequality for the variance matrix of a locally unbiased (0,)

estimate of 6 .

~

3l. Continuation. Show that the best locally unbiased [80)

estimate is & = 8, + I_l[eu)§(ylgo) .
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32. Continuation. Show that the information lower bound is
attained for the unbiased estimate of the vector parameter only

if the model is exponential with r ¢ functions.

33. Continuation of Subsection (c). Show that the only
parameters with unbiased estimates at the information lower bound
(exponential model with one ¢ function) are these with the form

a + c¢'(8)/v'(8)

34. Continuation. Consider the reduced exponential model
£(y|e) = exp{¢(8) + @'(e)g(y)]h(y) with r ¢-functions and 6
in RY . sShow that the oenly vector (r dim) parameters with
unbiased estimates with variance matrix at the information lower bound

are thgse with the form a + C(39'(8)/36) '3¢(6)/36 where the

prime here denotes transpose and [ is r x r .
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3. UNBIASEDNESS: BY TAKING MEANS

We now discuss some general questions connected with un-—
biasedness. Does a particular parameter have unbiased estimates?
Can we improve a given unbiased estimate? Is there a best un-

biased estimate in the sense of say minimum variance?

For notation, let y be the response in a sample space 3§
and let © Dbe the general parameter with values in § . And
suppose we are interested in some real valued parameter B(8)

or some vector valued parameter RB(8) .

In SEVEN we have seen that the likelihood function is all
that the model presents concerning a response value and that
for purposes of inference it suffices to have the value of the
likelihood statistic. Now for unbiased estimation we should
expect some clear preferences to show for the unbiased estimates
that depend on the likelihood statistic. The following rao-
blackwell theorem not only gives technical preferences but also
tells how an arbitrary unbiased estimate can be converted into

one dependent on the likelihood statistic.

(a) By taking means

Variance is reduced by taking means. For an unbiased
estimate the variance can be reduced by taking means over com-
ponent parts of the distribution that do not involve the para-

meter.
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Theorem. If t(y) i8 an unbiased estimate of B£(9) and 1f
sly) is the likelihood statistie, then

(1) E(t(y) :s{y)) = E(s(y)) is an unbiased estimate of B ()
based on the likelihood statistic s(y)

(ii) var(t(y)|e) i—'-VAR[E(s(y)] |e] with equality if and only if
t(y) = r{s(y)) <e already a function of sly) with probability

one.

Proof. The conditional distribution given the likelihood
statistic does not depend on the parameter € . Accordingly,

the conditional mean
E(t(y) :s(y)) = z(s(y))

does not depend on 6 and is thus a function on the sample space.
Then by Seven, Section 5, the mean of the conditional mean is

the marginal mean
m(E(tw) s s(x) o] = Bt ]0) = B(®)

this establishes the unbiasedness of r(s(y)) .
We now apply the formula for mean variance about regression
(Four: Section 5):
E|VAR(t(y) : s(¥)) Ie]

= VAR(t(y)|®) - VAR[:S[S(Y)] Ie] .
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Thus the variance matrix for r(s(y)) is smaller than the vari-
ance matrix for t(y) , with equality if and only if the mean
square of the deviation of E(y) from its conditional mean is
zero; that is, if and only if E(y) is equal to its conditional

mean with probability one.

Note that the theorem as stated remains true if s(y) is
any sufficient statistic. The likelihood statistic provides
the largest reduction and would thus be the preferred sufficient

statistic whenever it is available.

The theorem shows that an unbiased estimate not based on
the likelihood statistic can be improved by taking its mean
value given the likelihood statistic. This reduces the variance
matrix; it also reduces the variance of any coordinate that is
not already a function of the likelihood statistic; and it
reduces the variance of any linear combination of coordinates
(as an unbiased estimate of the corresponding linear combination
of parameter coordinates) that is not already a function of the
likelihood statistic.

Example 4. Consider a sample (x seos xn] from the bernoulli

1’
distribution (p) with p in [0, 1] . Suppose we are
interested in estimating p and have been given the very naive

estimate > for p . Of course x, can take only the values

0,1 whereas p can be any value in [0, 1] ; nevertheless p



VIII-38
is technically unbiased:

E(x,|p) = 1-p + 0+ (1-p)

The likelihood statistic for the sample (xl, .ceny xn] is the

binomial variable y = E? x; . We apply the theorem and calculate

the mean value of X, given y :

!
|_l

E(x, :y) % + 0 E%X

The conditional distribution is available from symmetry:
y 1's and n-y 0's and egqual probability to each possible

sequence. Note that

var(x,|p) = pg , Var(p|p) = B .

Thus the theorem takes us from the trivial estimate x, to the

estimate ﬁ that we have considered several times before.

Example 3 continued. Consider a sample (y,, ---, yn) from the

normal distribution (8, o>) with 6 in Q =R . Suppose we

are interested in 06 and that we have taken the first estimate
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that has been presented to us; say vy, . Of course

The likelihood statistic is Iy; or equivalently v, = v/n ¥y .

The notation in Seven: Section 2 allows us to express

1

—_— + a A4 4 e 4+ 7 AV
1 1 21 2 |

— n n

in terms of independent v's that are normally distributed;
the means of Var coey vn are equal to zero. We can then calcu-

late the conditional mean of y, immediately

1
E(ylivl) . v, +a, 0+ + a0
=y .
Note that
2
2 - 00
Var(y,} = o, , Varly) = — .

Thus the theorem takes us from y, to the now familiar y as

a better unbiased estimate of 6 .

The rao-blackwell theorem is a powerful constructive theorem.
But it does need the conditional distribution given the likeli-

hood statistic. 1In the two examples the conditional distribution
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was derived easily. The examples however are somewhat

exceptional; conditional distributions often are tedious and
difficult to derive. We now consider some ways of coming to
grips directly with the unbiased estimates that are based on

the likelihood statistic.

(b) From likelihood expansions

Let s(y) be the likelihood statistic and let g(s|6)
be its density function. Of course by Seven, Section 3, the
likelihood function obtained from y with £(y|6) is the same

as that obtained from s(y) with g(s|8) .

Now consider some estimable parameter R(8) , a parameter
that has an unbiased estimate. By the preceding theorem there
is an unbiased estimate based on the likelihood statistic s(y)
and it has at least as small variance. Thus there is a function

r{s) such that

B(0)

H

J r(s)g(s]e)ds .

But we can write this

B (0) J r(s)k(s)L(s|8)ds

where k(s) is a factor that scales the representative likeli-

hood L(s|6) to give g(s|6) as a function of 6 . Thus the
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estimable parameters are those that can be expressed as a linear
compound of the likelihood functions (relative to the lebesgue

or counting measure}),

We can now examine two rather different questions by a

common approach.

First. Suppose there is a second model g*{s]|8) that has

the same family of likelihood functions. Then

1= J g(s|e)ds all 6

1 = J g*(s]8)ds all o ;
hence

0 = J d(s)g(s|e)ds all @

where d(s) = [g*(sle) - g[sle]]//é[s|e) is independent of 6
by the common likelihood property. If g* is different from g
then there must be a 'nontrivial unbiased estimate d(s) of

zero'.

Second. Suppose that a parameter R£(€) has two unbiased

estimates based on the likelihood statistic. Then

B(B) = J r{s)g{s|e)ds all 6
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B(O) = J r*(s)g(s|6)ds all o i
hence
0 = J d(s)g(s]e)ds all @
where d(s) = r*(s) - r(s) is the difference of the estimates.

If there are two different unbiased estimates of a parameter,

then there must be a 'nontrivial unbiased estimate of zero'.

The two questions lead us to the following definition

D The statistical model {g(s|8):8¢Q} is said to be complete,

if
J d(s)g(s|e)ds = 0 all 6

implies that d(s) = 0 with probability one.

A statistical model is complete if there are no nontrivial unbiased
estimates of zero. In practice we will say that s is complete

provided the context makes clear the statistical model for s .

Example 5. The poisson family is complete. Consider s with a
poisson distribution (A) with A in rT . Suppose that d(s)

is an unbiased estimate of zero:
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® -

2% e _ +
Szod(s)—-ﬂ-——-o, all A eR® ;
] 28,5 .y all A em®',
s=0 *

Thus we have @& power series in A that is convergent to zero
for all A on the positive axis. The coefficients of such a
power series are unique; hence d(s) =0 for s =0,1, ... .

Thus the poisson family is complete.

Example 3 continued. Consider s with a location-normal distri-
bution (6, Ti) with 6 in R' . Suppose that d(s) is an

unbiased estimate of zero:

d(s) S S expi- 12 (s—e)zlds =0 ,
J V2T T, 21 |

A

X
bas = 0,
J

2
TD

J at(s) exp{-iig}exp{st}ds

2TD
-0

o ( ,
= J a” (s) exp#-s lexp{st}ds

2
L Zroj
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for all 96 in R or for all t = e/r§ in R . Let D be

the value of the last two integrals when t = 0 ; then

J p, (s)exp{stl}ds = J p, (s)exp{stlds

- OO QO

for all t in IR where

2
R

= 2
p,(s) = % eXP{- Sz}

are probability density functions. But the equation says that
p,(s) and p,(s) have the same moment generating functions and
hence are identical. Thus d(s) = 0 almost everywhere and it

follows that the location-normal model is complete.

The analysis preceding the definition of completeness now

allows us to state the following theorems.

Theorem. If the model for the likelihood statistic ie complete,
then it is the only model that has the given family of likelihood

funetions.

The following lehmann-scheffé theorem when used with the rao-

blackwell theorem shows that any unbiased estimate based on a
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complete likelihood statistic is automatically the unique
untformly minimum variance (UMV) unbiased estimate of the para-
meter given by its mean value: the argument being that we
always get smaller variance in going to the likelihood statistic
and if there is at most one unbiased estimate based on the

likelihood statistic then it must be UMV.

Theorem. There is at most one unbiased estimate of a pavameter

based on a complete likelihood statistiec.

Example 5 continued. Let (y,, ..., yn] be a sample from the

poisson distribution (6) with 6 in 0 =R’ . The likelihood
statistic is s = Eyi and we now know that it is complete. It

follows for example that y is UMV unbiased for 6 . And it

follows that any function of y whose mean exists is UMV unbiased

for the parameter represented by its mean value.

Suppose now that we are interested in estimating e_e i

the probability of a zero count for the typical application.

We could start with a trivial estimate such as

hiv,) =1 y, =0,

= 0 otherwise;

its mean is e_e - And we could then improve it to get the UMV
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estimate by taking the mean given Zyi . Or, more analytically,

we could go directly to the best estimate r :

o s _-nbd
e-e = z I‘(S) (ne;! € ’
s=0
o S
e(n-1)8 _ ¥ r(s)n® %T ,
0=0
(n-1)% = r(s)n® ,
s
r{s) = [l—%] .
This is the UMV unbiased estimate of e_e .
Example 3 continued. Let (Y1' o0 r yn] be a sample from the

normal distribution (6, ci] with 6 in Q =R . The likeli-
hood statistic is s = y and we know now that it is complete.
It follows that ¥y is UMV unbiased for 6 . And that Yy~ is
UMV unbiased for E§2 = 62 + Uixjn . And then that §2 + E%L 03
is UMV unbiased for u, = p? + ¢? . One can generate UMV
unbiased estimate of parameters almost as fast as one can write
down functions of y . Of course there is really only one
parameter 6 - however one labels it, and if s 1is the estimate
for © it is reasonable to think of PB(s) as the estimate of

B(6) . The property of unbiasedness is typically spoiled by
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a nonlinear function B8 . The fact that we need to find a new
estimate (UMV unbiased) is really a measure of the arbitrariness

of the property of unbiasedness.

In some sense 60 is the natural parameter here and there
is perhaps some consolation in using the best (UMV) unbiased
estimate of the natural parameter and appropriately transforming
it to get matural estimates of perhaps not quite so natural para-

meters.

(c) UMV unbiased: uniqueness

We have obtained the UMV unbiased estimate of a parameter
from the uniqueness of the unbiased estimate based on a complete
likelihood statistic. We can show quite generally however that

a UMV unbiased estimate of a parameter is necessarily unique:

Theorem. If tl(y) and tz(y) are UMV unbiased for BI(8) ,

then t =t with probability one.

Proof. Let o©2(8) be thc minimum variance attained by t,
and t, , and consider the estimate at (y) + (1-a)t, (y)

with 0 <a <1.
Var(a t,(y) + (1-a)t,(y)]|6)

2
= E[[a[tl(y) -B(6)) + (1-a) (tz(y)—s(e)]] ‘9] .
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The square function from R into R is strictly convex
(Six: Section 2). Thus

(a x, + (l-a)x2]2 < axi + (l—a)xz

with equality if and only if x, =%, . Thus

var{at, (y) + (l-a)t,(y)|e)

< ac?(6) + (l-a)o?(8) = o2(8)

with equality if and only if t (y) = tz(y) with probability
one. But 0?(8) is the lower bound for the variance; hence
the equality must hold and t, = t, with probability one.

2

(d) Overview

We have obtained the UMV unbiased estimate for the case of
a complete likelihood statistic. The problems will demonstrate
the types of model that have completeness: the exponential
model with the number of ¢ funclion equal to the dimension
of the parameter; the variable-carrier models (monotone
boundaries) where the number of boundary types is equal to the
number of parameters; fairly straightforward mixtures of these.
These also are the cases where the dimension of the likelihood

statistic does not increase with sample size.
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In broad terms the local methods of Section 2 work easily
for the natural parameters of the exponential model; the complete-
ness methods work for estimable parameters for the exponential
model and for the monotone carrier cases. We will see latér
just how general this range of models is.

Problems

35%. Let s = (sl, ceny sr]' have an exponential model
f[§|e] = y(e)exp{zfsueu}h(g) with respect to lebesgue measure
Oor a counting measure or some other o-finite measure on IRY

with 8 in 9 =RY or = a subset of IR" that contains a

rectangle. Then s 1is complete. Method: If the rectangle
does not contain the origin, then set 6 = ¢ + a and redistri-
bute terms so that the new parameter has a rectangle containing

the origin. Follow Example 3 and use the uniqueness theorem for

multivariate moment generating functions (Four: Section 4).

36. The scale normal. Let (yl, ceos yn) be a sample
from the normal (p,, ¢?) with o2 in © =R’ . Show that the
likelihood statistic & (yi -u,) % s complete. Use Problem 35,
37. The location-scale normal. Let (y,, ..., yn] be a
sample from the normal (u, ¢2?) with (4, ¢2) in © =R xR’ .
Show that the likelihood statistic (Iy,, Ey;) is complete. Use

Problem 39,

38. The scale exponential. Let (y,, ..., yn] be a sample
from the exponential distribution £(y|8) = Bulexp{-y/e} on R

with € in Q =R’ . Show the likelihood statistic Eyi is

complete.
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39. Consider the normal linear model y = X8 + u where
u is a sample from the normal (0, oi] with B in 0 =IR" .
Show that the likelihood statistic X'y is complete. Use
Problem 33. For future reference note that bly) = (x'x) " 'x'y

-~

is an equivalent function.

40. Consider the normal linear model y = XR + ocu where

~

u is a sample from the normal (0, 1) with 6 = (8, o?} in

0 =mt

x RY . Show that the likelihood statistic X'y, v'y)
is complete. Use Problem 1. For future reference note that

[E(y), s?(y)) is an equivalent function.

41. Let (x, ..., x ) be a sample from the bernoulli dis-
tribution (p) with p din [0, 1] . Show that the likelihood

statistic y = Ix; is complete.

42. Let y have the hypergeometric distribution (N, n, D)

with D in {0, 1, ..., N} . Show that y is complete.

43, Let (yl, e, yr] be multinomial (n; PP pr]
with p, >0, Ip; =1 . Show that (y,, ..., yr) is complete.
44. Let (y,, --., yr] be multihypergeometric
(N, n, D,y eoey Dr] with D, =0, 1, ... and ID, =N . Show

that {y,, ..., yr) is complete.
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45. Let (yl, ooy yn] be a sample from the uniform (0, 6)
with 06 in ]R+ . Show that the likelihood statistic max Yi is

complete,

46. Let (y,, «v.s yn) be a sample from the model £(y]|8) =
k(0)¢(y/08)h(y) where ¢ is the indicator function for the
interval (0, 1) . Chow that the likelihood statistic max Ys

is complete.

47. Let [yl, hoaC yn] be a sample from the uniform
(6,, €,) with 6 <6, and 6, in R . Show that the likeli-

hood statistic ' (min y;, max yi] is complete.

48. Let (Y1’ yz] be a sample from the uniform (6, 6+1) .

Show that the likelihood statistic (Y(l)' y(z)] is not complete.

49, The location-scale exponential. Let [yl, SBaT yn]
be a sample from f[y]G;ﬂszlc(y—B)exp{-(y-S)/T} . Show that
the likelihood statistic is (min Vi Zyi] . Show that the like~

lihood statistic is complete.

50. Let [yl, ey yn] be a sample from some density
function on IR ( 2 would be an index set for the class of
density functions or the class of piecewise continuous density

functions). The likelihood statistic is [y(l), ceny y(n)] :
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See Three: Problem 37.

(a)

Show that an alternative form of the likelihood statistic
. 2 n

is (Zyi, IYgr vees Eyi] .

(b)

The density functions as described above include those of

the exponential model £(y)} = ¢(§)exp{-y2n + elyl + e+ Bnyn} .

Deduce that the likelihood statistic is complete.

51. Let [xl, ceey xn] be a sample from the bernoulli (p)

with p in [0, 1] . Show that the only estimable parameters

are the polynomials of degree less than or equal to n in p .

52, Let (y,, «-- yk) be a sample from the binomial dis-

tribution (n, p) with p in [0, 1] . Determine the UMV

unbiased estimate of qn , the probability of a zero count.

53. Let (y,s «vvs yn] be a sample from the uniform

(0, 6) . Show 2§ is an unbiased estimate of 6 . Determine

the UMV unbiased estimate of 6 . How do the variances compare

for n 1large?

54. Let (y,, ..., Y ) be a sample from the normal (u, o?)

with (u, 0%} in 9 =R x R . show that
]/ A 1_/ *
s, (n-1) 2p(n-1)/2) /2 *T (n/2) = 5,(141/4(n-1)) is the UMV un-

biased estimate of o

55. Measurements are made to determine a period of oscillation
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B . Let Y, be measured time at which the system is in a certain
phase, and let Yyr veos yn be the measured times of the next
n recurrences to that phase. If the measurement error is

normally distributed without bias and with common variance then

¢

the linear model y = al + BxXx + ce 1is appropriate where e is
a sample from the standard normal and x = (0, 1, 2, ..., n) .
Find the UMV unbiased estimate b of R in a convenient form

for computation (n even; n odd).

56. (Continuation). Consider the following estimates
Y. Y
_In "o
bl - n
n n/2-1 n {n-1)/2
Povi- vy ¥i - Yy
b = n/z+l 0 (n even), = (n+1) /2 0 (n odd) .
2 (n% +2n)/4 (n+1) 2/4
(a}) Show that b1 ’ b2 are unbiased estimates of B . Calculate

the wvariances of b , b1 . b2

(b) Suppose b, is available for n = 300 . Find values of n

for which b and b, would have the same precision.

57. TFor the normal linear model y = XB + ge where e is a

~

sample from the standard normal, the least squares estimates

by, «.., b, are UMV unbiased for 8,, ..., B. . Show that

s?(y)/(n-r) is UMV unbiased: this uses the definition of
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s?(y) as the minimized sum of squares of deviations; see Section

1(c).

58. Continuation of Seven: Problem 53. Consider a sample

of n from the multivariate normal (u, Z) with U in :mk

-~

and

I 1is the space of positive definite symmetric matrices [an open

k+ k{k+1)/2
= |

set of ; see Seven; Problem 53, Let

( 1
yll - & 8 Ykl
v.= | ¢ :

Yhx

P

LYnl

where the n rows record the n elements in the sample. Show

that
r' 3
Sll L BN BN ) slk
— — — ™ . -l -]
(¥,re--s9,) =n ll.'Y’ . s l= (v-1n1'y) ' (¥-107"1"Y)/(n-1)
Lskl [ I BN skkJ
where } is the one vector with n coordinate and the sij are

sample covariances [Four: 2(c)]. Show that the sample means and
Co:
covariances are UMV unbiased estimates of the means and'yarlances

of the distribution.

1]
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4, HYPOTHESIS TESTING

Consider a response y that is normally distributed (6; Gi}

with 6 in R . And suppose an investigator is concerned with
a hypothesis H, = 8 < 8, suggested by some theoretical or

normative considerations; the alternative then is given by the
hypothesis H, : 6 > 8, . With a sample IR yn) of n ,
our earlier discussions would suggest calculating the observed
y and comparing it with the normal distribution (60, ci//n] ;
the significance can be assessed reasonably by the probability

(en] of values as large or larger than the observed y .

A common mathematical formulation of this testing problem
envisages the making of a decision on the basis of an observed

sample (y ;ossey yh) . As an example such a decision or formal

1
test procedure consider: Accept H  if y < u, + 1-640,//n ;

Reject H  (and accept H) if y > u, + 1-6400//VH .

Some earlier comments on the use of such decision procedures
may be found at the end of Section 2 in Chapter Six. Certainly
there are industrial and developmental situations where entities
are produced repetitively and where batches are sampled and then
accepted or rejected on the basis of a test applied to the
sample. In such contexts it may often be possible to determine
the loss that would result from a certain decision in a certain

situation; then for any decision procedure, the risk or mean
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loss can be calculated and used to assess the decision procedure.
In the scientific applications however, there are many potential
users for the results from an investigation, and an appropriate
decision may well vary from user to user. The proper role of
the investigator is to assemble the information and the evidence
that is available and to preseﬁt conclusions that are supported
by the evidence. Certainly the occasion may arise where the
evidence is overwhelming and a reasonably firm judgment is
appropriate. But often the evidence will not be overwhelming,
and it should be presented in as accessible a form as possible;
the various users would then be able to make judgments appro-
priate to their situations and where necessary make what ever

decisions are warranted by those judgments.

The mathematical forrmulation of test and decision procedures,
however, does involve some attractive mathematics and it can
provide some basis for the choice of a function to use for tests
of significance. In this section and several succeeding sections
we investigate the formulation and methods for some two-decision

procedures: Accept the hypothesis; or Reject the hypothesis.

Now consider a response y with values in a sample space
S and with a probability measure Py with a parameter 0
taking values in . Suppose that an investigator has a
hypothesis concerning the system he is investigating. And
suppose the hypothesis can be identified in terms of the

parameter 6 ; specifically that the points in & can be
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checked and those for which the hypothesis holds can be identified
as a set say H, and the remaining points for which the
hypothesis does not hold can be identified as the complementary
set H, . Thus the hypothesis induces a partition of & info
two sets called the null hypothesis H,Z and the alternative
hypothesis H1 . The term null hypothesis derives from a common
situation where an experimenter adopts the initial position or
hypothesis that a treatment does not affect (is null for) a
response (or that two treatments do not differ in their effects
on the response). If the experimenter has randomized his
treatments to the experimental units and if he has controlled
factors that are accessible and has randomized against possible
other factors, then the hypothesis identifies a set H/ such
that the only alternative to explain apparent affects in the

sample is that the treatment (or the difference in treatments)

causes response effects.

In the abstract minimum we now have a partition of @ into

sets H0 r Hl ; see Figure 2.

If an investigator has committed himself to making a decision,
Accept Ho r say d, , or Reject H, (Accept H1]' say d1 F
then he must have a decision function & which maps S into
{a,, d,} . To use the decision function ¢ he inserts his
observed response y and obtains the decision &(y) . The

statistical problem then becomes one of choosing a good, reason-

able, or best decision function & . Alternatively he can think
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in terms of a eritical region C in the sample space; the
critical region C consists of the points that produce the
decision 4, (the remaining points of course are those that
produce the decision do]. The statistical problem is then one
of choosing a good,reasonabl%'or best critical region C . See

Figure 2.

Consider the example at the beginning of this section with
6, = *5 and n = 25 . The decision function ¢ recorded there

is given by

§(y) =d, 1if y e {y:y <o, +' 164}

0

e {y:y > 6 + -164}

N
o 7]

or in terms of the image space of the function § by

§ly) =d, if y < 6, + 164

= d, > 8, + 164 .

The corresponding critical or rejection region C is
c={y >898, + -164} ;:

in this form the event can be interpreted as a set on the sample

space § or as a set on the image space (re ¥) .
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Figure 2: The parameter space § as partitioned into hypothesis

H, and alternative H . The sample space S as partitioned

according to a particular decision procedure.
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The decision procedure & Jjust described can be assessed
o part on the basis of Figure 3. The space for y is divided
into the acceptance and rejection regions. And over the space
of y is pictured the typical distribution for y ; it is
located at 6 and scaled by +*1 . The probabilities for

acceptance and rejection can be calculated for any value of 6 .

?d¥

éo ‘60'1" lb&*' ? ‘é

Figure 3: The sample space(in terms of y )with c and c° .
The distribution of y for a typical 6 .
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The commitment to using a decision function leaves us in
the position of comparing decision functions on the basis of
their performance characteristics. For this we define the

power function of a § or of a C to be

Ps (6)

P(s(y) = 4a,le) = p(c|e)

n

Prob(Rejecting H, |6)

(=) P(y > 6, + +164]8)

| v

0

8, 0
(=) P{z > 1+64 + —

(=) 1 - G[l-64 + 10(8, - e)]

where the last three expressions refer to the example with G as
the standard normal distribution function. Alternatively we
define the operating characteristic function (the complement of

the power function) of a § or C to be

ocg(8) = P(6(y) =d,[8) = r(c®|o)

Prob (Accepting H_ |6)

(=) G[l.64 + 10(90—8)] 5

The power function for the & in the example is plotted in

Figure 4. Other decision functions would generally have other
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power functions.

] Sy

Figure 4: The power function P(6) for the test: Reject if
y > 8, + *164 . It has the shape of a normal distribution

function with standard deviation -1 .
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If H is true, then the decision d, 1is an error; it is
called a Type I error. The probability of a Type I error with

a decision function & 1is

us{e) Pa(B) 0 e H

If H1 is true, then the decision dD is an error; it
is called a Type II error. The probability of a Type II error

with a decision function & 1is

]
o
<D
m
e}

85 (0)

=1 - PG(G) € H

The error functions g and 86 are plotted in Figure 5 for

the decision function ¢ of the example.

In certain industrial applications it may be possible to
determine the financial loss R(di, 6) that would be entailed
if the decision di is made when the parameter has the value

8 . A loss function might have the special form

2(a,, ) =0 . b ¢ H,
= b(8) € H
2(a,, ) = a(e) 6 € H,
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AC*
54 -, -3 5 A
B0 -
Ap
gscyaq:i'. FERE T, ==
o

Figure 5: For the particular § (Reject if y > 6, + +164)
the probability aa(e) of a Type I error and the probability
Bs(8) of a Type II error.
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giving no loss if the decision is a correct decision. The mean
value of the loss using a § can then be calculated; it is

called the risk function

Rs(8) = E[z(a(g), 6) |6
= 2(a,, 8)(1-Pg(8)) + 2(a,, 8)P,(6)

(=) b(B)Bs(8) + a(b)a,(6)

where the final expression refers to the special form for the
loss function. We would now choose a decision function so that
the risk is small - ideally so that the risk is small for each
9 , or as a compromise so that the maximum risk is small -

or small for certain 6 values of special concern.

Now consider the choice of a decision function 6 (or
critical region C) on the basis of performance characteristics.
The usual approach involves restricting our attention to those
decision functions that have a certain bound o (say 5% or 1%)
on the probability of a Type I error; the rationalebeing that
deciding a treatment effect exists when in fact it doesn't is
serious and should be guarded against. Thus we restrict our

attention now to those tests that satisfy

(1) p(cle) < o ® in H_ .
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A test C that satisfies (i) is called a size o test. The test

in the normal example was a 5% test {also say a 10% test but a poor

10% test).

Then among tests of size a we look for one for which the

power
(2) P(cl|e) = large . ¢ H, .

Of course the test that maximizes the power P(C|6) for one 6
may not be the test that maximizes it for another. Some sort

of a compromise is then needed. See Figure 6.

A hypothesis is called simple if it consists of one para-
meter point and composite if it consists of more than one para-
meter point. For the case of a simple hypothesis against a
simple alternative the problem of choosing the size o test
that has maximum power is resolved by the following neyman-

pearson lemma.

For the statistical model f(y|6) with 6 in @ = {8,, e} ,
consider the problem of testing the hypothesis H = {e6,}

against the alternative H = {6 } :

Lemma. A test having
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Excluded jrd '
bq sneof
(indilion .
| ’ Haxm’\tbe
el el ///
ya . i ':_-. Q
Ho.. i, o AT ; H'

Figure 6: The size o tests & have a power function P

that does not intersect the excluded region. Maximizing
power is suggested by the arrows above the set v .

$
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L{vle,)

L(Yleo)

(1ii)

v
e
m
Q

18 a most powerful test at some size o for testing Ho against

H, . If the value of k and them C can be chosen to satisfy

(exact size q)
(iv) J £(yle,)dy = o,
C
then C is most powerful among tests having size o .

Proof: The test is to reject for large value of the likelihood

ratio

L(Y,e1) f(Y]el)

Livle,) £(v]6,)

The critical value (beyond which rejection occurs) is determined

50 that the test has exact size a .

The problem is one of finding a set C containing a of
the f(yleo) probability and yet as much as possible of the
£(y|8,) probability; points with large values of £{yle, ) £(v|e,)

should then go in C first.
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Consider a set C satisfying (iii) and (iv) for some

o . Let D be any other set having size o ; then

[ tlyleay ca=] £(vle,)ay .
D cC

*

Let C0 =CnD and D* =D -C , C =¢C - C0 . Subtracting

0

the integral over the intersection set C gives

J f[yleo)dygj £(yle,)ay .
p* C*

on D* which is outside C we have

ig]!;e—l-)—if(ywo)

and on C* which is inside C we have

£(v]e,) _w

N
.

Hence

J £(yle,) J £{yle,)

D* DE

Then cancelling the k and adding on the integral over

E
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gives

f f(Y|91)de_J £(y]e,)ay
D c

which states that the power of D 1is less than or egual to
the power of C . Hence € has maximum power among tests of

size o .

Example 3 continued. Consider a sample from the normal distribu-
tion (6, 0.} with 6 in R . To illustrate the lemma we take

Q= {6,, 6,] and consider testing H : 8, as H, = 6, where

6, > 6, . By the lemma the most powerful test is to reject the

hypothesis H, for large values of L(Glyll//L[e]yo] =L _(y) ,

¢

or equivalently to reject for large values of

2(8ly,) - 2(8ly,) = 2,(¥)

1 2 1l 2
= - = z(y.-8,)" + — z(y; -9,)
2 1 1 2 1 0

20D 200

or equivalently to reject for large values of the likelihood

statistic Zyi or y .

The most powerful test at exact size o can be then
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determined by calculating the critical value exceeded with
probability o wunder the 6 . distribution. For y the

critical value is 6, + zaco.'/ﬁ where z is the point
exceeded with probability a for the standard normal. Thus

the critical region C is
c={y:y>8, + zaoo.'/ﬁ} .

Note that the test does not depend on u, and hence is most

powerful for all 6 wvaluesin the alternative H1 : 6 >80, .

The power of the test is

[ 8, - 6,]
= Pjlz > za +

o,. vn;

6 -6,]

=1-G 2, - - :

¢, Vnj

where G 1s the standard normal distribution function; see

Figure 4.

In applying the lemma to discrete distributions we can
reasonably expect difficulties in satisfying the exact size o
condition (iv). For suppose we are to reject for large values

of a discrete variable y and that under H  the discrete
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variable has say a poisson distribution with mean 1 . Then under
H, P{y > 4) = +019 and P(y > 3) = «080 . if we wanted an

& = 5% test then we would be wanting to split the probability

at the point y = 3 . 1In effect this can be accomplished by

using a randomized test function:

ID 4 real valued function ¢ on the sample space S 1is a

test funmection if 0 < ¢(y) <1 for all y <in S .

The test funétion for a nonrandomized test with critical region
C is the indicator function for that region C . More
generally a test function ¢ is used as follows: if ¢(y) =1
then the hypothesis is rejected; if ¢(y) = 0 , then the
hypothesis is accepted; if ¢(y) = a then dice or random
numbers are used and the hypothesis is rejected with probability

a and accepted with probability 1 - a .

For test functions, the lemma can now be presented in the

following form.

Lomma. For testing II, against H Llhe lest
L{y|8,)
¢(y) =1 - > k
L(Y]euJ
= g = k
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where a and k are chosen to satisfy (exact size a)

(v) J () Efylo,)dy = a

i8 most powerful among teste having size o .

Proof: The earlier proof can be modified to cover the corres-

ponding part of the present lemma: for any alternative test ¢

at size o consider
Py(8o) = Py(8,)

= J (o) -v(y))E(v]e,)ay

[wv

J (6(y) - v(y))kE(y|e,)dy

and use the likelihood ratio inequalities together with the

sign of ¢ (y) = Ply) .

The essential part of the present lemma is to show that
a yk can be chosen to satisfy the exact size o condition (v).
For this the poisson example preceding the lemma suggests the

pattern:
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p(y) =1 y > 4
<050 - -019 _
080 — 010 y =3
=0 y < 2 ;

this appropriately splits the probability at y = 3 and gives
E¢(y) = *05 for the poisson distribution with mean equal to 1 .
For the general case let H be the distribution function (see

Figure 7) for the likelihood ratio

L(yle,)
Ly) = ———
L(yle,)
/J{
N T
- p-~ - - =l
-~
Ve
.--“""’M I
k I A

Figure 7: The distribution function H of the likelihood

ratio under the (6,) distribution on S
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as derived from the 0, distribution on the sample space (note
that the probability of a zero denominator is zero under the

®, distribution). Let k be the value such that H(k) > 1=~a
and H(k=-0) < 1-oa . Then the required test function is

$(y) =1 L,{y) > k
- H(k) - (1-0a) = k

H(k) - H{k -0)
= ( < k .

Problems

59. An investigator knows that a response is approximately
normal with variance 1+44 . Previously the mean had been 75
but a new treatment may have increased it. For testing the
hypothesis that the mean is 75 against the alternative that
it is larger, determine the most powerful (1%) test for a
sample size of 10 . Plot the power function. If the experi-
menter wants to be at least 95% certain of detecting a mean

equal to 76 , find the minimum sample size.

60. Let (y,, «.., yn) be a sample from the normal
2
(uofol .
(a) Find the most powerful size o test for Hy : ¢ =0,
0.

against Hl P 0 =0, <40

(b) Does the test depend on o, ?
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(c) Give an expression for the power function of the test in

terms of the distribution function of a chi-square variable.

61. Continuation. Find the most powerful size o test

for H :+0=0, against H : o =90 > ¢, - Does the test

depend on ¢,7?

62. Let (x,, ..., x,) be a sample from the bernoulli
distribution (p) . Find the form of a most powerful size o
test for
(a) H :p=p, against H :p=p >P; - Does the test

depend on p, ?

(b) H :p=7p, against H

p=p, <p, . Does the test

depend on P, &

63. Let y have the poisson distribution (8} . Find
the form of a most powerful size o«o test of

(a) H, : 6 = 6, against H : & =20 > 6, + Does the test

depend on 8 ?

(b) H) : 6 =6, against H : 8 = 6. < 6. Does the test

depend on 8, 6 ?
64. Let (Y,+ ++os yn] be a sample from the exponential
distribution £(y|8) = 0 exp{- 6y} on r* (say, the inter-

arrival times of THREE Section 6. Find the form of a most
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powerful test of H oz 6 = 6, against H :8=206 > Bo (the

critical value can be presented in terms of a percentage point
of a familiar distributionl!). Does the test depend on 6, ?

65. Let (yl, cons yn] be a sample from the uniform dis-

tribution (0, 8) . Find the form of a most powerful size «
test for
(a) H : 6 =286 against H : 8= 61 > 8, . Does the test

0 1]

depend on 9 7

LT3
D
i
<D
A

(b) H, : 8 =0 against H,

0 eo . Does the test

depend on 8 ?

66. Let (¥, «-«y yn] be a sample from the normal
(u, ¢%) . For testing the hypothesis H :u=u, against

H, :u > u, a reasonable test of size o is to reject if
t = /h(?-—uo)/’sy > t, where t  is the point exceeded with
probability o by a t-variable on n -1 degrees of freedom.
The power function of this test is based on the general distri-
bution of t derived from the (u, o) distribution on R" .

Show that the probability differential for this noncentral t

distribution is

- £+1+r r/2
/T exP{'ﬁ} § 2t/2 & P[ e ] (e/7%) dt
2/ .2 rl F[gJ (1-+t2/f](f+l+r)/2 JE
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where £ =n - 1 is the degrees of freedom and & = v/n(u, - u,})/0
is the noncentrality parameter.

Method: (a) Express t/vf as w/x where w is normal

(§, 1) and Y 4is independent with a chi distribution on f£
degrees of freedom. (b) For the density of w expand the
quadratic exponential putting the cross term into an exponential
series. (c) Then use the method of TWO Problem 35 and term by

term integration.

67. Let ¥ be a most powerful size o test of f£(y|6,)

against f£(y|6,) . Then for some k

|
b=
\'4
F

p(y)

‘almost everywhere with respect to the lebesgue or the counting

measure that carries the density. Thus all most powerful tests
have essential likelihood ratio form and differ only in how the
size is established for points where the ratio is equal to Kk .
Method: Let ¢ be as given in the lemma. From size and power

show that

f(¢(y) —¢(Y)][f(y|el) - kf(yle,Jay < 0 ;

and from properties of ¢ show that the integrand >0 .



VIIT-79

68. Continuation. If E(y(y)|6,) <o , then k =0 and

the maximum power at 6, 1is unity.

69. Ceneralization of the hypothesis testing lemma. Let

£, and f, be real valued integrable functions relative to a
measure } . Among test functions ¢ for which
x J ¢p(y)£,(y)dy = ¢

a necessary and sufficient condition that ¢ maximize

J $(E (y)dy

is that ¢ satisfy =+ and have the form

$ly) =1 £.(y) > kE,(y)

=0 < k£, (y)

for some k .
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5. UNIFORMLY MOST POWERFUIL TESTS

The most powerful test of a simple hyvothesis against
a simple alternative is based on the likelihood function --
reject if the likelihood function has a ©, to 0, ratio
that is large. It is of course reasonable for a agood test to
be based on the likelihood statistic; see Seven, Sections 1,3.
Now with a general parameter space § we can in fact show
that any test function ¢ has a corresnondinag test function

¥ with the same vower where ¢ is based on the likelihood

statistic s . The power function of a test ¢ is

P. (0) P("Reject"|0)

¢

i}

E(o(y)[O0) .

Let
P(sly)) = E(¢(y):s(y))

be the mean value of ¢ from the conditional distribution

(indevendent of 0 ) given the likelihood statistic. Then

E(p(s(y))|0) = E(o(y)]0)

and hence

P¢(9) o Pw(e)

for all © in Q . Thus averaging over the conditional
distribution given the likelihood statistic produces a test

function dependent on the likelihood statistic and it does
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not alter the power function. 1In terms of performance character-
istics the two tests are equivalent. And thus in anu hypothesis
Testing problem we can clearnlfu restrnict oun attention to the

Lest functions that are based on the Likelihood statistic.
(a) Simple hypothesis, composite alternative

Now consider a hypothesis testina proeblem with a
simple hyvothesis H,:0, and a comrosite alternative H, .

2mong fests 04 size «

(i) C(¢(y)[0,y) < o
we look for one with maximum powenr

(ii) E(¢(y) |0)

for © in the alternative H, . Of course the test with
maximum power at 0, mav not be the test with maximum pover

at another value O; . Some sort of compromise would be needed
—- perhaps choosing the test with maximum nower at some important
or distinct value in the alternative. For certain special

problems however we are successful and we do obtain a undfonmly

most powernfuf (UMP) test. Consider an examnle:

Example 3 continued: Consider a samnle (Yx' 50D vn) from

2 . .
the normal (O,co) and suppose we are interested in



VIIIbL-3

By the example in Section 4 the test of size a havinag maximum

power at O, is

¢ly) =1 if ¥y >0, + 2,0,//0

=0 <0, + z2,0,/Vn .

But this test does not depend on 0, ; it has maximum power
for each Ol > 0, and hence is a UMP size a test.

It is natural to ponder what kind of problems will
vield a UMP test. The lemma in Section 4 gives the test having
maximum power at a particular alternative value; it is to reiject
for large values of the likelihood ratio. We will obtain a

UMP test if large values of the likelihood ratio

Liy|o,)

Lly|60)

are the same for the various rossible Ol values. Towards

this we define a monotone likeliliood ratio model:

ID The model f£(y|0Y with 0 4in Q = R is a monotone
Likelihood ratio (MLR) model i{ therne 48 a neal valued function

t(y) such that

fi{y|e,)

fiyl@:T

48 a nondecreasing function of t(v) forn each 0, <0, .

In particular it follows that the likelihood statistic can be
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expressed as a function of t(y) .

As a prime example consider the exponential model
f(yle) = y(0)exp{t(y)v(0) }h(v)

vhere ¢ is a nondecreasing function. As special examples
we have the location rarameter normal, the binomial, and the
poisson.

For a monotone likelihood ratio model with hvoothesis

testing problem

we then have (proof as in the examnle) the following form of

the hypothesis testing lemma.

Lemma. The test

$(v) = 1 if t(y) > k
= 3 = k
= 0 < Kk

where k,a Aatisfy (exact size a)
E(¢(y)|0,) = o

44 a unifornmly most powenrnful test ait Level o .
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(b) Composite hvrothesis

Now consider a hvpothesis testing problem with a
composite hypmothesis H,; and suppose we want the size «

test
(v) E{(6(y)]0) < a 0 ¢ H,

haivng maximum nower for the alternative €, . Typically we
would be interested in a comnosite alternative but in line

with our general arproach we first examine a simple alternative
and in effect use a parameter space £ =H u {0}

The mathematical oroblems of closing in on a test

that satisfies each of the inecualities
(iii) E(¢(v)|0) <« ¢ in H

are rather severe. Sometimes we can find a value @, in H,
with density f(v[@b) that is toughest to distinguish from
the alternative f£(y[0,) . In that case we would exrect that

the best test ¢ of 0O, against 0, would also have

E(o(y){0) < o

for the other 0's that are more easilv distinguished from
©; . In effect we examine the tests (a larger class) that

satisfy the single inequality

(iv) E(p(v)|0g) <o ,
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and find the test having maximum power
E(e(y)|0))

if the resulting test is one satisfying all the inequalities
(iii) then clearly it is the best test in the smaller class
satisfving the inerqualities (iii).

In other cases we can find a probabilitv average
of the densities of H, that is toughest to distinaguish from
the alternative f(y]ﬂl) . We look for a probabilitv measure
A on H, such that

£,(y) =J £(v]6)ar(o)
te

is toughest to distinguish from £(v|[0,) . Anv test satisfyina

all the inequalities (iii) will satisfy
{v) E(o(v) N <«

since

E(o(y) [X) = |¢(v) £, (v)dv

H,

J $ (v)E(v|0)dv|ar (o)

= I ¢ {v) f f(vie)dx(e)av
S
L

< o @

using fubini in Four Section 1(10).
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Our method then is to examine the larger class of tests that
satisfy (v) and find the test having maximum power at 0, ; if

the resultinag test is one Bn the smaller class of tests satisfying
all the inegualities (iii) then clearly it is the best test in

thet smaller class satisfying (iii).

Example 3 continued. Consider a sample (yl,...,yn) from
the normal (@,cz) and suppose we are interested in

Hy:@ < 0,

Hl:@ > 00 .
Consider a value 0, in H, and suppose we look for a value

in H, that is "closest" to H,; this suggest © . The

most powerful size o test of 0, against 0, is

<

¢(y) =1 if >0, + z,0,//n

=0 < 0, + zaoo//ﬁ .

Is this test in the smaller class of size o tests for H, ?

The power function of ¢ 1is

i

J ¢(¥)f(g
r

0)dy P(y > 0, + zaoo//HIO)

= o -0
P =S > 0 z

+
0,/¥n T o /Vn @

H

and with @ < ©, the power is < a . The test 44 in the
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smaller class and hence is the most powerful test of H,

against 0, . But the test does not denend on @, + hence it

is a UMP size o test for

Now consider a monotone likelihood ratio model
(with real valued function t(y)) and sunnose we are interested

in the hypothesis testing problem

We then have the following form of the hvpothesis testing

lemma:

Lemma, The test

o(y) =1 if t(y) >k
=0 =k
= 0 < k

where k,a satisfy
E(¢(y) !Oo) =a

48 a uniformly most powenful size o test of Hy against H,
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Proof: The earlier form of the lemma gives the UMP size
test ¢ of 0O, against ©, « 1Is the test in the smaller
class of tests of size o for I, ? Consider the power at

some value 0' < @, :
a(0') = E(¢(y)|e*) .

By the earlier form of the lemma the test ¢ is most power ful

at level a(0') for testing ©' against ©,. But the test
p*(y) = a(e'), which stupidly rejects with probability o(0')
regardless of the data)is an o(0'}) test of 0' against 0,3
hence a(0') < o . The test ¢ is then of size « for H, and
hence is most powerful for testing Hy against 0O, ., But the
test doesn't depend on ©, . Hence it is UMP size o for H,
against H, . Note that the proof uses monotone likelihood
ratio only for parameter pairs where one of the values is 2]

0 »

(c) Locally most mowerful tests

Consider a hypnothesis testing problem Hy:0,
against H1=G > 0, and suppose there does not exist a uniformlv
most powerful test of size o. One possibility mentioned
earlier is to seek an important or distinctive value in the

alternative and choose the most powerful test of 9, against 0,
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o fyle)
ply) =1 if e > k
= 3 = k
=0 < k

where k and a are chosen to give exact size o under 0, .
With such a 01 value the hope would be that the test had
reasonable nower for other 0 wvalues in H, .

Another possibility is to determine the test that
has maximum power for ©O close to Oo , that is for the @
values that tvpically are difficult to distinguish from o, .
For this suppose that the log-likelihood is continuocusly
differentiable for 0 near 0, and that Assumption (i)} in

Seven, Section 9 holds; then

L(v:0,+8)

= 2
In m-:—’:-j——“ = S(VIOO)G + 0(6 )

and for any test ¢

é% E(¢(y)|e)|9=Oo = I ¢ (y)S(y|8,) £(v]0,)dy

where S(yle) is the score function from Seven, Section 1.
Thus the size o test that maximizes the slone of the power

function at 0, 1is given by

v
~

o(y) =1 if s(v]o,)

i

o
A
e
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where k and a are chosen to give the test the exact size
o under 06, . With such a test the hope would be that good
power for ©O close to Oo would mean reasonable power for

other presumablv more easily detected alternative values.

Example 3 continued. Consider a sample (yl,...,vn) from
the normal (6,0§) and supnose we are interested in Hy:0,
against H,:0 > ©, . The locallv most powerful test is to
reject for large values of

V=0,

S(Z‘Oo) =

Uo/n

or equivalently for larger values of ; . Then, as we would

expect, this gives the UMP test described earlier in this section.

(d) Large sample methods

For testing 0, against ©, the likelihood ratio
is typically easv to calculate. The critical value of k however

requires the 0, distribution of the likelihood ratio and mav

well be difficult to calculate.

And similarly for testing 0, against 0, + §
(small positive &) the score function S(yl@& is tvpically
easy to calculate. The critical value however requires the

0, distribution of S(vy|0,) and mav well be difficult to

calculate., Fortunately the large samnle distributions are

commonly available.
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Let (yl,...,yn) be a sample from f£(v]0) . And

suppose the mean u, and variance oi(> } of
1n £(y|©,) - 1n f(yl@o)

exist under the 00 distribution:

=
]

E(ln £(v]0,) - 1n £(v|ey)]e))

, f(vlo,)

u, + 02 = BE((1n £(y|0,) - 1n £(v]|e,))%]0 )

£(y[0))
f In* o,y fl¥leNdy .

Then by the central limit theorem (Five, Section 2), the like-

lihood ratio o
£(y|0,) fly;le,)

L £(y[6,) - E e ftviTe,)

has a (0,) distribution with limiting normal form located

at np and scale by vn ¢, . The approximate size o test

1

of ©, against 0O, is then

_ £(y]0)) ~
d’(g) =1 if 1n W 2 ny, + Za nag,
=0 <np, + oz /n o, .

The avoroximate power can be obtained from the mean u, and

variance of of 1n £(y[9,) - 1n f(v|@,) under the 0,
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distribution
T, u,-u
Py(®) ¥ 1 -Gz — - LI
1 o,//n

where G is the standard normal distribution function.
For the locallv most powerful test supnose that
£(v|©) satisfies the reqularitv conditions (i) , (ii) of

Seven, Section 5. Then

E(S(v]0,)]0,) =0
Var(S(yl@D)IGD) = I(0,) .
And for the sampwle of n ,
E(s{ylo,)[0,) =0
Var(S(¥|O°)|O°) = nI(0,) .

And then bv the central limit theorem (Five, Section 2)
the score function
style,)
has a (0,) distribution with limiting normal form located
at 0 and scaled. by vn Ii(oo) . The arproximate size

test is then given by

1
¢(y) =1 if 8(y|0e) > 2z v/ 12(0,)

1
=0 < Za/ﬁ' IZ((')O) .

Now consider the hypothesis testing nroblem
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A natural extension of the likelihood ratio test is to use

sup £(y|0) 5
_ 0eRR . Ely]o(y))
L) = TFmTe T T ETe,)

the maximum likelihood relative to the hynothesi!éhdd value

c] and to reject the hvpothesis for large values of L(v) .

0
Fortunately the large sample distribution is readilv available.
By the assumptions and results in Seven, Section S

the approximate size a test of 0, 1is given by

Eyloyy)

p{y} =1 21n TTW > X,
= 0 < Xz

a

where x; is the value exceeded with probabilitvy o bv a
chi-square variable on 1 deqree of freedom.

For the case on an r dimensional varameter the
multivariable results in Seven, Section 5 give a test as
in the vreceding paragraph but based on a chi-souare variable

on p degrees of freedom.

Problems

;scale normal.
70. Continuation of Problem 60, Find the uniformlv

most powerful (UMP) size a test of H, : o > 0, against

H1‘°<°o 5
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71. Continuation of Problem 61:; scale normal.
Find the UMP size o test of H, : 0.5 o, against

H 0 P90, .

72. Continuation of Problem 62; the binomial.
Find the UMP size o test of
{a) H, = p <D, against H:p>p, .
P

(b) H

v

P, against » < p, .

73. Continuation of Problem 63; the poisson.
Find the UMP size o test of

(a) H, : 0 <0 against H1 1 0 >0, .

0

(b) ®H

"

© >0 against H, : 0 < 0, .

0 1

74. Continuation of Problem 64; the exrnonentialg.
Find the UMP size o test of

{fa) H : 0 <0

o < 0, against H :0 >0 .

(b) H, : 0 > Oo against H, : 0 < 0, .

75. Continuation of Problem 65; the uniform (0,0} .
Pind the UMP size a test for the two-sided problem
Hy : 6 = 0, against H, : © # 0, ; there is such a test in

contrast to the preceding vroblems,

76. Let (v,,...,y.) be normal (u,0?) and
consider the composite hypothesis H : o > ¢, against the
simple alternative H,6 : o0 =0, (<0,) , v=1u, . As

hypothesis distribution "closest" to the alternative consider



VIIIb-15

=0, , U=1u, .

(a) Show that the most powerful size o test of (ul,oo)
against (u,,0,) is to reject if X(yi-ul)z < o: Xi-a
where Xi—a is the noint exceeded with nrobability 1 - «
by a chi-souare variable on n degrees of freedom.

(b} Argue that the preceding test has correct size a

for the full hvpothesis H, + 0,> 0, » H e R ,

(c) Conclude that a UMP size o test does not exist for

H:0o>o0, against H : g < Gy

77. Continuation. Let ® > 2 and consider the
composite hynothesis H : o < 0, against the simnle
alternative H, : o = o, {(>04) , uw=u,. By the initial
arquments in Section 5 it suffices to examine tests based on
v (normal (u,02/n))} and the independent E(yi—§)2 (o2
chi-scuare on n-1 deqrees of freedom). As hyrothesis
combination 'closest' to the alternative consider ¢? = oﬁ
and give 1y a normal probability distribution located at
U, and scaled by (of—cz)/n + (This describes a probabilitvy
measure )

(a) Show that the most nowerful test of fk(g) against

2 2
. x? wvhere X
o a

f(glul,of) is to reject if Z(yi—§)2 >0
is the o point of the chi-square distribution on n
degrees of freedom.

(b) Argue that the test is UMP size o« for Hy : o € o,

against H, : 0 >0, . (Compare with Problem 76 (c)).
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78. Let (yl,...,yn} be a sample from some
distribution having a densitv function relative to Lebesque
on R. Let b designate the median of the densitv £ (if
a range of medians take h to be the inf) and consider the
H, : 6 = 60 against H,: 4 > 61 .

(a) Find the most powerful test of H, against the
alternative f, . Method: Write f£,;= plf- + ?,f+ where
£ and f' are the conditional densities given v < ﬁo

and given vy > £o and consider the hvpothesis densitv

(b) Show that the sign test is UlP size o for the original

problem.

79. Let (yl,...,yn) be a samnle from the normal

(1,0%) and consider the problem H : u<0 against H, : u >0 .

For this consider first H, : u < 0 against the simple
H, tu=yuw, (>0) , o=o0, .
(a) Show that the most powerful test of (0,03) against

2 s . .
(ul,o:) with ci > ¢, 1is to reject if

Tv, < k .

1 1 2 H

1
2 2 2
o o, o
(b) Consider a reijection region of the form
c =1y : E(yi-a)2 < ka?} with k < 1 . Consider

P(C|(u,0%)) . For w = 0 arqgue that there is a positive

value of o for which the probabilitv content of C is
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maximum. And for o given argue that P(C|u,0?) decreases
as u decreases (for < 0) .

(¢) For given O, show that o, and 1, can be found

so that C is the likelihood ratio test in (a) . Hence
’show that C is the most powerful test at some size a of
Hy : v < 0 against H, : yay, , o= o, . It follows
that there does not exist a UMP size o of Hy = n <y,
against Hl P u>ou, for some o values. Some further

analysis shows that the range is 0 < a < $ .

8B0. Let Vyr «e+,¥. ) Dbe a samnle from the

1m
normal (0,03) and (v, ,...,yzn) be a sample from the
normal (0,02) . (The case of known means but resnonses
relocated to zero for convenience of calculations)., Find
the form of the most nowerful test of H, : o, = cfdbaqainst

T 0, = Oq v 0, = %, where Oy > O - Show that Ty
can be chosen so that the test is to reject for large values

of
%
Zylj/m

F = _"_7_’31’23' =~

that is, for values of F that exceed the o noint of the
F distribution on m over n degrees of freedom. (Canonical
F in ONE Problem 70, and TWO Problems 36, 49, :}nrindenendent

normal variables Zi , the distribution of
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is respectively canonical F [p = % r O = %] and ordinary

F with m over n degrees of freedom. The probability

element for ordinary F is

m
o] el
n

Conclude that the test: redject if F > Pa , is a UMP size

test for H, : 0, = 0, against H, : o0, > 0, s

81. Continuation. Show that the power function of

the preceding test is given bv

where H designates the distribution function for ordinary

F on m over n degrees of freedom.

82, Let (v, s+ «.-, Y.} Dbe a sample from the

1m
normal (u,oz) and (v, s -+sp y2n) be a sample from the

normal (uz,cﬁ) with o: know.

(a) Find the most powerful size o test of H : u, = u,

against H, : u, = My My = Uy with My > Uy, . As tough

value under H try u, (mua + nub)/(m+n) . The test is
to reject for large values of §1— 52 .
(b) Find the UMP size o test of H, : y, = u, against

Hl P, >, .
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6. UNBIASED TESTS

Some very simple hypothesis testing problems do not
have uniformly most powerful tests. Let (yl,...,yn) be a
sample from the normal (u,0?) and consider the hypothesis
testing problem, H,:u, ,oi against Hy:u # uo,o: {the
variance known case). The most powerful test for u values
greater than u, is to reject for large values of v .
" Corresnondingly the most powerful test for u values less
than u, is to reject for small values of y . There is
no uniformly most powerful test althiough a reasonable test
is to reject for large dawations [y - u,| .

Or consider the hypothesis testing problem,
Hozuo,o2 e rT against H,:p > p,,0% € RY . FPor values of
o < % » even this one-sided problem does not have a
uniformly most powerful test {Problem 79). But certainly a
reasonable test from all our earlier considerations is to reject
for large values of

?“Uo

t = -
sy//ﬁ

Or consider the hypothesis testing vproblem,
Hy:u,,0? € rY against H :yu # p,,0? ¢ ®Y . This differs
from the preceding in having an enlarged alternative and
again there can be no uniformly most rowerful test. Certainlv

a reasonable test is to reject for large values of |[t] .



VIIIbL-20

Some very simple hvoothesis testing vroblems for
the mathematically very nice normal distribution do not have
solutions in terms of the theory we have developed so far.
Our approach now is to restrict attention to tests satisfvina
some attractive property -- unbiasedness in this section and
invariance in the next section -- with the hope that a
uniformly most powerful Ifst mav be found in the restricted
class of nice tests.

Consider a hypothesis testina problem H, against H,
b A test ¢ 4is an unbiased size o <ztest of H, against H,
L4
(i) E(¢(v){6) <a if 0 e H,

> o €
Hl

The first rart of the condition is that ¢ be of size «a.
The second vart -- the essential part of unbiasedness -~ is
that the probability of rejection when rejection should occur
be greater than the probability allowed when rejection should
not occur.

In manv standard problems vower functions are
continuous, even continuously differentiable functions of 0 .
Often then we can relax from the unbiased tests to a larger
class of tests that satisfy a weaker condition involving
equalities. If the best test in the larger class happens
to be in the smaller class of unbiased tests then we have

obtained the best unbiased test.
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(a} Local Unbiasedness

Censider the hypothesis testing problem Hy:@ = 0
against H,:0 # 8, . and suppose that any power function is
continuously differentiable with respect to O .

An unbiased size o test ¢ satisfies

E(¢(y)0,) <
E{¢(y)|0)

A
2

v
Q
o]
S
@
)

By the continuity an equivalent set of conditions is

E(¢(v) o))
E(¢(y)|0)

n
R

v
-4
@

S
@

By the continuous differentiability a weaker set of conditions
is
E(9(y)[9,) = «

d - .
a@-E(‘t(Y)le)I@:@o =0

(ii)

a test ¢ satisfying these conditions is called a Locally

unbiased size o test., See Figure 8.
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>0

Oo
Figure 8: The power function of an unbiased size a
test necessarily has a zero derivative

at the point (0, ,0) .

Now suppose the conditions in Section 2(a) are
fulfilled. We can then differentiate within the integration

sign and a focally unbiased size o test satisfies
I¢(y)f(y|60)dy = a
f¢(y)5(yleo)f(yleo)dy =0,

Our mathematical approach is to look among tests satisfying

(i14) [sn 62, + astvloan e [oay = &
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for one that maximizes

I¢(y)f(y|01)dy .

If such a test satisfies (ii) then it is the most powerful
(at ©,) 1locally unbiased size o test., And if it satisfies
(i) then it is the most powerful (at ©,) unbiased size ¢

test.

Example 3 continued. Let (yl,...,yn) be a sample from
the normal (O,o:) and suppose we seek the most powerful
unbiased size o test for the problem Hy,:0 = 0, against
H,:0 # Go .

The notation becomes somewhat simpler if we relocate
the response relative to ©, and thus in effect examine
the problem H;:0 = 0 against H,:0 # 0 .,

The score function @t © = 0 is

S{y,0) = L

Un/n

»

and

a, + a,s(yf0) = b, + b,y .

Then from the generalized lemma (Problem 69) we obtain the

most powerful (at ©,) test satisfying the condition (iii):

n
[

¢ (y) £lyl0,) > k(b,+b,y)£(y]0,)

=0 < k(b +b,y)£(yl0 )
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or

|
[

¢ (y)

{[9170)n§J -
expy '2 >C, + C,y
o

=0 <C, + C,v, .
But this is an exponential function in comparison with

a linear function:; hence

¢(¥) =1 vy < d or d, <y

il
o
a7}
A
i
A
jo

The following symmetric choice of limits gives an unbiased

size a test for the original H, against H =

d(y) =1 _liL_ > 2
~ Uo/'/ﬁ"" 01/2

a/2

where a standard normal variable exceeds Za/2 with

probability «/; . This test is the most powerful (at 0,)
unbiased size o test of H, : B, = 0 ; it does not depend

on ©, and hence is the UMP unbiased size a test for the
original problem. The test can be presented in the following

alternative form

o |
]
fwv
>

$ly) =1 if

)
2 ®» = 2 X)

where a chi-square variable on one deqree of freedom exceeds
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)szith probability o .

In general now consider the exponential model
£(y]0) = v(0) exp{y(0)t(y)}h(y)

where ¢(0) is a differentiable increasing function of
© . As examples we have the location normal, the scale
normal, the binomial and the poisson. Then for the

hypothesis testing problem

0 # 09,

we obtain the following lemma by the same proof as for the

example.

Lemma. The test

d(y) =1 if tly) <d, or d, < t(y)
=a; tly) = di
=0 d1 < tly) < d,
where d, , d, , a, , a, are chosen to satisfy
E(¢(y)[6,) = a
=0

a%zmmle)le

9
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48 a uniformly most powernful unbiased size o test,

Example 6. Consider the linear model.

v = XB + u

presented in Section 1l{c). Supnose that X consists of
one column vector and that u is a samnle from the normal

2
(0,00); then

And suppose we seek the most powerful unbiased size a test
for the problem H, : B = 0 against H, : 8 # 0 .
(To test the value B, we would use the adjusted response
u - Bof ) . Note that Example 3 and the present Examnle 6
are equivalent in essential details: the variation has
the rotationally symmetric distribution of a samnle from
the normal (0,0?) and the mean is somewhare on the
line L(}) in Example 3 and on the line L(g) in the
present case.

The statistical model is

_n
£(v|B) = (2m0}) 2 exn{-—l? E[yi—Bxi]z } .

20o

Note by Section l(c) and Problem 7 that the sum of squares

in the exponent can be rewritten

(y-BxY (y-Bx) = z[yi—bxi]2 + (Zx;](b~8)2



VIIIb-27

where
IXi¥y

b = b{y) =

- Ix,
i

is the coefficient of the projection bx of y onto the

-

line L(x) ; see Figure 9 . The statistical model

Figure 9. An observed Yy from a distribution centered at

Bx . The squared distance E(yi-B§)2 can be
separated into squared distance (b—B)zzx; in
the direction L(X) and saquared distance

L
E(yi-bxi)2 in the orthogonal comolement L (X) .
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can be written

n 2 2 2

- B Exs: Iy,

£f(y|B8) = (2m0d) 2mexp ~——-Xleexp Bzx;-b expl- ——
- 20§ 20§

and it has the form of the exponential model preceding the
lemma. By the lemma the uniformly most powerful unbgased
test is to reject for extreme values of b = Exivi/zx; .
But under the Kypothesis H, : 8=20, the function b is

. . 2
normally distributed with mean 0 and wvariance og/in .

Hence the UMP unbiased size o test is the symmetric test

6(v) =1 ie bl .,

& 1 o/
o,/ (%)%

=0 < 2

a/2
or equivalently is
5 ;bz
¢(Y) =1 if iy XZ
~ 0_2 - o
0
= 0 < X

where a chi-square variable on one deqree of freedom exceeds

x? with probability a . The second form can be intervpreted
o

as follows: the hypothesis model is vy = 0x + u ; the

~ -~ ~

sum of squares (SS) of dewations from the model is zy; :

the more general model is y = fx + u ; the sum of squares

~ -

(SS) of deviations from the model is
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2 2 2
I(y;-bxy)" = Ty, - b’Ix;

(by Section 1l{c)): the reduction in SS in going from the

special to the more general model is
SN
in b

which as a proportion of o2 is compared with x2 to
o

obtain the test .

(b) Similar tests

Now more generally consider the testing of a composite
hypothesis H, against a composite H, and suppose that

any power function is continuous in 0 , See TI'igqure 10.

g

A

_’
Ao /*
Figure 10. The hypothesis H, : u &n, , o’ ¢ w

against the alternative H, : u > u, , o2 e RY.

An unbiased size & test ¢ has E(¢(y)|0) = «
- - commMon
for all © in w = H; n H, (the set ofﬂboundary

points). g
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An unbiased size a test ¢ satisfies

A
>4

E(¢(y)|®)

® 1in Ho

> o O in Hl

By the continuity, an% such test satisfies the condition
(iv) E{¢(y)]|0) = « ® in w

where w = H, n H, is the set of common limit points in
8 : a test ¢ satisfying (iv) is called a s.imifan size o
test on  w,

The larger class of similar tests has a condition
involving eaqualities rather than inedqualities. Moreover
the equation (iv) says that ¢(y) is an unbiased estimate
of the constant o for the model with parameter space w .
Thus in accord with Section 3 supnose that s(y) is a complete
likelihood statistic (re w }. Then the unbiased estimate

of a based on s is unique; hence
(v) E{¢(v):s|w) = o ,

and ¢ thus has exact size o with respect to the conditional
distribution given s (the w® is included in the expression
{(v) since the conditional diétribution tyrically will devend
on ©6 outside w ) .

Thus an unbiased size o test of H, against H,

is an exact size a test of o conditionally for each value
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of s where s 1is the complete likelihood statistic for
w . If we find the most powerful (0,) test of w
conditionally for each value of s , and if the resulting
test is an unbiased test of H, against H, then it is

the most powerful (0,) unbiased size a test.

Example 1 continued. Let (Vyr eoey vn) he a samnle from
the normal (u,0?) and consider the hynothesis testing
problem

Hu:uiu0 oze]R+

H :uw>u, o?c¢ rt .

Again the notation becomes simpler if we relocate the response
relative to p, and thus in effect examine the case
Uy, = 0 .

Bv the arguments nreceding the example, an unbiased

size a test of H, against H, is a similar size a test of

w: pu=20 0251R+ .

And since S(g) = (Zy;)E is a complete likelihood statistic
(Problem 36), then such a test is an exact size o test (of w )
conditionally given any value for S ; of course the conditional
distribution does not dermend on © as longas © is in w .

We now consider the conditional distribution given

S and find the exact size o test that has maximum nower at
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(ul,of) with u, > 0 . By the lemma in Section 4 the test
has the form
£ly:s|u,,0})

if >k
£(y:s]0,0})

fl
-

¢ (y)

i
o

< k

where £ gives density for suitable coordinates conditionally
given S . By THREE Section 2e the conditional density is

the overall densitv combined with a jacobian and

normalizing constant. Such extra factors will cancel in the

density ratio and the test thus has the form

£lylu,,0})
$(y) if d > k
N £(y|0,0%)

]
'—l

]
<

< k

where k is chosen for each contour of S to obtain exact
size o conditicnally. By Example 3 in Section 4 the test
is to reject for large values of vy or equivalently for
large values of

t = X
sy//ﬁ

-
’

see Figure 11 or the argument at the end of $IX, Section 2b.
The precedina likelihood ratio is in fact monotone in ¢t
and conditionalfy given S the test is unfiormly most
powerful size o for H, : p < 0 against H :u> 0

(lemma in Section 5b).
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densdly . . :
The (with w =0 ) is rotationally

symmetric on R" and thus constant valued on the contours
of 8§ (5% = Zy; = constant is a sphere centered at the
origin). The function ¢t = v/n 3-(/8Y is a function of an

angle as indicated in Fiqure 12. It follows

Figure 12. t//m-1 = vyn v//n-1 s, is the cotangent
of the angle between the % vector and

the vy vector.
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that the conditional distribution of t given § is
independent of S and thus is the same as the marginal
distribution (by THREE, Section 2(b)). Hence the conditional

exact size o test that has maximum power at (u,,0%) is

[I
[

¢ (v) t >

t
a
=0 < t
o
where a t-variable on n~1 degrees of freedom exceeds ta
with probability o . The unbiasedness for the original H,

follows from the conditional unbiasedness noted at the end

of the preceding paragraph. Or it can be checked directly:

"
P (Urdz) = P '@X > t |u:02]
¢ S, — o
L Y
e /ﬁ(g-u) >t - /r;fulu'on
Y Y

which is greater or less than

pl~2__ t = o
x/va-1 — ¢

according as u is greater or less than zero.

_The test ¢ is a most powerful (ul,cf) unbiased
size a test of H, against H, . But the test does not
depend on (ul,of) provided U, > 0 : hence the t test is

UMP unbiased size a for H, against H, .
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And in addition by using the methods in mart (a)

we find that the test

H
[

¢ (y) if Jt] > t

- "af2
=0 t0-/2
is UMP unbiased size a for
H, u=0 o2 ¢ mrY
H, :t u#0 o2 e mt .

Now in general consider the exronential model
r
£lylo,y) = Yfe,?)exp{OT(v) + ;wisi(v)}h(y)

with (0,y) in §, an open set in 12r+1 . Then for the

-

hyrothesis testing problem

9

I A

: 0
O > 0

HO
Hl 0

we have the following lemma.
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Lemma. The test

¢(y) =1 if T(y) > k(s)
= a(s) = k(s)
=0 < k(s)

whenre k(g) and a(§) ane chosen to satisfu
E(¢(y):5]0,) = «a

{8 uniformly most powenful unbiased size o of H, against

H, .

ProQf. The proof parallels that for the example preceding
the lemma. The set w is the 0, section of Q; the
function g(y) is a complete likelihood statistic for

w (Problem 35), Conditionally given s the likelihood

ratio test is to reject for large values of t with critical
value determined by the 0, conditional distribution: the
critical vBlue will typically depend on the contour of s(g) .
Conditionally given s any likelihood ratio is monotone in

t whenever one of the © values to zero: hence conditionallv
given s the test is UMP unbiased size a (by lemma,

Section 5(b)). It follows that the overall test is unbiased
and hence is UMP unbiased size a .

Consider further the exmponential model

r
£(ylo,y) = Y(O,Q)exp{eT(y) + %wisi(y)}h(y)
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with (G,?) in an open set of nzr+1 . Then for the two-
sided problem

H, 0 =0,

H : 0 # Oo

we have the following lemma.

Lemma, The test

¢(y) =1 if T(y) <d,(s) or d,(s) < T(y)
= a; (s) T(v) = d; (s)
=0 d,(s) < T(v) < d,(s)

where d4,(s) , d,(s) , a,(s) , a,(s) ane chosen to satisfu

]
]

E€6(y) :s]0,)

a%ENJ(Y):S]O)IGo

]
j=]

L8 uniformly most powenful unbiased size o fon testing H,

against H, .

Proof. Combine the analysis for the preceding lemma with

that for the lemma in part (a) .

Example 1 continued. Let (v, ...,yn) be a sample from
the normal (u,c?) and then consider the one and two sided

hypothesis relative to u = 0 . We check that the statistical
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model has the exponential form needed for the two lemmas

n
f(y|u,o?) (2ma?) 2-.exp{-...];.. z(y.—u)z}
~ 202 1

n

- ) ~ _

(2n152) iéxp{-gﬂ?}exh{y oo, g2 21 } .
20

The UMP unbiased tests are to reject for large values of

y or |y| conditionally given Ey; . But these are the

t-tests as derived preceding the lemmas.

Example 6 continued. Consider the linear model

y =¥f+u

~

presented in Section l(c¢) . Suprose that xr consists of

r

linearly independent column vectors and that u is a

sample from the normal (0,0:) . And supprose we want the

uniformly most powerful unbiased size a test for the problem

H,

: Br = 0 against H, : Br # 0 (the one-~sided test can

be treated with obvious modifications).

The linear model as given allows the mean to be

any point in the r dimensional space L[Xr) formed from

the

r column vectors; the hypothesis however restricts

the mean to the r-1 dimensional space L(Xr_l} formed

from the first r-1 c¢olumn vectors of Xr 5

Now consider a new set of axes (orthonormal)

whose first r-1 axes lie in L(X__;]} and whose r th
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axis lies then in L(xr] . (See for example, SEVEN, Section 2(b)):
the nev coordinates are obtained by an orthogonal transformation.

The linear model then becomes

Yl = \)1 + ul
Y. = V. + u,
y =
r+l Uel
¥n = Yn *
with the testing problem H, : v, = 0 against H, : vr # 0 .

The statistical model is

n
2y 2 1|5 2 T2
£(ylv) = (210]) “expi-—=|} (v;-vg)* + ] vy

2o§ 1 r+l
n 2
- Iv, v r-1l v.
= (Znoﬁ) 2exn —-% exp —% Ve + z —% Yj exp —_l;zy; .
20o oy 1 Gy 20o

The UMP unbiased test is calculated as a conditional tgst
given Yyr woer Yoo ¢ But by SEVEN, Section 2(a) this

distribution is given by

yr = \)r + ur
Y41 Ursl
Y & u
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where the u's form a samnple of n-r+l from the normal
(0,0:): note that this is a simple version of the example

as given in part (a) . The UMP unbiased size o test is

) 1 i £ (yr+1) .
oly) = T 2 Ray,
=0 < 7
a/2
or ecquivalently is
g2
$ly) =1 if = > x*
ol a
=0 < X

vhere §? = v; and x? 4is the o wvoint of chi-souare on
o
one degree of freedom.
The second form of the test can be interrpreted as

follows: the hypothesis model is

¥ = v +ul

Ypo1 = Ve * U

]
=

v =
In v,

n
and the §S of de¥htions from the fitfed model is § v° ,
r
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~

(note that v =vy,, ..., Vo1 = Y,._1) ¢ the more general

model allows a mean V. for Y, ! the S5 of deﬂhtions
n 2

from the fiffed model is ] vy, : the reduction in SS in

_r+l J .
going from the smecial to the more general model is y;
which as a proportion of o2 is commared with x; to
obtain the test.

The preceding intervretation allows us to record

the test for the problem in its original form at the

beginning of the example: the test is as given above but

with S? now defined by

2 _ [] =1, _ -1
8% =y xr(xrxr} ‘; 4 X'Xr—l(xé—lxr-l] Xp-1

using the formula of Section l{c) .

Example 7. Now consider the linear model

where u is a samvnle from the standard normal. And supnose
that we want the UMP unbiased size o test for H, B = 0
against H Br # 0 .

Consider a new set of axes as described in the

preceding Example 6. The linear model then becomes

i



-

ke e e &
(a1
[}

Ly}
+
—

~5 e e e
=
it

with the testing problem H,

The statistical model is

-n
(27w0?) 2exp -1
202

£(y|v}

and the UMP unbiased test is

of Y conditionally given

2

Yyr cees Yr-l ’ Yi . But

33

distribution is given bv

Ve =
Yr+1 =
¥n =

conditionallv given

n

2
) Vi
r

v

)
1

-3 Eu?
(2102) Zexp]-—it exp{v
20 r
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+ CI‘I.Il

gu
r

Uur+1

against Hl v, F#F 0,

r

to reject for extreme values

Vir eeey Yr_l r I Vs

v

But this,canonical

noo,
i v or given
1

by SEVEN, Section 2(a) this

+ our

our+1

oun

so.
form of
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Example 1 before and after the lemmas and the UMP unbiased

size a test is to reject for large values of |t| where

or for large values of

The test is

d(y) =1 F>F

where Fa is the a point on the tail of the F distribution
on 1 over n-r degrees of freedom.
The components of the F function can be interpreted
directly as in the preceding version of this Examnle 6.
It follows that the UMP unbiased size o test for the original
problem is as given above but with F defined bv
XXy -y (K% )Ty

- . . [ wl _
(v'y - v xr[xrxr) X v)/ (n-r)
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Problems

83. For the exponential model F(y|0) = y(0) exp{ot(vih(y)

show that a locally unbiased size a test of-'Oo satisfies

E(¢(y)[0,) = a, E(t(y)¢ly)]0,) =«E(t(y)]0) .

84. Scale normal. Let (v,, ...,yn) be a sample
from the normal (0,0%) and let S? = sz . Show that the
UMP unbiased size a test of Hy : o? = o: against
H, : 0% # c: is to reject if 52/0§ <d, or d; < 8?/ol
where d, and d, are determined AQ that (d,, 4,) Iis
a l-a probability interval for chi-square on n degrees
of freedom and for chi-square on n+2 degrees of freedom.
Method: Use Problem 83 and use tfn(t) = nfn+2(t) where
fn designate the x? densitvy on n degrees of freedom.

85. Scale exponential. Let (Y1"°"Vn) be a
sample from the exponential f£(y|0) = O—Iexp{—y/o} on
(0,») . Determine the form of the UMP unbiased size o test

of H : 0 = 0, against H, : 0 # 0, . Use the results

from Probklem 84,

86. Binomial. Let (x,, ~es0X,) be a sample
from the bernoulli (p) and let vy = Exi . Show that the

UMP unbiased size a test of H, : p = p, against
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H, : p# p, is‘to reject if y is outside the interval
(4,.4,)] , to accept inside the interval (4,,d,) and to
randomly a,, a, reject at 4,, 4, respectively, where

the interval [d,,d4,] and the randomization at its and

points are determined so as to have 1l-a obprobability according
to the binomial (n, p,) distribution for y and the binomial
{n-1, po) distribution for v-1 . Method: Use Problem 83

and ynn(y|o) = np nn_l(y-l|p) where nn(yln) is the binomial

probability function.

87. Poisson. Let vy be poisson 6. Show that
the UMP unbiased size o test of H, : 0 = 0, against
H, :+ 0# 0, is to reject or accent on the basis of an interval
[dl,dzl with randomization at the end voints (as in Problem 86)
where the interval is determined so as to have 1l-o probabilitv
according to the poisson @, for vy and the poisson 6,

for y-1 .

88. Let {(v,,«...,Y,.) be a samnle from the normal
11 1m
(u,,0%) and (V21 ++42,¥5,) be a samole from the normal

{u,,0?) . Deduce that the UMP unbiased size o test of

2
0

2 _

. against H, : p, Au, , o2 =9

2

Ho=u1=u2r0

is to reject if
- - 5,01 1
(y,-v,) /[ﬁ + H]

0,2

exceeds Xq, The o potnt on The {ail of The chi squave diSleibuTian on 1 deqree o{-(rzeedom.
93, Cenliaualion. Deauce e UMP unbused owne & ot of He: Piepa g7

Q%ﬂ-ln%t H P{‘F}Az )G"LER W'IT: f‘C)eCl L
-4/ (R ¥ )}/ )
:(m e 2 (yay -, )/ (man-2
A {:W':('-‘ ;5“ 'ao\rev- min-2 degrecs of freedow .
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7. INVARIANT TESTS

Consider a sample (y,, ...,yn) from the normal

-~

distribution (u,0?) with (p,0?) in Q@ = R x rY , and )

+
2 e R

suppose we are interested in the problem H, 3 :0<0 , ¢
against H, ::>0 , o2e RT . We have noted in the
preceding section that this problem does not have a uniformlv
most powerful test (a < %) .

In the preceding section we introduced unbiased
tests and obtained the t-test (reject for large values)
-- as the uniformly most powerful test among the unbiased
size o tests, In this section we introduce invariant tests
and again obtain the t test -- now as the uniformly most
powerful test among the invariant size o tests,

This normal-sample nroblem has a variety of symmetries
that can be expressed by groupns of transformations. Perhans

the most relevant transformations are the scale transformations,

the dilations and contractions about the origin:

G = {[0,c] : ¢c ¢ ﬂ%+}
where

[O’C]Z = cv = (ch' . e ey cvn)'

~

(for notation, see THREE, Section 3). If v has the normal
distribution {u,0?) , then the transformed variable

vy = [0,cly has the normal distribution (cu, c?¢?) . Note
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that the new distribution is in Q and anv distribution in
 is rossible depending on the mean and variance of the
original variable. Also note that the new distribution is
in H, or H, according as the original distribution is
in H, or H, . Thus the transformed variable has the
same statistical model and the same hvrothesis testing nroblem.
It is reasonable then to require the test to be invariant
under such transformations, that is ¢(CZ) = ¢(g) for all
c >0 . More informally a test of whether a mean is less or
greater than zero should not depend on what unit the measurements
are expressed in -- feet, inches, centimetres,

Consider the illustration further. By Section 4
it suffices to examine tests that are based on the likeli-
hood statistic which is, say, (v , s(y)) where

- 5.4
sty) = (Sly;-v) Bz,

A transformation [0,c)] carries y into § = ¢cv and
correspondingly carries (v, s(y)) into (c?, cs{y)) : see
Figure 1l. Any invariant function of (v, s(y)) is necessarilv

constant valued on the rays

{lcy,cs) :ce RT)

from the origin (for convenience ignore the nrobability-zero
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o
7

%

n

Figure 11. The transformation [0,c] on R and the
induced transformation on the compatible

function (v, s(g))
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set having s(z) = 0) , and hence is expressible as a

function of the direction of the ray given by say

AT AT
5y s(y)/(n-1)%

At the end of this section we derive the uniformlv most
powerful invariant test for this problem; before that, we

discuss some of the concepts so far in a more general framework.
(a) Invariant models and hypotheses,

Consider a statistical model with response vy in
& and parameter © in

. And let G = {g} be a group or

one-one continuously differentiable transformations of §

into & (in the discrete case it suffices to have one-one

transformations of the countable sample space into itself).

Consider the effect of the grour G on the sample

space &; see Figure 12,

492

From any point v we can form

S’ 2or

Figure 12. The group G partitions the space § into sets Cy .
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the set {qg : g in G} of all image points under the

transformations. Such sets are either identical or

disjoint and hence partition the smace & : see THREE,

Section 3, Let m{y) be a function that indexes these

sets. An invariant function ¢ (¢({gyv) = ¢({y) for all v

and g ) is constant valued on any set of the partition

and hence can be expressed as a function of m(v) . Thus

an invariant function is an arbitrarv function of m(v) and

accordingly m(y) is called the maximal invariant function.
Now suprose that the transformation groun ¢ is

consonant with the model, specificallv

(i) 14§ y has distrnibution O 4in Q , <then qv has a

distnibution that is aiven by the parameter value qo® also

in @ .

The effect of this condition is that the nossible distributions

for y are the same as the possible distributions for gqv .

With several transformation g , h , g°' we easily obtain

the following distributions for variables:

-1
Variable v qy hqgy q qy
Parameter @ g0 hge g 'go
=hqgo = 0 .

It follows that the transformations G = {q} on Q are

closed under vroduct and inverse and hence form a group
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(and in fact the mapping g + 4 preserves nroducts and
inverses, it is a homomorphism).

In a parallel way the group G vpartitions Q;
let &8(0®) be a function that indexes the sets of the
partition. Then an invariant function of 0 is an arbitrarv
function of §(0) and we can call §{(0) the maximal

invariant rarameter. See Figure 13.

i/&
Figure 13. The gqroups G partitions the spmace § into

sets GO
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We can now record a simple lemma.
Lemma. The distribution of m(y) depends only on &(0) .
Proof. From the invariance we have

m{y) = m(gy) = m(y)

where § =qy . If y has dis£ribution ©, then § has
distribution g0 . From the preceding ecuation m has
the same distribution whether derived from 0 or from any
other varameter value g0 with the same value for §&§(0) .
Hence the distribution of m{y) devends onlv on &(0) .

Now supnose that the transformation group is consonant

with the hynothesis testing vroblem, svecifically,

(i11) If © 4is in H, on H, , then coarespondinalu go

is in H, or H, .
In other words the groun leaves the hynothesis testing problem
invariant.

Now with conditions (i) and (ii) we find that both
the model and the hypoth&§is testing problem are the same
whether examined in terms of v or in terms of some
transformed gv . It is reasonable then to restrict our
attention to tests ¢ that give the same result for the

various possible expressions for the response. We thus

consider {nvariant teast functions b,

olay) = oty
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or equivalently #& consider test functions that can be

written

v(m(y))

as a function of the maximal invariant. PFrom the lemma we
note that the power function of an invariant test can be

expressed in terms of the maximal invariant narameter §&(0) ,

{b) 2an illustration.

As an illustration of the invariance arguments
consider further the normal location examrnle discussed

at the beginning of this section:

Example 1 continued. Let (v,, ...,v ) be a sample from
the normal (u,02) and consider the hynothesis testing
problem

H, ’}lhi 0, c%c¢ rY

Hy:nu>0,02emrt

By the discussion at the beginning of this section
it suffices to examine tests based on the likelihood statistic
(y , s(y)) . BAnd then by the discussion of invariance it
is reasonable to restrict our attention to tests based on

the maximal invariant

t = rl"= fﬁ; l

%y slyftn-1)2

(a more convincing route would be to go to the maximal

invariant on R™ and then to the corresnonding likelihood
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function; it leads however to the same test based on t ; see
Problem 93}.

By the discussion at the beginning of this section
and by Figure 12 it follows that the maximal invariant
parameter is &(n,0?) = u/o . Then by the lemma the distri-
bution of t devends only on § (see Problem 66 and be
aware of the slightly different § ) . Let £(t|8) be the
density for t given 3§ .

We now consider the tests based on t and find

the most powerful test of & = 0 against § =246, > 0 :

O EtE]sy)
l’-’(t) =1 if mT(Tr- > k
= 0 < k .

This can be calculated directly but more easily by using
results from the preceding section. Let

§2 = ny? + sz(g) = Zy; , and g{(t:Slu,c?) and h(S|u,a?)
be the conditional density of t given S and the marginal
density of S . By the examnle in Section 6 the likelihood

ratio

g(t:S]u,0?)
g(t:s]0,0?)

with p > 0 is monotone increasing in t and the

denominator

g(t:s]0,0%) = g, (t)
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is independent of S (also of 62 ) and hence is the marginal
density, the ordinary t density. Thus

£(t]5)) Jn g(t:S|u,0?)h(S}|p,0?)ds
€ = g, (t)

h(slu,o?)ds

© g(t:Slu,0?)
J a,{t)

is an average of increasing functions of t and hence is

an increasing function of t . Hence

|
[

y(t) t >t

"
o

< t
o

where the constant ta is the value exceeded with
probability « by the t variable on n-1 degrees of
freedom.

The test ¢ has size a for the enlarged hvpothesis
H, : this was verified in the preceding section. Thus ¢ is
the most powerful (at 4&,) invariant size a i€st of H, .
But the test does not depend on §,; hence it is UMP invariant
for H, against H, .

In a similar manner for the nroblem

H :u=0, og2em?’

+

we can consider the transformatiens
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G = {[0,c] : ¢ # 0} .

The invariant tests are based on

lel = 15

)
Y

and the uniformly most powerful invariant test is to reject

for large values of [t] .

(c} Testing several parameters

Now consider the invariance methods for testing

several parameters at once.
Example 6 continued. Consider the linear model

= +
A RNES-

as examined in the pfeceding section. Sunpose that Xr
consists of r linearly independent column vectors and that
y 1is a sample from the normal (0,c§) . And suopose we

want the uniformly most vrowerful invariant size a test for

the problem Hy : B. = ... B.__,; = 0 against the alternative
that not all of these BR's are zero.

The linear model as given allows the mean to be
any point in the space L(Xr) . The hyvothesis restricts

the mean to r-s dimensional space L[Xr_s] formed from

the first r-s column vectors xr (by appropriate reexpression
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one can test any r-s dimensional subsnace).

Consider a new set of axes (orthonormal) whose
first r-s axes lie in L(Xr_s] and whose next s axes
lie in L(Xr] ; the new coordinates are obtained by orthogonal

transformation. The linear model then becomes

r r r
Ve+l © U+l
¥n % Un
with the testing problem H, : Vp T e =V 41 =0

against the alternative that not all these v's are zero.
As a grouv of transformations consider: arbitrarv

translations of vy,, ..., Y,..g 7 and arbitrary orthogonal

transformations of Vyeegsl? *++r Y. + The maximal invariant

is

r 2

and the likelihood statistic for the maximal invariant is

r

2
! v:; . The most powerful test against anv parameter
r-s+l

point in the alternative is (Problem 95)
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»N

$(y) =1 2> 2
og
=0 <x2
o
% t 2 2 .U
where 87 = ) y. and X is , & point on the tail
r-s+l1 J .

of the chi-square distribution on r-s degrees of freedom.

2
The component f v. of the test function can
r-s+1

be given direct interpretation. The hypothesis specifies

a model with parameters v,;,...,V ; the sum of sguares

r-s
. 2
of dé¥ation from the fifled model is ? ¥: « The general
r-s+l
model has parameters v,,..., V. : the sum of squares of
) n
dQ¥ations from this model general fiifed model is § y; .
r+l

The reduction in sum of squares in going to the more general
r
2
model is the component Y y: . It follows that the
r-s+l
UMP invariant test for the original problem is as given above

but with 8? now defined by

, ) -1 _ . 1 -1
§° = X'%Ixéxr) XY X'Lr—s(xr—sxr-s) Xp-g ¥

using the formulas of Section 1l{c) .

Example 7 continued. ©Now consider the linear model
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where Y 1is a sample from the standard normal. And suppose

~

that we want the UMP invariant size o test for

H, : Br = .. = Br-s+1 = 0 aqgainst the alternative that not

all these R's are zero.

Consider a new set of ax€s as in the preceding.

Example 6., The linear model becomes

Y, = v, + ou,
Y, =V, + oul
Yre1 = U1
Yn T ™
with the testing problem H : v, = ... =V __ ., = 0 .

As a group of transformations consider: arbitrary
translations of Yyr seer Yoog i arbitraryv orthogonal
transformations of v___. i seeerV, t arbitrary orthogonal
transformations of Vg1t *ver Y i an arhitrary scale trans-

formation applied to all the v's . The maximal invariant

is 13 2
Zlyj
G = r-s+l .
n
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or equivalently
r

I y: / (x-s)
res+l J
F = .
n 2
7 v: / (n-r)
r+l J

The most powerful test against any parameter point in the

alternative is (Problem 97)

dy)

[}
|-.J
e
Y
o

where Fo is a point on the tail of the F distribution
on r-s over n-r degrees of freedom,

The components for F can be given general
interpretation and it follows that the UMP invariant size
test for the original problem is as given above but with
F defined by
(x___x. )"'x;_sg / (x-s)

(y'y - g'xr[x;xr)"x;g] / n-r

(d}) Large sample tests

Now consider a statistical model with parameter
space § where Q 1is an open set of RTY ; and supvose
that we have a hypothesis testing problem H, against

H, =0 - H, where H, is an r-s dimensional region, a
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continuously differentiable surface in @ . A natural extension

of the likelihood ratioc is

sup f£(y]0) 2
L{y) = Sfxgﬁy];)) = f(v|(§(y))
eeho = f(YI@(Y))

where §(y) is now the maximum likelihood estimate under
the model as given and @(y) is the maximum likelihood
estimate under the restricted model snecified by the
hypothesis. A reasonable test then is to reject for large
value of L(v) . Fortunately the large sample distribution
of L(y) 1is available.

Let (y,: «ses yn) be a samnle from a statistical
model satisfying the assumptions in Seven, Section 5. Then
for large samples the (90) distribution for the likelihood

function (relative to the true value ©,) is given by

15(y|0) = -1(8-6)* 1(0.)(5-6) + 45" 3
ng = 2v2 2 ~0) oo +2 I(9°)~

where the maximum likelihood estimate S has the multivariate
normal distribution with mean zero and inverse matrix I(0,)
and 0 = 0, + §n—% .

If the information matrix I(Qo) is the identity

matrix then the large sample likelihood becomes

o)
St
"
i
b=
[ty L §

2 E a
- 2 1 2
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and

sup 1 _(ylo)y = 2§ &2 .
oeq M- I

Butthiod da 1likelil 3. Ll the—ieedd] 3
in _Exampie—e—imrpart—t{c) .

Now consider the hypothesis H, and suppose that

9o is in H . For simplicity of notation suppose that

& =0

the surface H, at 0O, corresmonds to 6, __ .4 = ... = 6,

Then the likelihood function along the surface H, becomes

Y—-s

.L r-s ~ 2 .l. - a2
Ltyloy = -3 ] (8,-8% + 1 | &,
1 1
and
W | N N ]:'ESA2 N r-z-s a2
sup v|0) = i, = 8. .
OeH, nos S SR S

(0f course the maximum likelihood estimates agree for the
first r-s coordinates).

Hence the generalized log-likelihood ratio is

1n L(g)

sup 1 (v[0) - suo 1 (y|O)
Q ~ H, -

S 2

i

1
3>

r-s+l
Under the hypothesis H, , 21n L(y) has a chi-sauare
distribution on r-s degrees of freedom,
By using the results from Example 6 it follows

The
thatkUMP invariant size o test based on the large sample
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likelihood is to reject if 21n L(X) exceeds the a point
in the tail of the chi-square distribution on r-s degrees
of freedom.

This result does not depend on the information
matrix being the identity matrix as assumed earlier. The
standard multivariate normal becomes the general multivariate
by a linear change of coordinates; and conversely ag
appropriate linear transformation changes the general
multivariate normal to the standard multivariate normal
(One: Problem 88 and Seven, Section 1l). A linear change
of coordinates about 9y does not change L(Y) but it can

be chosen to change 1I(0,) to the identity.

Problems.

90. Let (yll, 5000 ylm) be a sample from the
normal (ul,of) » and (¥, , «..,¥,,}) be a sample from the
normal (uz,oi) . Pind the UMP invariant size o test of

¢, = 0, against H, : ¢ > o, . Compare with Problem 80.

91. Let ({y, ,....¥,,) be a sample from the
normal (u,,0%) , and Yy, ..., Y,,) be a sample from the

normal (uz,cz) . Show that the UMP invariant size o test

of H, : u, =u, , g2 = oﬁ against H, : w, #1u, , o2 = Gg

is to reject if

n"rl—'{rz)z/[% + -};]

0.2
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exceeds ¥2 the a vpoint of the tail of the chi-square
a

distribution on 1 degree of freedom.

92, (Continuation). Show that the UMP invariant
size o test of H, : u, = u, against H, : M, # u, is to

reject if
= = 2,1 1
(Yl Yz) /[i.'n‘ + =

(z(yli'{"i)2 * x(sz‘§2)2]/(m+n-2)

exceeds the o point on the tail of the F distribution

on 1 over m+n-2 degrees of freedom.

n

93, Let £(v]o) with y in TR and 0 in

Q@ be a statistical model that represents nrobability density.
Let G be a qroup of continuously differentiable transformations
satisfying the assumption (i) .

(a} Show that f£(gy|g0)J(g:v)dy = £(y]0)dy where

J(g:y) = |d3gv/3y| . Hence deduce that

-1

L{gy|+) = L(via ) .

(b) For any function m on Q, let &m be the function

whose value at the voint 0 is m(i_lﬂ) . Hence show that
L(gy|*) = aL(y|*)

and deduce that € = {g} 1is a grour on the set of likelihood

functions.
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94, Noncentral chi-square distribution, Let

W‘, AGOC Wk be independent normal with means 61, 800 0

~

SN

and unit variance. The dsstribution of ¥? = w: + ... + W

is called the noncentral chi-square distribution on k

2
degrees of freedom and with noncentralitv §2 = ZGi .

(a) Let A be an orthogonal transformation with first row
vector in the direction (61, ceay 6k) and let y = Aw
2

(see SEVEN, Section 2). Deduce that x? = v,

2
+ e & +Yk
where the vy,, ..., Y, are indevendent normal with means
{(§, 0, ..., 0) and unit variance.

2
{b) Show that the probabilitv differential for v, is

. .
_8%Y} (8%2/2)) o2 2
ko e} 5B ey oD ey

where fj is the chi~souare density on j deqgrees of freedom;

compare with Problem 6€5.

(c) Deduce that the probability differential for x2 is

T 52} (s2/2))
5 exp{-Gr} 4P

95, {Continuation). Consider Example 6 in part (b).
(a) Show that the general distribution of Sz/oﬁ is noncentral

chi-square on r-s degrees of freedom with noncentrality
r
2
parameter 82 = ] v. .
r-s+1 7
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(b) Show that the most powerful test of ¢ = 0 against

§ = 8§, is to reject for large values of S¥/c2 .

96. The noncentral F distribution (continuation
of Problem %4), Let G = xf/xi be the aquotient of indénendent
variables where xf is noncentral chi-square on £, degrees
of freedom and x: is ordinary chi-scuare on f2 degrees

of freedom. Show that the probability differential for G is

had 52} 52/2}j
) exp{— L8 e, . . (6)aG
550 - 1T £,42] £,
where £ is the canonical F density (n=4/2, q=k/2)

.k
in ONE, Problem 70. Compare with Problem 80.

97. Consider Exampnle 7 in Part {(b). Show that

the UMP test based on G is to reject for large values of G .
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8. CONFIDENCE REGIONS

Confidence intervals have been obtained for a
variety of nroblems in Chapters SIX and SEVEN. As an
illustration consider again a samole (y,, ..., yn) from
the normal distribution with (u,0?) in 0 = R x 12+ .

The quantity

1-_=....Y..—.3:}__.
S n
y/

has a t-distribution on n-1 deqgrees of freedom as
obtained from the (u,0?) distribution on r" : let
[—ta/2 ’ ta/z] be the central interval containing l-a

probability. Then

Pl-t < XM
l 0‘/2 Sy/

< s = -
ta/2|u,o ] l-a

B

or equivalently

S S
a y 2
P[y t /4 H <y + t /2 lv ,o ] 1l-a

:.‘3|1<

Hence the probability is 1l-a that the interval v ¢ tm/2 L
/n

will bracket the true u in any application; thus the interval
is a l-a confidence interval fon u

We can view the relationship

}<|

<& -u

“tas2 5/ < Yoy,




VIIIb-68

as defining the acceptance region

- o y-u
A(n) {Z : ta/z‘ sy/lﬁ < tu/z}

of a size a test for a hypothesized value u; the

corresponding critical region is

c{u) = {y s §_u > t } .
~ sy//ﬁ — To/2

Then for any particular response y ve see that the
interval (y - t, sy//ﬁ , ¥ + t, sy//ﬁ ) consists of those
parameter values u that are acceptable by the test regions
just described. This connection with hypothesis testing

holds generally.

(a) Derivation of confidence regions

Consider a statistical model with resronse y in
a sample space S and with parameter © in a parameter
space £ . For any hypothesis H, : 0 = 0, let C(e*) be
the critical region for a test of size a and let A(0,) bhe

the corresponding acceptance region; then

P(C(0)]0) < a for all © in @ ,

P(A(0)|0) >ka for all 0 in Q .

This can be presented as in Figure 14, The @-distribution for



Ih~r1
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S c(e)

Bly)

A(8) //(.f_-a)

V

Figure 14.

>4

Y nS
The © distribution for y can be pictured
as a distribution along the 0O-section of
S x9; let C(0) and A(O) be the critical
region and acceptance region for a size o test
for the value © ., The composite acceptance
region A . The y-section of A provides a

l-a confidence region for 0O .
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for y is viewed as a distribution on the O-section of
8 x 9 . The critical region C(0) and the complementary
acceptance region A(9) are presented as sets on this
section; the set A(0) collects at least 1l-a of the
probability on the section.

Now let A be the composite acceptance region

A= {(v,0) : v e A(®)} ,

-

and B(y) be the y-section of A .

B(y) = {06 : (v,0) € A} .

Then the following relations are ecquivalent

v € A(O) ~ (v,0) ¢ A+ 0 ¢ B(Y) .

Hence
P(A(0)|0) = P(0 e B(y)|®) > l~a .

Thus the probabilitv is at least 1l-o that the random region
B(y) will contain the true 0 in any application, and

accordingly B(y) is a l-a confidence region for 0 :

D A function B(y) from the points of & to the subsets

0f Q 4a a l-a confidence region for © L4

P(6 ¢ B(v}|0) > l-o

for all © in 0 .
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In an application we can think of testing each
of the possible 0 wvalues and forming a region of those
that are acceptable. In particular the true value will be
tested and it will be included in the region if it was
acceptable by the test for it. Thus if the tests have size o
the region formed will have probability 1-a of containing
the true parameter value.

A pivotal cquantity provides a convenient method

of constructing a confidence region.

ID A pivotal quantity

t = a(y,0)

48 a function on S x @ that has a fixed distribution
(independent of ©) a4 dendived from the 0 distribution
cn S,

Let T be a set having 1l-a probability according to the

fixed distribution. Then

A(0) = {y : aly,®) e T}

is a 1l-o acceptance region for testing the value 0, and

B(y) = {0 : a{y,9) ¢ T}

is a 1-a confidence region for the parameter 0 . Note
that the indicator function for the set A in Figqure 14
is a pivotal quantity under certain circumstances (if the

inequalities are in fact equalities)., Towards obtaining
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a reasonable confidence interval it is natural to choose a
pivotal quantity that is a function of the likelihood statistic,
Note that any 1l-a confidence region B(y)} in

a converse way determines an acceptance region
A(0) = {y : 0 € B(y)}
for a size o test of the value 9.

(b) Power of a confidence region.
Consider a 1l-a confidence region B(y) that

has been derived from a family of size a tests. Let

Pos () = P(C(O*) |0)

be the power function of the test for the hvrnothesis

H, : © = 0, . Then the power

Po« () = P(S - A(0%)[0)

P{6* ¢ B(y)|0)

is the probability that the confidence region does not
contain ©O* when the true value is ©. Thus the power
function of a test becomes the probabilitv that the
confidence region does not cover a value ©0* , For all

® wvalues save 0* this is the probability of not covering
a wrong value. For certain exceptance problems a UMP 1l-q

confidence region mav be found; see Problem 75.
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(c}) Unbiased confidence regions

A confidence region at level 1l-a has the
property that the probability of not covering the true
value is at most «a. The interpretation of power in

the preceding subsection shows that:

D A 1l-a confidence region is unbiased 4i{

P(O* € B(y)[O) > a , O # 0 ;

Thus unbiasedness means that the probability of not covering

wrong values is at least a .

Example 3 continued. Let v,» ...,yn) be a sample from

the normal (u,02) . Then by Section 6

Y £32,,, 0//Mm

unbiased
isa 1l-a aconfidence region for 6,
(d) Invariant confidence regions

The extension of invariance to confidence
regions is slightly more complicated than the preceding
extension of unbiased.

Let G(9,) be a group of transformations on
the sample space & which is invariant for testing

Hy : © = 0, against H, : 0 # 0, ; then
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for all g in G(0,) . And let G be the smallest group
of transformations that includes all the transformations
in the various G(0,) 's . And let G be the corresponding

group on the parameter space . Then

ID The confidence region B(y) 48 invariant nefative Zo
G if

B(gy) = gB(v)

fon all v 4in S8 and g 4in G.

Note the interpretation of this definition., A transformation
g changes a 0 distribution for y to a g0 distribution
for gv . If a response value v suggests the parameter
values in B{y) , then it is reasonable that the response

value gy should suggest the parameter values in

gB(y) = {g0 : 0 in B(V)} .

A family of invariant tests need not produce an

invariant confidence region. But

Lemma. An invariant confidence rnegion B(y) produces a
family of Anvarniant tests.
Proof. Let g be an element o‘ G{e,) : thus go, = 0, .

Then the invariance of B(y) gives the equivalence

0* in B(y) <« 0% in B(qgy) .
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But this means

Yy in A(0%*) <> gy ¢ A(0O*)

and hence that A(0*) is the acceptance region of a test
invariant under G(0,) .

From the lemma it follows that if a family of
UMP invariant tests produces an invariant confidence region

then the confidence region is UMP invariant.

Example 3 continued. Let {v,, ...,vn) be a sample from

the normal (u,0?) . Then by Section 7

y * Za 00//r—1

is the uniformly most powerful invariant 1l-o confidence

region; this is relative to the group

G = {[a,C]l: ae R, C= 21}

of location-reversing transformations and the invariance

is easily checked.

(e} Confidence regions for comnonent parameters

Consider a statistical model with resvonse vy
in a sample snmace & and with parameter 0 in a parameter
space { and suprose that we are interested in a derived
parameter &6(0) with values in A . For anv hyoothesis

Hy : 8(0) = §, 1let C(5,) be a critical region for a
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test of size o and let A(§,) be the corresponding

acceptance region. Then

P(C(5(0))|0) < a for all © in @ ,
P(A(G(G)}l@) >ra for all © in § .

Now let
B{y) = {§ : v e §(0)} .

Then
y € A(S) « § & B{y)
and it follows that

P(5(0) € B(Y)]0) > 1-a

for all ©® in & . The internretation of power, unbiasedness,

and invariance carries over in a straightforward manner.

Edample 1 continued. Let (y,, ..., yn) be a sample from
the normal (u,0?) in TR x nz+ . Then by Section 6 and 7
S
vit, L
/n
is the 1l-a confidence interval that is UMP unbiased and

UMP invariant.

(£) The binomial case.
Consider a sample (xl, 500 xn) from the

Bernoulli distribution with » in [0,1} . A size o
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test for the value p can be formed by finding an acceptance

interval A(p) = (a,(p) , a,{(p)) such that

az(p)
) [“] p¥ (1-p)77Y > 1-a
y=a, (p) Y

Note that such a test is based on the likelihood statistic
y = Exi . Typically we will exclude un to a/2 of the
probability on each tail of the distribution. To obtain
unbiasedness we need to use a randomized test, and hence
some sort of graduated or randomized confidence interval.
For confidence level 1-a = 95% and for various samvles
?:?, the spectrum of acceptance regions is plotted in
Figqure 15 (in terms of the apparent probability ﬁ = v/n) .
A 95% confidence region is then obtained from the
appropriate vertical section: find the observed 6 on
the horizontal scale and obtain the range of acceptable

p values as the interval section between the curves labelled

with the sample size.
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10 —

fl 09

08

0.7

06

05

04

03

[V X/
0.2 //

01

Figure 19, 95% confidence intervals for p when

n =10, 15, 20, 30, 50, 100, 250, 1000.

Problems

98. A sample of 5 was obtained from a response known
to be normally distributed: 12,7, 13.3, 12.9, 13.0, 13.1 on
the assumption that o = 0,06, determine the UMP unbiased

95% confidence interval for u .
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99. (Continuation). With no information concerning

T determine the UMP unbiased 95% confidence interval for u .

100. Two responses are known to be normally

distributed with common variance. A sample of 5 from the

2

first response gave y, = .275 s, = .00045 , and a

sample of 6 from the second response gave y, = ,295 ,

s? = ,00039 . Find UMP invariant 95% confidence interval

101. (Continua;ion). Find a central 95% confidence

interval for the common variance o?. Use 234% on each tail:

the adjustment to obtain unbiased is rarely pursued.

102, 1f sf is an unbiased estimate of U}

(chi-square type with d4f = f, ) and si is an independent

unbiased estimate of 0:

(chi-square type with A4f = £,) ,
show that 2
5,
-1
FZ%% (flrfz) ' '—;FZ%% (fzrf‘) ]

3
2

[

p———
(.':Im
NN

is a 95% confidence interval for Uf/oz where Fa(fl,fz)

A
is theﬁnoint on the tail of the F distribution on fl

over f, degrees of freedom.
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103, (Continuation of Problem 9 assuming normal
error and Example 7). Show that the UMP unbiased 95%
confidence interval for g8 is

g

B+t E
(Z{x;-x)?)?

24s

where s; = Ily; - o - éxi)z/(n—z) .
104, (continuation). An investigater may be

interested in the wvalue of x that has mean response equal

to vy, ; this value of x 1is a parameter vy that can

be expressed in terms of o and B : y = (x,-a)/B . Find

a 95% confidence interval for this parameter; use the

pivotal quantity
a"'éY-Yo
C(Y)sE

where C2?(y)o? 4is the variance of & + By . Note: the

bounds for the interval are roots of a quadratic eauation.

105. Let (v,, ..., yn) be a sample from the
normal distribution (u,0?) . Determine the form of the

90% confidence region determined from
P(Z(y.-1)2/0? < yip,) = 908
i = X108

where X;O% is the 10% point on the tail of the chi-square

distribution on n degrees of freedom.
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Some estimation methods.

106. The methods of moments. Consider a statistical
model f(yl@l,..., Or) for a response on r] : let

U, {0,, ooy er) ;M (91, Q00 Or) r ««« be the first,

2
second, ... moments of y . Now consider a sample

(yl, coor yn) and let m, (y) , m,(v) , ... be the first
second, ... moments of the sample (mr = yi /n} . The
method of moments for estimating the parameters is to find

OF , ..., O; so th?;*thixgirst r (tyvically)model moments
/42 fs"° )

h?upxef, S50 O; ), ... are equal to the corresmonding

A'
sample moments. For a sample (Vir ceay yn) from the
normal (u,0?}) find the method-of-moments estimates of

uw and o? .

107, Consistency. Let (Vir eous yn) be a sample
from the model £{y|0) . An estimate t vy, ooo, V)
defined for any sample size n is said to be a consistent
estimate of 0O if Pﬁnw t, =0 for all @ . For a sample

from a distribution on IR with finite variance ¢? .

show that s; and

2 _ 1 Ty 2

Q>

are consistent estimates of o?* .
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9. SEQUENTIAL ANALYSIS

In our consideration of estimation and testing
methods we have so far taken the sample size as given.
Certainly for any of the methods we can examine the
properties and characteristics and then choose the sample
size so that the particular properties of interest are
at some desired level. For example in normal sampling
with known variance we could choose the sample size so
that the standard test has size 1% at u = 75 and then
had power 95% at up = 76 ; see Problem 59.

In this section we consider a sequential test of

©y against ©, such that observations are taken one by

0
one until the © to @ likelihood ratio becomes extreme

i 0
-- either above an upper bound suggesting neject or below
a lower bound suggesting accept. The mathematics is very
attractive and there are interesting approximations that
make the method surprisingly accessible. For applications
the method seems particularly appropriate to industrial

acceptance sampling of incoming manufactured items and

developmental screening of new materials, drugs, procedures.

(2a) The sequential test,
Consider a response vy with statistical model
f(y:0) and typically a real parameter © in Q = R.

The wald sequential test is concerned nominally with a
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simple hypothesis H, : 6 = @, against a simple alternative
H, : &= 0, but effectively with the more reasonable

Hy : © < 0, against H, : 0 > 6, where 0, is some
intermediate value. After n observations the test is

based on the likelihood ratio

£(y,|9)) £(y,|0,)

Ln(ng --.-Yn) =-fmooo f—(ﬁ‘re_or

and to
Reject H, if B < Ln
Continue sampling A < Ln < B
Accept H Ln < A

where continue means to take another sample value and
repeat the procedure; see Figure 15. The values A , B
are chosen to give the test the desired properties,
Alternatively the test can be expressed in logarithmic
form with the advantages that changes in fog-likelihood
are additive; then after n observations the test is
based on the log-likelihood

£(y,lo,) £(y,1e,)

ln(}’l, ev ey yn) = lﬁ m"‘ vee T+ 1? W

where

(]
il

Infly[0,) - 1p f(ylo )
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< Reject (N- 1)

1+
Bt d
¥ + ) » A ot T I R e S A e b ot ";}" !”‘
O i =z 3 4 S5 6 1 <%
A%n
. Keec LIN:1)
ﬂnB‘—"—w . \
M. N
é
./
O; IL f ; ::. l.-: A :7 Brre e - B innt v i
N N
Y N :
Figure 15, The likelihood or log-likelihood is calculated

after each response value and sampling continues
as long as it remains in a central range; when
it interests the uvper line the hypothesis is
rejected; when it interests the lower line the

hypothesis is accepted.
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and to
Reject H, if lnB <1/
Continue In A < ln < 1ln B
Accent H 1n < In A .

Iet N be the sample size at which a terminal decision
Reject H, or Accept H, 1is made. N can vary in value
and is a function on the countable product samrle snace

of the problem.

The wald test has the following ontimum pronerty

established by Wald and Worfowitz .

Theorem. Among {ixed and sequential two-decision procedures

having
P(Reject H,|0,) < o P(Accent H,|0,) < B8

and finite E(N|O)) , E(N|0,) the wald sequential test
with ennon probabifities o and B8 minimizes both EleOo)
and E(N[O)) .

Consider the form of the seaduential test for a

simple example.

Example 3 continued. Let vy be a response that is normal
distributed (9,0%) and consider the sequential test of

H, : 6 = 0, against Hx : 0=0, .



£(yle))
1 - 1l - 2 _ - 2
AN o [(v~u,) {y=~u;) ]
0
By-H,  mi-ul
] y —
cﬁ 203
H,"H, ( Hotu,

Thus the test after n observation is

Approximate values for

Reject

Continue

Accept

if
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to
o5ln B Fr Wo+H,
—_— < T, = o
Wty — |4 2
{ J
2 [ 3 2
o,ln A Wo+H, Uoln B
< Tlwv., - <
Hy=H, L‘l 2 =l
Mo+, 02ln A
E Y- - _"-2 .y .
A and B can be obtained bv a

surprisingly simple analysis.

(b)

Approximations for the likelihood bounds

A, B .

The critical step in the proof of the hvpothesis

testing lemma in Section 4 can be used to derive the

following simrle approximations for A

Lemma.

has

B:.,-..]'_-.-...B..

o

and B .

-
r

The wald seauential test with size o and power 1-8
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the exaet values form a Eighlen Likelihood intenval

B8
=5

Proof:

requires an integration over wvarts of R!

Let Bn be the points

the terminal Reject H, :

(

A

(Yer oeer ¥,)

ol

Then

a = P(Reject |0)

and similarly

< A ,

The calculation of the probability

(Yyr oeer ¥)

i-8

B < =27
~_— 0

of nan

W
nlf(yile,)

R,
TE(y10,)

A <

-
-

n
Mty [e,)

<
- gt
Hlf(.‘:’ileu)

e~ 8

n
. I Hlf(yileo)dz

D

r
D

n

n
mEly;ley)
B

-8

}‘?
n=1 o/
r

P(Accept |0,) < A(l-0)

< B

P(Reject |9,)

’Of ]Rzlo- .

that give

k=1’. .. 'n-l
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This calculation uses

P(Reject |0;) + P(Accent |6,) =1

or equivalently

PN = ) =0

see Problem lI1 that the test terminates with probability
one. The approximations can be solved to give the reverse

expressions:

o = LA - 1-7°
B-A g .

Now sumnpose that a test is constructed using the
approximate boundaries given in the lemma and let o' and
B' denote the actual error nrobabilities for the resulting

test. Then the inecualities

B* B8 1-8 1-8'
e ST T ST
give
o ' g
G.'f_-i-—_—g 8 <I"_':a' ’
and the modified inecqualities
B'(1-a) < R{(l-a') a'(l-8) < a(l-B")

when addea give
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a' + B < a+ B .

The use of the approximate boundaries can allow one of the
error probabilities to be slightly larger than targeted.
The main effect of the wider likelihood boundaries is

that the sampling mav continue slightly longer than needed.

{c) Approximate power function

As mentioned earlier the secquential test is
concerned nominally with 0, against 6, but the typical
applications are involved with a parameter that has a
continuous range say { = R . The exact calculation of
the power function can be excessively difficult. Fortunatelv
there is a simple approximation.

For a parameter value ® let h = h{@) be a

power for which
[f(vle,)

h

is a density function (i.e., inteqgrates to 1) . Of course
h = 0 works but usually there is a nonzero value also.
Now consider the sequential test of

_ f£(ylo, P
f(vy|e) against | ¢ 1oy flv|®

using the boundaries Ah , Bh . Note that this test, for

example
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h
o, [Ele) slep)®

A -<_ f‘(_'my . 8 LA ] H‘-Y"n" mu -<- B ]

is equivalent to the original test. The formula at the end

of the oroof of the lemma in section (b) then gives

h
P(Reject ]0) = _ll—ziﬁ .
B"~-A

If h 1is negative a similar analvsis gives the same formula.

The limiting value as h anproaches zero is

-ln A
In B - 1n A *

Examprle 4 continued. Consider a secuential test of 128

vs n, for a bernoulli variable. The equation defining

h = hi(v) is
P yh q,

() e e
3] T,

hence 1-(ql/q°)h
p = R R h#0
(/Py} (o, /ay)

~1ln (ql/ﬁg)

]
a5
i
f=)

In (p,/py) = 1In (aq;/q,)
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For the sequential test with given A and B
the approximate nower function can be graphed against h

using

=
o

1-
P(e) = == :
h*h

sy

Then for the wmarticular problem in this case the bernoulli,
the h values can be indexed bv the corresnmonding parameter

values by the formula as in the preceding paragraph.

(d} The mean sample size.

An aoproxXximation for the mean samnle size E(N|G)
can be derived by using the same‘iﬁck that nroduced the
approximate formulas for the likelihood bounds. For this

we need the wald eaquation

E(Z,+ «o0 + lee) = E(Z]|0)E(N|©)

which holds for independent identically distributed 7}
with E{Z) finite and for any seaquential procedure with

E(N) finite. The left side can be reexnressed:

o0 o0 o0

n
! I E(z,|N=n)P(N=n) } I E(2 |N=n)P(N=n)
n=1 k=1 k=1 n=k

E(zkln > kyp(N>k)

and thus

s

The event N > k is determined bv Lt osee Zk-l
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is independent of Zp - Hence the left side then becomes

E{z) § P{N > k)
k=1 -

]

F{(Z)E(N) ;

using Problem 54 in FOUR.

Now consider the left side E(Z, + ... + 2.]0)
of the wald emuation. At the termination of the samrling,
Z,+ «.. 4+ Iy is 1n B or areater with nrobabilitv
®(0) or is 1In A or less with probability 1-§(0) : it
will exceed the bounds by at most the value of the terminal

Z . Thus we have the approximation

E(Z, + ... %,[0) = 1n B @) + 1n ~ (1-§(0)

The wald ecquation then gives

Sequential Problems

108. Let v be a resvonse that is normallv

distributed (u,,02?) . Describe the secuential test of

2

0, against cf, using the approximate formulas to obtain

the error nrobabilities o = ,05 and B8 = ,05 ,
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119, Let vy be a response with the exmonential
distribution £(y[0) = 0 exp{-0v} for v > 0 . Describe
the sequential test of ©, against 0, using the approximate
formulas to obtain the error nrobabilities a = .05 and

g = .01 .

110. Let v be a rpoisson resnonse with mean 0.
Describe the sequential test of 0, against 01 using
the approximate formula to obtain the error probabilities

a = .01l and B8 = .01 .

111. The seauential test terminates with nrobability
one unless Z = 0 with €@ probability one. Let
d=1InB-1InA . If P(Z #0[0) >0 then
{a) There is an integer r such that P(]ZI + ... + Zr|<d) = n<]

£ _ _k
(b) Hence P[gakgti]-P(|zl+...+zr|<d,...,|z(n_1)r+1+...+znr|<d)—n

(c) The test terminates with probabilitv one.

A two sample problem

112, Let (yl, 500 ¢ ym) be a sample from the
normal (u,0?) and let (wl, 0G0G wn) be a further sample

from the same normal where n depends on the first sample

variance s?. BRn estimate is wanted with variance §2

regardless of o?%. Given sé the estimate a§l + bw of

¥ with a+b = 1 has variance (a?*/m + b?/n) . Choose
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a, b, n so that the estimatedvariance (a?/m + bz/n)s; = §2 ,
(For example choose n > 1 as small as possible so that
s?/(m+n) is just less than §2; then argue that values

of a, b can be found to give equality.

113. Continunation. Prove that

ay + bw -
{a?/m + b2/n)

H
1
H

has a standard normal distribution given s? and hence

that

has a t distrihution on m~1l - degrees of freedom: thus
E(t) = 0 , and Var(t) = (m-1)8%/(m-3) which is slightly

larger than the targeted variance § .

114. Continuation. For m = 10 give an expression
for the minimum second sample size n to attain a 95% confidence

interval for u of prescribed lenqgth 2% .,
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10, TEST OF THE MODEL

In this and in the preceding chapter we have been
considering resvonse models with one, two or several parameters.
In a typical arplication to a stable svstem the model
will have been developed on the basis of carlier experience
with the same system or with similar systems, If the
grounds for the model are not strong then the investigater
mavy want to check the model by seeing if subsecuent
response values are in agreement with it. And even in
cases where the grounds are strong, the investiaater may
want to check the model as a routine precaution. 1In this
section we investigate the chi-scuare tests for a model.
The chi-scquare tests cover abibad range of models and they
have a readily accessible theory. There are many other
tests for models but in general thev are suitable or
accessible only in relatively restricted or simple cases.
The chi-saquare tests have optimum properties as based on
the large samnle form for the statistical model.

In Charter ONE, Section 5 we examined ‘he
Rutherford and Geﬁer data involving 2608 counts on the
number of o nmnarticles in a 7.5 second interval. The
poisson model is a fairly standard model for such

and cn fact (Rafrequency cow® .
freaquency countshfrom radfoactive disintegration are

perhaps the classic example- for the poisson model. We
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compared the observed frequency fi for a sample point
with the expected frequency ey bv calculating a standardized

de#ation

2[/?; - /E; ]}

if the model is correct then such de#ations should relate
in an approximate wav with the standard normal, An overall
test of fit for the model can be obtained by calculating

the sum of squares of the standardized daﬂétions,

x* = 4z(vE] - /&)? = 1460

and comparing it with the chi-souare distribution:; we will
see that the avnronriate degrees of freedom is Lesd
12 -1 -1 =10 where 12 1is the number of cells after
some grouping to avoid too small values for the e; ﬂess
1 for the immosed constraint Zfi = Zei , Less 1 for
fitting the parameter A = 3.87 (which brings the fitted
probabilities closer to the data than the true probabilities
would be). The value can be compared with the 5% value
18.3 and the 1% wvalue 23.2 ., Thus the data are quite
reasonable for the poisson model.

And in Chapter ONE, Section 5 we examined the
Grummel and Dunningham data involving 250 observations on

a continuous response. The normal model with two parameters

was indicated for the particular application. To arply the
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chi-square test to the continuous case it is necessary
to group or form cells. We compared the observed
frequency fi with the expected frequency e by calcula-

ting the standardized d@#¥ation

2(/E] - /&7 )

and comparing it in an aporoximate wav with the standard

normal. The overall test would be obtained by calculating

X? = an(/E] - /67)% =399

and comparing it with the chi-scuare distribution on

10 -1 -2 =7 degrees of freedom: there are 10 cells
after grouping to avoid too small values for the e, s

there is 1 imnosed constraint Zfi = Zei , and there

are 2 filled parameters u,0?2 {vhich bring the fitted
probabilities closer to the data than the true probabilities
would be). The observed value can be compnared with the

5% value 14.1 and the 1% wvalue 18.5 . Thus the

data conform reasonably to the model.

{(a) The chi-saguare test

Now consider generally the problem of testing
a model. In the discrete case of model with parameter
© will prescribe probabilities pi(@) for the various

discrete sample points X; » For a sample of n let fi
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designate the number or frequency of values X5 . By
Chapter TWO, Section 6 the distribution of the freauencies
(f,, ...,fk) is multinomial (n, »,{(0), ..., pk(e))
where 0 is the parameter value of the distribution
being sample.

In the continuous case a model with parameter
@ will prescribe a density f(y|0) on the sample
space S . As part of the chi-square method we supnose
that intervals or éells have been formed on the samnle
space, let pi(e) be the total (0) nrolkability in the
i~th cell. Then for a sample of n let fi designate
the number of response values in the i-th cell. This
reduces the problem to the discrete case and the distri-
bution of the frequencies (f,, ..., fk) is multinomial
{n, p,(0), ..., pk(e)) where 0 1is the narameter value
of the distribution being samnled.

We can derive the large sample distribution
of the frequencies in several ways. By using moment
generating or characteristic functions and the methods
of Chapter FIVE we can show that the distribution approaches
multivariate normal form given the constraint Xfi =n .
Alternatively by using the probabilitv function directly
we will show at the end of this section that the limiting
distribution of

fl-nplte) fk-npk(O)

(nnk(O))}

tl="-""""——"-_rpooo ,t -
(np, (0))2 S
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is that of a sample of k from the standard normal subject
to the condition Etiﬂpiiei =0 , And we will show that

the limiting distribution of

Zl =2(\/ﬁ- vnpli@-f.], « s ey Zk=2(/f]:-vn0kios )

is that of a sample of k from the standard normal subject

to the condition ZIZiniiﬁf = 0 . Then by Chapter FIVE
(Section 2 and Problem ) it follows that
£f.-np, (0)}? (f.-e.)?
2 (
R e =y 2
nni(O) ei

has a limiting chi-sauare distribution on k-1 degrees of

freedom and that

X = 375 = BAUVE] - RO T AV - /)
has a limiting chi-sauare distribution on k-1 deqgrees
of freedom.
The use of the t's and hence Xf leads to
the traditional chi-square test introduced bv Karl
Pearson in 1900. Alternativelv the use of the 2Z's qgives
a somewhat better normal anproximation; it corresnonds to
a single reexpression 2/?; of a freaquency rather than

a reexoression fi/\/ei that derends on the vmarameter

value being examined; and it permits the decomposition of
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a chi-square in correspondence with a succession of
hypothesfs concerning © , We will use the second form of
chi-square

x? = 24(/f; - /e;)?

1

for making tests of a model.

FExample 8. In the breeding of a certain tvre of flower the
of fspring can have a magenta M or red F flower and

can have a green g or red r stigma; the nossibilities
are Mg, Mr, Rg, Rr . A strong theorv 2 specifies that
thegfoccur with relative orobabilities 9, 3, 3, 1 . For
220 offspring the expected frequencies e, = 2201::i under
model A are recorded in the left arrav and the root

expected frequencies in the right array:

g9 r g r

M 123.75 41,25 165 M 11.12 6.42

R 4]1.25 13.75 § 55 R EL92 3.71
165 55 220

The following data were obtained, frecuencies fi in the

left array and root freauencies /fi in the right array:

a r
M 117 31} 148 10.82 5.57
R 55 17 72 7.42 a.12| .

172 48 220



The difference vector based on root frequencies is

- .30 ~ .85

N
(2

™
rin

1.00 .41

[ X] [
s |
wis

The observed value of chi-saquare is
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x2 = 4((-.30)% + (-.85)2 + (1.00)2 + (.41)%)

= 7.92

which can be compared with the chi-saquare distribution on

3 degrees of freedom: the 5% point is 7.81; the 1% point

is 11.3. The observed chi-square gives some moderate

evidence against the hypothesis and suggests that the

9, 3, 3, 1 relative probabilities mav not be applicable.

Example 7. Consider how the chi~sauare test works for the

the simple case of a binomial count y with probability » .

As a multinomial we have frequencies vy ,

and exvected

frequencies np , nq . Corresprondingly we have root
frequencies Vv , vn-y and root exnected freauencies
Yynp , Yng . These can be plotted as in Figure 16 . The

difference vector ( Zy@, ZAFJ can be represented by the

coordinate 2Z/2 oW an axis tangential to the circle.

Note that 2/2 is avrproximately n times the angle

between the two rays from the origin:
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Auimtt b b G saed T VAT A B L4

Figure 16. The root frequencies (v¥¥ , vyn-y) and the root
expected frequencies (vno , Yna ) , The
difference vector (Z¥Q, Z#&) can be represented
by the coordinate 2/2 onhén axis tangential to

the circle.
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7 = 2/H[sin—l/% - sin”'vp ] .

The angufar transformation in the bracket is available
from most statistical tables: it is used for comparing
proportions with probabilities and is treated as a central
normal variable with standard dewAtion 1/2/n" . This is
in agreement with our use of % as a standard normal

variable,

(b) With fitted parameters.

Now suprose that the true cell probabilities
are in a small neighbourhood of the point (p,(0,) , ce e 1P (0,))
and that in this neighbourhood the model (p,(e),...,pk(e))
is a continuously differentiable surface that is aporoximatelv
linear with dimension given by the number of coordinates

for © . For the case of a single coordinate for 0 we

have
2/npiZGT = 2/npile*§ + Gxi
where
1 dpi(e)
/p; (OF O
Hence

[2]"fl - 2\‘1'1'!31‘@*, F = s ay 2/.f-}; - 2Vnpkle*’ )

. (Z 2y Z]{) +5(X1, « s e p X1) .

1’ k
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Thus the standardized d@Wations as taken from a 0, trial
value are conditioned normal variables as in part (a)

but now with a mean than can lie along the vector

(X,7 ooy xk) . Then by Seven (Section 2) and Eight

(Section 6, Example 6}, it follows that the sum of souares o}
dewations from the fitted model will be chi-saquare but now

with one deqree of freedom less. Thus the minimized

x* = 4 (V] - /ap (@))?

has a chi-sauare distribution on k - 1 - 1 = k - 2 degrees
of freedom. 1In general if r indenendent parameter
are fitted the minimized chi-saquare has a limiting chi-
square on k - 1 - r dearees of freedomn.

In nractice it may be easier to obtain fitted
parameter values by maximum likelihood (the noisson
example) or by some largesamnle method equivalent to maximum
likelihood. The distribution for the Z's revresents
the limiting distribution for the multinomial, and the
likelihood function from the 2's is the limiting form for
the likelihood function from the multinomial. Thus the
maximum likelihood estimates can provide reasonable
substitutes for the minimized chi-square values. For the
normal example in Chanrnter ONE there is a possibility of
discrepancies if estimates are based on the samnle mean and

variance before grouring to form cells.
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Example 8 continued. Now suopose that a weaker theory B
BhlloWs probabilities p , q for the occurrence of flower
colours M , R respectively but keeps the independence
between rows and columns and keeps the relative probabilities
3 to 1 for g to r . Thef?oints Mg , M , Rg , Rr

then have probabilities %pl ' P, iq, , ta, . For

the 220 offspring the observed provortions for M and R

are i%% and *ﬂ% . By indevnendence these can be combined
2

with the column probabilities ¢ and { to obtain
fitted cell probabilities. The expected freaquencies under
model B are recorded in the left array and the root

expected freauencies in the right array

111 37 148 10.54 6.08
54 18 72 7.35 4,24 .

165 55 220

The observed frequencies and root freauencies are recorded
again:
117 31 148 10.82 5.57
55 17 72 7.42 4,12 .

172 48 220

The difference vector is
.28 -.51
.07 -.12 R
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The observed chi-square for d@Wations form the fitted

model is

»
Il

4((.28)% + (-,51)2 + (,O07)2 + (-.12)2) .

1.43

(]

which can be compared with the chi-square distribution on
2 degrees of freedom: the 5% point is 6,0: the 1% point is
11.3. The observed value is somewhat smaller than the
mean (2) and is certainly a reasonable value; the data
are in accord with the model.

Consider the difference vector for commaring
the fitted model B frequencies with the expected

frequencies under model A :

The observed x? for this difference is

2 = 4((-.58)% + (~.34)% + (.93)% + (.53)2)

>
il

= 6.39 ,

If we accept theory B then theory A is equivalent to the

hypothesis H,: p, = % . By Section 6, Example 6 we can
test this hypothesis by comparing the observed x2 = 6.4
with the chi-square distribution on 1 degree of freedom:

the 5% point is 3.8, the 1% voint is 6.6, The observed
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value gives moderately strong evidence against the hypothesis,
The details for the two tests are recorded as

follows (degrees of freedom (DF) and sums of squares (SS)):

Source DF ss
Model A after Model B 1l 6.39
D@iations from Model B 2 1.43 .

The d@Mations from Model B are reasonably small d@inq
some grounds for testing Model A given Model B. The details

for the combined test earlier in this section are

Source DF gs

D@Wations from Model A 3 7.92 .

The sum of squares in the first table are an approximate
decomposition of the sum of squares in the secOde. The
slight discrepancy is due to curvature of the 3 dimensional
sud&cég'on which the points lie and to curvature of the

line representing Model B ,

(c) Chi-square tests of independence

The chi-square methods in this section can
provide a test for the statistical independence of two
response variables. For this suppose that the two variables
are discrete or that they have been made discrete by grouping
into cells as with the normal distribution example mentioned

earlier in this section.
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For the first variable let A, ..., Ay
designate the k distinct possibilities and for the second
variable let B/ coes Bz designate the 2 distinct
possibilities. Then any observation on the pair of variables

corresponds to a combination AiBj . Then for n obser-

vations we can record frecuencies fij as in the following

array
Bl L] L - BQ’
A, £y4 o « f1k m,
Ak fkl L » - fkl mk
nl - L L] nl n

Let p,, ..., L designate probabilities for
the first variable (Ip; = 1) and PR p, designate
probabilities for the second variable (En; = 1) . Then
the hypothesis of independence specifies a model with

cell probabilities

H
de =
~a

ij

this model has k-1 free rarameters for the rows and £-1
free parameters for the columns.

The row probabilities can be estimated by row
proportions

m,
8. =
Pi n

e
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and the column probabilities by the column proportions

p.:-—l

Thus the fitted model has expectations nﬁiﬁ. = m.nj/n

recorded in the following array

£
mn m.n
11 i
Al n . [ - n"‘"" mi
m, It m. n
k1 kg
Ak B m,
n n
n' . . . ng n -

The chi-square measure for d@¥ations from the model is

— 2
(fij minj/n)

minj/n
by the pearson formula and is
2 = - 2
X2 42[inj /ﬁinj7n )

by the standardized distance formula. An observed value

would be tested against the chi-square distribution on

k -1-(k-1)-(2-1) = (k-1){2~1l) degrees of freedom,
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Example 8 continued. By the earlier analysis we have no
reason* to doubt Model B. But to illustrate the independence
test consider a weaker Model C that allows probabilities

p,, a; for the flower colour and probabiltties p,, q,

for the stigma colour but specifies indevmendence between

the two categories. The observed poonortions for the rows

172 ~ I8
o220

220 r

e and for the columns are 575

The expected frequencies under Model C are recorded in
the left array and the root expected frequencies in the

right array

115.71 32.29 148 10.76 5,68
56.29 15.71 72 7.50 3.96
172 43 220 .

The observed frequencies and root frequencies are recorded

again
117 31 148 10.82 5.57
55 17 l 72 7.42 4,12
172 48 220 5

The difference vector is
.06 -.11

-.08 .16 .

The observed chi-square for dﬁﬁ%tions from Mcodel C is



n
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8€(.06)2 + (-.11)2 + (-.08)2% + (.1$)2)
.19

which can be compared with the chi-square distribution

as 1 degree of freedom.

If anything, the observed value

looks rather small; the data are in accord with the model.

The data and the fitted freaduencies by Models

C, B, A give the following tabulations of sums of squares

obtained from difference vectors.

Source LF 58
Model A after HNodel B 1l 6.39
(row probabilities)
Model B after Model C 1 1.23
(column probabilities)
Model 1 .19
{independence)

This gives a three way decomposition of the original chi-

square.

(4)

The limiting normality.

The limiting normality of the multinomial can

be derived from the limiting normalitv of the poisson

distribution.

Let

y have a vnoisson distribution (0) and

condider the distribution of
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as 0O approaches infinity. The limiting distribution can
be obtained by using moment generating or characteristic
functions (FIVE, Problem 17). We derive a stronger result
concerning the probability function itself., The voisson

probability at the point y is

o¥e _ de—e
vl T Ty :

1
The transformation v = 0 + t62 gives probability

3
0+t -0

T (0+t0%+1)

at a possible value t , and it gives probability

1
o+te2_-0 )

0 02

———
F(0+tB0Z+1)

in units of the spacing between possible points for the
transformed variable. The limit as © + « can be obtained

by using Sterling's formula

the limit is

and it is uniform over the range of t ., This establishes the

standard normal limiting distribution, but it establishes more --
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that the probability function in proper units approaches
the standard normal density.

Now consider (y,, ..., yk) with the multi-
nomial distribution ({(n; Pyr ceos pk) . This distribution
can be obtained (THREE, Problem 17) as the conditional
distribution of (y,, ..., yk) given Zyi = n where the
y's are taken to be independent poisson variables with
means np,, ..., DP, . Let (t,, ..., tk) be the
corresponding standardized deﬁétions:

Y Py

t‘ = ]
* (npi)g

The sample points for (y,, ..., yn) are the
points on Zyi = n with integer coordinates; they are
uniformly spacegl. The transformation to the t's is linear;
correspondingly the sample points for (t,, ..., tk) are
uniformly spaced on Zti/EI =0 .

Now consider the probabilitv function for
() «ce tk) . Except for the norming constant, this
probability function is the same as the probability function
obtained from the unconditioned distribution of the
independent poisson variables. But that probability
function approaches the density of a sample from the

standard normal. Hence the probability function for

(¢, ++., t,) approaches the It/p, =0 section of the
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normal sample density. Hence its limiting distribution
is that of a sample of k from the standard normal
.subject to the condition Eti/pi =0 .
Now consider the transformation between the +t's
and the 2's :
z =2(/y - /9)
1l i
=2((0 + to? )2 - 0% }
1 -1l.1
= 202{(1 + to 2}2 - 1)

1., -4 .
= 202(3t072 + $(-LHt2e /2t + ... )

1

-1
t + t?0(02} .

Thus on any bounded positive interval +t approaches 2
uniformly as © + @« , Hence the limiting distribution
of (Z2,, ..., Zk) is that of a sample of k from the

standard normal subject to the condition Eti/pi =0 .,

Problems.
115. A die was tossed 1600 times:
Event 1 2 3 4 5 6

Frequency 301 308 340 214 196 241

Test the fit of the model based on symmetry,
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116. One hundred plants were classified according
to two attributes: large L or small ¢ ; white W or

coloured w . The observed frequencies are

W w
L 40 20 60

2 15 25 40

55 45 100

(a) Test the model that svecifies equal probabilities

() in the four cells;

(b) Test the model that specifies equal column probabilities
(}) and independence between the attributes;

(c) Test the model that specifies indevendence allowing
arbitrary row and column probabilities. Record the three

way decomposition of the chi-square under (a) .
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11. WHEN DO THE METHODS WORK?

In this chapter we have examined the common
methods available for deriving statistical procedures
for the ordinary response model. For each of the
methods we are able to determine the mathematical
properties that are instrumental to the success of the
method. 1In this section we summarize these properties,
We then examine some common statistical models appropriate
to applications and determine when the methods are successful

for these models.

(a) The methods.

Local unbiasedness was used in Section 2 to
derive minimum variance unbiased estimates, The success
of the method required the logarithm of the density function

r
1n £(y|0) = ¢(0) + % V(0 ay(y) + bly)

to have a linear construction in which the number of
essential‘pounction was equal to the dimension of the

parameter,

Completeness was used in Section 3 to derive
minimum variance unbiased estimates. In the fixed carrier
case the principle example was the exronential model (as

given in the preceding paragraph) with the number of ¥
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function equal to the dimension of the parameter. 1In the
variable carrier case the principle example involved boundaries
that were monotone functions of the parameters. 1In any case

a general survey shows that the method is essentially
restricted to cases in which the likelihood statistic has

the same dimension as the parameter; note Problem 48.

The likelihood ratio methods for deriving uniformly
most powerful tests require effectively that the likelihood
ratio to be monotone in terms of a real valued function.

As noted in Section 5 this reauires the likelihood statistic
to be one dimensional.

The unbiasedness methods for deriving uniformly
most powerful tests are closely linked to the exponential
model with the number of ¢ functions emial to the dimensional
of the parameter. 1In a larger context thev seem to reaquire
a combination of comnleteness for certain varameters and
monotone likelihood ratio for others. This indicates that
the method is effectively restricted to cases in which the
likelihood statistic has the same dimension as the parameter.

The invariance method for obtaining uniformly
most powerful tests is largely restricted to cases where
the likelihood statistic has the same dimension as the parameter.
And the method operates mainly to isolate component statistics

for treating component parameters.



VIITb-118

In general summary, the methods require at least
that the Likelihood statistic have the dimension of the
parameter and they may require the exponential construction
with the number of ¢ {function equal o the dimension of
the panameten.

Now consider cases in which we have samples from
a distribution. In SEVEN, Section 4 we found that fixed
dimension for the likelihood statistic required an exponential
construction with dimension given by the number of
function§ (the fixed carrier case). The variable carrier
case requires exponential form combined with monotone
boundaries and the dimension is given by the number of y
functions plus the number of boundaries, The case of
independent coordinates seems to be at least as restricted
as the more svecial case of samples.

In summary then, the methods are successful under
sampling when the model {48 exponential cewdtsmiation with
one ¢ function fon one parametern, or two ¢ functions
for two parametens, and so on; and what success there is
decreases with the number of parameters. In the variable

carrier case, a monotone boundary can replace a y function,

(a) The location model

An important and fairly common problem in applications

is concerned with the general level of a resnonse in the

R
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situation where the distribution of the variation has been
identified to reasonable approximation by background
experience. Let g be a density describing the variation
in the response and let © be a parameter designating

the location or general level of the resvonse distribution.

The response model then has the form
£(y|0) = g(y-0)

on IR with parameter & in Q = IR.

Now consider when such a model can be handled
by the methods in this Chapter EIGHT. In the fixed carrier
case the following theorem shows that g can onfy be a
noamal density or the Logarithm of a gamma variable, A
very potent restriction on the methods! These are of course
the examples that are used to illustrate the methods. We

now see that they are effectively the onfy examples,
Theorem. 14 a fLocation model has exponential form

g(y-0) = y(0)exp{Y(8)a(y) th(y)
then g(y) 44 edithen a relocated nescaled standard normal

(v = a + ¢c2)

—i—-exp{—zz/Z}
V2T

on a nefocated rescaled (i) Log gamma (v = a + cw)

P-?p}[ew]p“lexp{~ew}ew .
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Proof. The exponential form shows that the region of positive
density cannot vary with ©0; hence g > 0 , Suppose that

g is differentiable and write £ = &n g: then

(1) 2{y-0) = ¢{0) + P(0)aly) + b(y)

for all y and ©. Note that neither ¢ nor a can be
constant: for otherwise we could rearrange and eliminate
the cross term with the result that the normalizing factor
¥(9) would be independent of 0 thus contradicting the

location form a(y-0) .

The key to the vproof lies in the simple joint

dependence on y and 0 :

3L(Y=0) _ o1iu_py o 92(v=0)
- e T V0 =

This gives

{ii) ' (0) + ¥'(Qa(y) = -Y(0)a’'(y) -~ b'"({y) .

Taking a difference for two values of v gives

¥I(0) = c,¥(0) + 4,

and correspondingly for 06 gives

a'(y) = c,alv) +4d,

substitution back shows that c, = -¢c, =c say, This is a
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common differential equation,

dx _
3 +cx =4,

and we obtain the solutions

aly) = kleCY + d, c# 0
= k,y + 4, c =20
v = k,e % a, c#0
= k,0 + d“ c=20 .

The constants d3 and d“ can be taken eaual to zero; for
otherwise we could separate terms from the cross term in
the expression (i) for #(vy-0) and could then redefine
#(v) and b(0) corresponding to the d, =d, = 0 case.
Consider the c # 0 case. When the expressions

for a(v) and ¢(0) are substituted in (ii) the cross

terms vanish leaving

$'(0) = -b' (V)

[

which has solutions
b(y) = d*y + d5

$(6) = -d-y + d, .

Hence

gly-0) = d(y-0) + k ke {¥™®

which gives the relocated rescaled log gamma.
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Now consider the case ¢ = 0 ., When the

expressions for a(y) and $¥(0) are substituted in (ii)

we obtain
¢'(0) + k k,y = -k k,0 - b'(y) ,
$'(0) + k k0 =K=-(b"fy) + kk,vy) ,
klkz
bly) = -———y? - Ky +4d, ,
Kk, 2
V(0) = =—5— 0% + KO + 4, .
Hence
k,k
12
g(y-0) = -

(y=0)? -K(y-0) + d

which gives the relocated rescaled normal.

Difference equations can replace the differential
ecuations, This gives analogous solutions at the rationals
or at the rationals displaced by a transcendental,Gbntinuitv
of f on any open interval then identifies the separate
solutions?! Continuity on some small interval $€@ms like a

substantial minimum for a statistical model.

In the variable carrier case some similar methods
show that g can only be a relocated rescaled (%) exponential
(exp{~e} on (0,=))} .

Thus the common location model g{(y-0) which is

concerned with the general lével of a response can be handled
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by the standard methods only for three very special variation
forms g : the normal, the exvonential, and the log-gamma,
These are of course the standard examples. Perhans it should

be noted that they are effectively the onlv examples,

{c) The location-scale model.

Another important and common problem in applications
is concerned with the general level of a resonse in the
situation where the form of the variation has been identified
to some reasonable approximation., Let g be a density
describing the standardized variation, let ¢ be a scaling
factor that gives the actual variation and let p be a
parameter designating the general level of the response.

The response model then has the form
=1 ~M
flylu,0) = 5 g[*g—]

on R with parameter (p,0) in Q=R xR .

Now consider when such a model can be handled
by the methods in Chavpter EIGHT. It can be shown that a
two dimensional likelihood statistic is available under
sampling only if the distribution a is relocated rescaled
{t) {a) standard normal, (b) uniform (0,1}, (c) exponential
(exp{~x} on (0,=)) . These are of course the standard

examples; we now see they are effectively the only examples.
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(d) In summary

We have examined two important kinds of statistical
model and found that the response model methods are successful
only for very special distributions for the variation --
the normal, the log gamma and the exponential. Distributions
in practice seem to have more probability in the tails than
the normal, to be more like the t distribution with degrees
of freedom around 6, 7, 8; these models are not amenable

to the standard response model methods.
Problems.

117. A variable carrier model with a one dimensional
likelihood statistigxzvsinqle monotone boundary., For a
locafion model with variable lower boundary this mean
f(y-©) = v(0) c(v-6-a)lh(y) where ¢ is the indicator

function for the vositive axis. Show that h must be negative

exponential.



