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Preface

Statistical inference is concerned with unknowns in scientific investigations
—physical constants, properties, relationships—unknowns whose effects
can be discovered in whole or in part by the manipulation of some variables
and the observation and measurement of others. Statistical inference is the
theory that describes and prescribes the argument from observation and
measurement to conclusion about the unknowns. Envisaged broadly, it
encompasses the scientific method. Interpreted in familiar form, it tends .
to be restricted to observation and design with the basic variables already
chosen and to instances of application that have significant variation beyond
that generated by the manipulated variables.

This book presents a unified theory of statistical inference. It is organized
and developed as an introdictory text on mathematical statistics. It pre-
supposes a familiarity with elementary probability theory (a first course),
with elementary vector analysis, and with multiple differentiation and

-integration (a second course in calculus).

Statistical inference requires a statistical model—a model that describes
the essential aspects of the process or experiment being investigated. Most
processes and experiments contain sources of variation—identifiable sources
that can be described by means of error variables; for example, the error
in the operation of a measuring instrument, the variation in the raw material
to a process, the variation in the interactions within a process, and the
variation due to the randomization component of an experimental design.
In such cases the statistical model must include the appropriate error variable.

In many processes and experiments the observed response value is gener-
ated by a simple kind of transformation of a realized error value. The first
three chapters examine models that have an error variable and the simple
kind of transformation: in Chapter One models for the direct measurement
of a physical quantity; in Chapter Two the general model; and in Chapter
Three a range of models for the indirect measurement of physical quantities,
The analysis and the inference apply equally to any error form and are not
restricted to the traditional normal or Gaussian error distribution.

As a by-product, the first three chapters produce much of the standard
distribution theory for the classical statistical model; the classical model

v



vi Preface

neglects the error variable and describes only the response variable of the
process or experiment. The derivations do not employ the usual moment-
generating functions and convolution formulas but rather an elementary
device based on transformations. The method of derivation is simpler and
applies to any error form, not just the normal.

The middle three chapters examine models that have the error variables
but also quantities that are not in direct correspondence with the simple
kind of transformation. New methods of analysis are obtained, such as the
method of marginal likelihood. And exact solutions are obtained for problems
inaccessible by the traditional methods; for example, data transformations
for the regression model in Chapter Four. ]

As a by-product the middle three chapters produce the standard distri-
bution-theory results of multivariate analysis. Again the results are obtained
by the elementary device based on transformations and are available for
any error form, not just the normal. .

The last three chapters examine inference for the classical statistical
model—for applications in which the error variable cannot be identified.
For a large number of observations the error-variable structure arises in the
accessible model and the methods in the preceding chapters are available.

The book contains material additional to a two-semester course in mathe-
matical statistics. Appropriate sections for deletion on a first reading and
more difficult problems are marked by an asterisk. Answers to selected prob-
lems are recorded in an appendix. A solution booklet is available to attested
instructors from Y. S. Lee and the author, Department of Mathematics,
University of Toronto. g

The material in this book was developed over a ten-year period at the
University of Toronto. The development was furthered by the opportunity
to visit other universities and present and discuss various portions of the
material: Stanford University, 1961-1962, the University of California,
Berkeley, 1963, the University of Copenhagen,.1964, and the University of
Wisconsin, 1965. The preparation of the final versions of the manuscript
was made possible by support from the National Research Council of
Canada.

I value very much the help and advice of friends: Geoffrey S. Watson who

read the preliminary and final manuscripts and gave crucial advice; M.
Safiul Haq and W. Keith Hastings who examined and discussed the prelim-
inary manuscript; M. Masoom Ali, James Bondar, and Leonard Steinberg,
who read the final manuscript in fine detail and broad pattern; Andrew
Kalotay, Hans Levenbach, Leonard Steinberg, and Jim Whitney, who
worked closely on the development of sections in Chapter Two and Four;
Y. S. Lee who carefully checked and solved the problems; Bob Montgomery
who prepared the drawings in perspective; and Iris Martin and Mary
O’Rourke who carefully typed the manuscript. '
DoONALD FRASER
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CHAPTER ONE

Measurement Models

The eighteenth and nineteenth centuries saw the gradual emergence of a new
discipline, a discipline eventually to receive the name statistical inference.
This new discipline arose as part of probability theory, but its problems
were different—both in kind and in purpose. A typical problem of probability
theory concerned gambling games involving randomness, and the purpose
was to derive models and calculate probabilities. A typical problem of
statistical inference concerned measurement error, and the purpose was to
infer the values of the quantities being measured. The purpose, inference,
became the distinguishing feature of statistical inference, while the subject
measurement error, receded from general attention. The neglect of measure-
ment error cannot be attributed to success of the theory in treating the topic.
- Rather it indicates failure, the accumulated theory coming to partial agree-
ment only for very special cases such as with normally distributed error.

- This chapter considers two kinds of problem involving measurement error.
It finds an essential ingredient for a measurement model, an ingredient
effectively absent in the accumulated theory; and with this ingredient in-
cluded it derives the general solution for inference, a solution applicable to
any error form, normal or nonnormal. More general problems involving
indirect measurement are examined in Chapter Three.

THE SIMPLE MEASUREMENT MODEL

1 THE MODEL

Consider an instrument I for measuring a certain kind of physical quantity.
Suppose the operation of I has been investigated; and suppose its error
pattern in repetitions has been found describable as independent realizations
of an error variable e with probability element f(e) de on the real line R!
(see Figure 1). A value of the error variable gives the difference between a
reading of the instrument and a value of the quantity.
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f

fle)

0
Figure 1 The error distribution of an instrument.

Now consider the use of I for a single measurement on a quantity. Let z be
the value of the measurement and 0 be the value of the quantity. The operation
of the instrument and the instance of measurement can then be described by
the model

fe) de,
z=0+e.

The model has two parts: an error distribution f(e) de which describes the
operation of the instrument (with e as a variable) and a structural equation
x = 0 + e in which a realized value e from the error distribution has deter-
mined the relation between the value = of the measurement and the value 6
of the quantity (with e as a constant). This is illustrated schematically in
Figure 2. '

Now consider the use of the instrument for multiple measurements on a
physical quantity. The multiple operation of the instrument in a sequence of

n operations has probability element II f{e;) II de; on Euclidean space R™.

Let (zy, ... ,%,) = X' be the sequence of measurement values and 6 be the
value of the quantity. The operation of the instrument and the n instances of
measurement can then be described by the

Simple Measurement Model

]:[ fle) Ill de,,
z, =0+ ey,
z, =10+ e,.

§2 The Transformations ’ 5

0
i o

||

-—e

|
x

x

Figure 2 The simple measurement model, n = 1.

The model has two parts: an error distribution I1 f(e;) I de, which describes
the multiple operation of the measuring instrument (with ¢’s as variables),
and a structural equation x = 61 + e (in vector notation) in which a realized
vector e from the error distribution has determined the relation between the
known measurement vector X and the unknown value 6 of the quantity (with
e as a constant).

2 THE TRANSFORMATIONS

In the structural equation # = 6 + e a realized error value e is translated
by an amount 6. In the modified equation § = = — e, a teverse error value
—e is translated by an amount . Translations such as these are integral to
the use of the instrument.

Consider notation for translations, notation general enough to.cover the

_rescalings of interest in later sections. Let [a, c] be the affine transformation

(c 52 0) on RY,
[a, clx = a + cx,

or the corresponding affine transformation on R,
[a, c}x = al + cx.
The composition or product of two affine transformations is affine:

[4, Clla, clx = 4 + Ca + Cc,
[4, Clla, c] = [4 + Ca, Cc].

Note that the product depends on the order of the' component transforma-
tions. The identity transformation is affine:

[0, 1][a, c] = [a, c] = [a, c][0, 1].
And the inverse of an affine transformation is affine:

[a’ c]_l = [_—c_la’ c—l],
[—ca, c{a, c] = [0, 1] = [a, c][—ca, c].
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A set of transformations that is closed under the formation of products
and inverses has the algebraic structure of a group:

Definition 1. A set G is a group if (i) for each pair (g4, g2) of elements of
G, there is an element gyg, of G called the product of g, and g,; (ii) for each

triple (g1, g4, g0) of cloments of G, (21g)gs = &1(gaga) (associativity); (i)
there is an element i of G called the identity with the property ig = gi = g for

each element g of G; (iv) for each element g of G there is an element g™
of G with'the property gg™* = g7g = i.

The affine transformations
{la,c]l: —w<a< o, c#0}

form a group, the affine group on R*.
The translations on R! or the corresponding translations on R" have the
form

[a,1]x = a + =, [a, 11x =al + x.
These transformations form the location group on R*:
G={[a 1]: —w <a< ©};
the group properties are
[4,1[a, 1] = [4 + a, 1],
[a, 117t = [—a, 1], i=[0,1]).

The simple measurement model can now be re-expressed by using the trans-
formatlon notatign:

ﬁﬂ@ﬁ@b

x = [0, 1]e.
3 THE ORBITS

~

Consider how the location group G affects Euclidean space R”. The trans-

lations [a, 1] carry a point x into the points al + x (see Figure 3). These
_points form the orbit of x under the location group: )

Gx = {[a,1]: ~w<a< wx=1{ad+x: —o0<a< o}
The orbit that passes through the origin 0 has the special form
GO = {al: —oo < a< w};

it is a one-dimensional linear subspace, the extended 1-vector. The general
orbit Gx can be formed by an x-translation of GO:

Gx = G0 + x = {al + x};

The Orbits 7

x2

Figure 3 An orbit under the location group. -

it is a one-dimensional affine subspace. Clearly, two orbits are either identical

-or disjoint.

The effect of the location group can be examined alternatively by treating
(zy,...,%,) as n numbered points on the real line. A translation [a, 1]
carries %, ..., %, into &,...,&,, where &, = a + ;. The order of the
points on the real line is unchanged; the spacings between the points are

unchanged. See Figure 4. Only the location of the n points is affected by the
translation.

Consider a variable to describe the position of a point x on its orbit.
Definition 2. r(x) is a location variable if
r([a, 1) = [a, 1]r(x)
for all x and a; that is, if

r(al + x) = a + r(x)
for all x and a.
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\ la,1]
—
i
|
! |
(3 r(x) . r(X) = a + r(x) rx)
| |
} . ! :
[n— st ) ——
——if } 1 p, x
dy dp d3 xg x1 x3 T % %3

Figure 4 A translation [a, 1] of three points.

As examples consider Z = X x,[n, max x;, z;, (Max ; + mm :vi?/z, 22, - 2y,
6 max =, —5 min «; (see Figure 4). A location variable is linear in a restricted
sense: linear along any orbit. ) .

A location variable r(x) leads to a reference point d(x) on each orbit, the
point at which the variable takes the value 0:

d(x) = [r(x), 11

= —r(x)1 +x

= (2, — r(x), - . z, — r(x)';
r(@) = r(—r(®1 +x)

= —r(x) + r(x) = 0.

The reference points d(x) index the orbits Gx (see Figures 3 and 4); each
orbit has exactly one reference point. ) )
Each point a1 + d on the orbit through a reference point d has a different
position:
ral + ) =a+r(d) =a

Note that r(x) measures position using the reference point as origin and
the 1-vector as unit. ) ) ) o
The general point x can be reconstructed from its orbit and its position:

x = [r(x), 114(x);
for example, with r(x) = ;:
dx) = (), . - - , dX))
= (0, — Ty, . oo 5 Ty — )

X = [121, 1](0) Ty = Tyy e s Ty xl),'

%
e

§4 Homogeneity 9

Two location variables differ in value by a constant along any orbit;
raal + x) — ry(al + x) = ry(x) — ry(x) = ry(d,(0).
Now consider the simple measurement model:
11/(ed 11 de;,
x = [0, 1]e.
And let r(x) be a location variable. The points x and e are on the same orbit:
Gx =G, 1]e = Ge or d(x)= d(e). '
The positions of the points x and e differ by a translation [0, 1}:
r(x) = [6, 1Ir(e).

The simple measurement model can then be rewritten with a composite

structural equation: _
Hf (e)) H de,,
r(x) = [0, 11r(e), Gx = Ge.
4 HOMOGENEITY
Consider a transformation [a, 1] on the axis of measurement,
6 = [a, 116; -

and view the transformation as providing new coordinates for given points.
See Figure 5. The transformation does not affect the physical problem of
measurement; it affects only the numerical representation of the values
involved.

X = [a, 1lx,

x2.x_ | x3

"

a1}

o
EYS S
@

I T T

R

Figure 5 A change of coordinates [a, 1].
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Consider how the change of coordinates affects the simple measurement

model:
I__[f(ei) H de;,
x = [0, 1]e.

The structural equation can be expressed in terms of the new coordinates:
multiply by [, 1] and simplify using [a, 1][9 1} = [, 1]. The equation
becomes

% =1[0, 1le.
Thus the model as expressed in terms of the new coordinates is

Hf (ez) H dei:
%= 1[0, 1le.
The form of the model is the same as before the change of coordinates. The
physical problem is untouched by a transformation [a, 1]. Reflecting this,
the model has the same form after the transformation as before The 51mp1e
" measurement model is homogeneous under the location group.

The homogeneity can be pictured in terms of the axis of measurement: the
measurement model as viewed from one point on the axis has the same form
as when viewed from any other point on the axis.

5 PROBABILITIES FOR AN UNKNOWN CONSTANT

In -applications of probability theory it is common to make probability
statements concerning unknown constants. Consider brleﬂy the condmons
for such statements.

As an illustration suppose a deck of 52 playing cards is thoroughly
shuffled and two cards are dealt face down on a table. The designations on the
faces of the two cards are fixed; the designations are.unknown constants.
An observer can make probability statements concerning the unknown
constants; for example, .
Pr {2 spades} = %3 - 1% )
Such statements are based on the random process that generated the unknown
constants.

Now suppose two more cards are dealt from the deck face down on the
table, and suppose the ébserver examines these cards and finds the first to be
a spade and the second a nonspade. The observer can then make revised
probability statements concerning the unknown constants; for example,

#8158

bl 4 13,12 1

Pr {2 spades} = 22— = 4§ - 35 - 1
#¥-8

Such statements are based on the random process as conditioned by the ob-
served event.

§6 Reduction 71

Alternatively, suppose the second pair of cards is kept face down' and
passed to a participant in an adjacent room, and suppose the participant
reports the item of information, “There’s a spade here.” The observer might
then make the statement

1z,
Pr {2 spades} = 2231 50 _ 13 .1z 11

if he thought the participant had examined only the first card. Or he might
make the statement

25 150" a9 13,12 .11
Pr {2 spades} = T =313.45. 48
2-8% 57

if he thought the participant had examined both cards and would have re-
ported two spades if there were two spades. The two statements are contra-
dictory.

For this alternative situation an exact probability statement for the value
of Pr {2 spades} cannot be made. The item of information, “There’s a spade
here,” could have been presented for each possible second pair having one or
more spades. For exact probability statements it is necessary to know exactly
those second pairs for which the item of information wouwld have been
presented. Information needs to be in the form of an event, the set of possible
outcomes for which the information would have been presented. The item of
information, *“There’s a spade here,” has the form of a deduction from an
event unknown to the observer. -

The example illustrates sufficient conditions for making probability state-
ments concerning unknown constants: (i) The constants were generated as
realized values from a random process with known probability characteristics.
(i) The only other information concerning the unknown constants has the form
of an event for the random process that generated the constants.

6 REDUCTION

Consider the measurement of a physical quantity. Let z,, ..., z, be the
measurements and 6 the value of thé quantity; and suppose the simple
measurement model is applicable:

T1/(ed TT de.,
r(x) = [0, 1Ir(e),  Gx = Ge.

The error distribution II f(e;) IT de; on R™ describes the operation of the
measuring instrument; it describes the random process that generated the
realized errors ey, . . . , e, in the structural equation. The structural equation
in composite form glves the relation between the known values z,,...,x
and the unknown values 8, ey, . . . , e,.

n
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Xn

1 (1@, 11

x1

x2

Figure 6 The known orbit of e and an adjacent bundle of orbits.

. Suppose there is no other information concerning the unknowns; this can
occur minimally if the measurement process is being examined in isolation to
determine what information it alone supplies about the value 6. Now consider
the information in the structural equation concerning the unknown error
vector e. s ) )

The orbit of e is known: Ge = Gx. Or if x is known only to a certain
accuracy, then the orbit of e is one of a bundle of orbits, as indicated in

Figure 6. The information about the orbit of e is in the form of an event

for the process that generated e, an event based on the partition of R" into
orbits. '

Consider the position of e on its orbit. The position part of the structural
equation can be solved: .
re) = [0, 1T ().
The position of e is described as an unknown translation, g = [6, 113, ‘of
the known position r(x): ’

r(e) = gr(x);

§7 The Reduced Model 13

the error position is not known. If the known position r(x) were different, '

* [a, 1]r(x) for example, then the structural equation would describe r(e) as

r(e) = gla, 1Ir(x) = hr(x),
where h = gla, 11is also an unknown translation (homogeneity of the model).
Different values of the position (x) would provide the same description for
r(e). There is thus no information from the structural equation concerning
the location of e on its orbit. ‘

In Summary. The error distribution describes the random process that
generated the unknown e in the structural equation. The only other informa-
tion concerning the unknown e has the form Ge = Gx, an event for the
random process that generated e. The conditions are fulfilled—exact prob-
ability statements can be made concerning the unknown error €; they are based
on the conditional distribution of the error variable e given the orbit Ge = Gx.

‘7 THE REDUCED MODEL

Consider the derivation of the conditional distribution of the error variable
e given the orbit Ge. On any orbit, two location variables differ in value by a
constant. It suffices to work with a simple choice; take r(e) = e;. The corre-
sponding d-vector has coordinates

dl(e) =€ — 6= 09

dy(e) = ey — ey,

d(e)=¢e, — e.
The required conditional distribution is then the distribution of e, given
S
.The probability element for e is

117 [T dec
The Jacobian determinant of (ey, dy, . . . , d,,) with respect to (e, . . . , €,) is
1 0
-1 1
I -1 0 1 —1:
-1 0 0 1
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hence the probability element for (e, ds, - - - » d,)is
f[ ey + dy) dey ddy - -+ dd,.
The marginal probability element for sy - - -, dy) s
Wdy ..., d)ddy- - dd, =f_21’j[ F(t d)di-ddy- - - ddy
hence the conditional probability element for e; given dy,...,d, s
/e +d) T[T +d) .

H de, . -
h(dZ: LR} dn) f Hf(t + dz) dt
w 1 ]

-gley:d) dey =

— k@ L/ + d) dey.

The denominator in the middle two expressions serves only as a normalizing
constant. )
Let r* = r*(e) be an alternative location variable:

ei=e1+di-_—;r*+d;k.

The conditional probability element can be reexpressed in terms of the new
variable:

@) TLAC + dF) dr.

The distribution has the same form as before; and the normalizing constant
has the same value—but is expressed in terms of the new reference point.

The conditional distribution described in the preceding section has now
been derived. The simple measurement model by its own information content
produces the

Reduced Simple Measurement Model

g(r:ax)) dr,

r(x) =10 +r.
The reduced model has two parts: an error probability distribution g(r:d(x)) dr
on R (with r as a variable) which provides probability statements for the
unknown error position r in the structural equation; and a structural equation

which gives the relation between the known r(x) and the unknowns 6 and
r (with r as a constant).
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g EXAMPLES

As a first example consider the simple measurement model with error
variable normally distributed with mean 0 and variance o7:

I/ (e) TT de; = @maly ™" exp {— P } 11 de,,

x=01+e.

The location variable Z is particularly suited to the case of normal error. The
conditional error distribution of é given d(e) = (e; — ¢,...,¢, — & =4d
is

¢(8) dé = K'(2mo?) ™ exp {— 2-1—2 S+ dy} de
Op

= k" exp {- z—nz é2} dé

0o
= (277 ﬂz’)“% exp {-— —E—é éz} dé.
n 20,
The first step in the simplification uses
SE+d)=nd+23d,+3 d}
= né’ + 3 dj, -

“and incorporates the contribution from d? into the constant k”; the second

step supplies the necessary normaljzing constant for the normal distribution.
The reduced model is thus .

2

0

o
g(e) dé = (2n5) exp {— 2 ég} de,
h

o
z=10+4¢;
this can be expressed equivalently as —
é = 5——% 2,
Z =0 +¢,

where =z designates a standard normal variable. The error distribution for the

location variable € has the interesting property that it does not depend on

the values of the deviations d,; the distribution is the same on each orbit.
Suppose that ¢, = 0.6; and suppose the measurements are '

62.0, 60.5, 60.7, 61.6.
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The simple measurement model is

e, = 0.6z, ey = 0.62,, ey = 0.623, e, = 0.6z,

620 =0+ e,
60.5 = 0 + e,
60.7 = 0 + e, ‘
61.6 =0+ ¢4
and the reduced model is
é = 0.3z,
612 =10+ e.

The probébility distribution describing the unknown & is normal v\{ith mean 0
and standard deviation 0.3. Some probability statements concerning € are

Pr{—03 < &<0.3} =681%,
Pr{—06 < é < 0.6} =954 %.

As a second example consider the simple measurement model with an
error variable that has a Cauchy distribution in standard form; and suppose
there are two measurements, 165.1, 161:1, on the quantity 6:

1 1 1
, = = - de, de,,
Hf(ei)Hdez 7r21+ef1+e§ 1 G€y
165.1 =0 + ey,
1611 =0 + e

The location variable x, is as convenient as any; the corresponding d-vector
is d = (0, —4.0)". The reduced model is

~

1 .

=k de,,

gley) de; 141+ (e — "t 1
165.1 = 0 + e;.

The conditional error distribution is plotted in Figure 7. The constant can
be obtained by numerical integration from the gra}?h itself. Probablhty.
statements concerning the unknown e, can also be derived from the graph;

for example,
P Pr{—1<e <5 = 89.1%

The simple measurement model has been developed with the measurement
process as illustration. The range of applications, however, is much broader.
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Figure 7 The error probability distribution for the Cauchy example.

A typical application has a sequence of observations or measurements on a
response variable. The response variable is based on a process or system
operating under stable conditions. Separate operations of the system are
statistically independent as a consequence of separation in time, or separation
in space, or separation in entity. The internal pattern of variation or error
as it affects the response variable is known from earlier experience, and the
spread of this error pattern is also known (or a more general model in Section
11 is needed). These characteristics of the typical application require a scale
of measurement, and they afso require a unit of measurement; they do not
require an origin or zero point on the measurement scale.

Variation in a response variable can generally be attributed to-a variety

- of sources: variation in the material being processed, variation in the internal

operation of the process, variation due to the randomization ingredient of
experimental design. The combined sources of variation form the internal
error of the system; the composite effect of this error produces the variation
or error that affects the response. The typical application requires that
external conditions of the process be controlled and that sequencing of
observations be randomized against possible external sources of variation.
This procedure can provide the basis on which the internal error of the system
has stability and the composite effect-of this error ‘has known form. The
internal error of the system is the random process referred to. in the develop-
ment of the simple measurement model; and the composite effect of this error
is the error variable described by the model.

In the typical application the medial or general level of the response is the
quantity being investigated or measured. This quantity can have numerical
definition by comparison with standard levels for similar variables. A zero
point on the measurement scale may be chosen for convenience. In a typical
process the general response level depends on the levels of input variables to
the process. For the applications considered here, these input levels are kept
constant and are part of the conditions of the system (more general models
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that describe patterns of dependence
Chapter Three). The general response
conditions of the system; it has an id
the system. The general response leve
ment model. The quantity 0 gives response
e,. The response expr
observations or determinations %y, - - -
measurement model.

on input variables are available in
level is a consequence of the chosen
net from the internal error of
1 is the quantity 8 in the simple measure-
expression to the internal error
the form of response
, x,, the measurements in the simple

9 TESTS OF SIGNIFICANCE

In an application of the simple me
indicate a value 8, for the quantity b
be a preceding investigation on
tion would then be to see wheth

asurement model an outside source may
eing measured. The outside source could
purpose of the applica-
er the value of the quantity is the value in-
dicated by that earlier investigation.

Alternatively, the outside source cou
physical quantities. The theory, perhaps in ¢
of the physical quantities, may prescribe a
measured. The purpose of the application w
quantity being measured has the value 6,
theory is adequate for the particular kind of
on the validity of the theory.

As an illustration consider the first €
reduced model is

a similar quantity; the

1d be a theory linking a variety of
onjunction with values for some
value 6, for the quantity being
ould then be to see whether the
to check thereby whether the
prediction, and to check thereby

xample in the preceding section. The

612 =104 ¢,

where z designates a standar
source has prescribed the value 0,
= 62.4 leads to the value

d normal variable. Suppose that some outside
= 62.4 for the quantity 6. The hypothesis

F=612—624=—12= —4(0.3)

for the error position é. This valu
center of the normal error distrib
farther from the center of the distribution is extremely small:

e for & is —4 standard deviations from the
ution. The probability of a value so far or

Pr |z — 0] > 1.2} = Pr {]z| > 4} = 0.000,064.

s almost inconsistenkt with the error
of the model it suggests strongly

The value —1.2 for error position is thu
probability distribution; in the framework
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that the hypothesis is not true, and in turn that a theory that produced ‘the

hypothesis is not true. An additional sequence of measurements on 6 might
strengthen or reverse the assessment.

Now consider the reduced simple measurement model

g(r)ar,
rx) =0+r,

and let 0, be a value prescribed for 6 by some outside source. The Aypothesis
§ = B, leads to the value

r=—, + r(x)

for the error position r. This value for 7 can be compared with the probability
distribution g(r) dr for error position. A value in a broad central range of the
distribution is a value in accord with the error distribution: the measurements
are in accord or agreement with the hypothesis. A value in the extremes of
the distribution is an unlikely value for the error distribution. Its significance
can be assessed in part, as in the example, by calculating the level of signifi-
cance: the probability of as great or greater departure from the center of the
distribution. Within the framework of the model, an extreme value provides

evidence against the hypothesis, and a value effectively beyond the range of
the distribution effectively denies the hypothesis.

10 GENERAL INFERENCE

A prirpary need for statistical inference is the ability to extract information
concerning an unknown quantity. A model, as it describes a system being
investigated, contains the information about that system. Sometimes outside
sources may also provide information. These two kinds of information
shoula" in general be kept separate, any combining being left to judgment and
expediency on occasions when the information is used. Consider the simple
measurement model and the information it contains concerning the unknown
quantity. - g

Consider first the example at the beginning::;f Section 8. The reduced
model is

g(8) dé = ——~exp {— 52} de,
V2703 2(0.3)2
61.2=10+¢.

The reduced model contains all the information concerning unknown values.
The error probability distribution provides probability statements concerning
the unknown &, and the structural equation links the unknowns é and 0.
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- Bach possible value for & corresponds to a possible value for 6:
6 =0612—¢é

A probability statement concerning é is ipso facto a probability statement
concerning 6. The probability statements concerning & are summarized in
the distribution g(&) d¢; and correspondingly the probability statements
concerning § = 61.2 — ¢ are summarized in the distribution

¢(61.2 — 6) db = ® — 61.2)2} d6,.

———exp { — -
V2703 2(0.3)
the structural distribution for the unknown value of 6. The structural dis—
tribution can be represented alternatively as

0 = 61.2 — 0.3z,
where z is a standard normal variable. Some probability statements are
Pr {60.9 < 6 < 61.5} = 68}%,
Pr {60.6 < 0 < 61.8} = 95} %.

Now, more generally, consider the simple measurement model with
normal error. The reduced model is

i=2 2,
T=20-+eé.
The structural distribution describing the unknown 6 is given by

model is
g(rydr,
r(x) =10 +r.
The error probability distribution provides probability statements concerning

the unknown.r, and the structural equation links the two unknowns 0 and r.
Each possible value for r corresponds to a possible value for 6:

0 = r(x) —r.

The error distribution describing the unknown r is thus equivalent to the
structural distribution ‘
g(r(x) — 6)db

describing the unknown value § of the quantity.
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THE MEASUREMENT MODEL

11 THE MODEL

Consider a system that can be operated under stable conditions. Suppose
that, when operated repetitively under stable conditions, the internal error
mechanisms produce a known error pattern—in a particular response as
measured on a certain scale. And suppose this error pattern in some arbitrary
units has the form of independent realizations of an error variable e with
probability element f(e) de on the real line R

Now consider a particular set of conditions for the system. These con-
ditions determine the characteristics of the response: the spread of the error

‘pattern as given by.a scale factor applied to the error variable (for numerical

expression this requires a unit of measurement); and the general level of
the response as given by a translation of the scaled error (for expression this
needs an origin of measurement). Let (z,, ..., z,) = x’ be a sequence of n
observations on the response, and let ¢ be the unknown scale factor for the
error and w be the unknown general level of the response. The assumptions
then give the

Measurement " Model

IT/(e) I] de. -
¥ = u + oey,
x, = U+ oe,

The model has two parts: an error distribution I1 f(e;) IT de; which describes
the variation in the multiple operation of the system (with ’s as variables);
and a structural equation x = [u, ole (vector notation) in which a realized
vector e from the error distribution has determined the relation between the
known observation x and the unknown system characteristics o and w (with
e as a constant).

The conditions of the systern determine the characteristics ¢ and u; these
characteristics appear as a transformation [u, o] which has a positive scaling
factor o and a relocation u. Such a transformation is an element of the positive
affine group

G=1{la,c]: —w<a<w, 0<c< oo}
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Xp
c
Scale. group
L~ Hy=1{[0, c}:0< ¢ <==)
145, 3]
\3.\5\
[1{‘2].
. :1' Location group
Positive affine group 1, 11 N  Hi=(le1]i-=<a<=)
0 = :—c-o < a< =
¢ ~.A[a’C] 0<C<°°
—————————————— ;-~——-———: — ——— Axis excluded ~———~~——=—=—-3>0
Remainder of affine group }q
[a c]'—w<a<m] Y
"m0
° (L -2}

Figure 8 The affine group with three subgroups labeled. A group element~ {a, c] can ‘be
represented as the point [a, c] or as the transformation carrying i = {0, 1] into the point

[a, c].

x2

The set G is closed under the formation of products and inverses (formulas
for product and inverse in Section 2). Accordingly Gis a group.

A subset of a group that is itself a group using the same multiplication 1s
called a subgroup. The positive affine group is a subgroup of the affine group,
the “positive half” of the affine group. See Figure 8.

Figure 9 The orbit of x under the positive affine group.

Alternatively, the effect of the group can be examined by considering n
numbered points x,, . . . , x, on the real line. A transformation [a, ¢] carries
these points into the » numbered points &, ..., &,, where & = a + c=,.
The order of the points is unchanged, and the relative spacings between the
points are unchanged. Only the location and scaling of the array of points
are changed. See Figure 10. - o

Consider a simple variable to describe the position of a point x on its orbit
(or the location and scaling of n numbered points on the real line). As an

12 THE ORBITS

Consider how the positive affine group G affects Euclidean space R".
The transformations [a, c] carry a point x into the orbit of X:

L Gx={a,cx: —w<a< oo, 0<c< o}
. ={al +cx: —oo<a< o, 0 < c< o}

[a, c]

T

e s

The orbit is a half-plane, the half-plane passing through x bordereq by the
extended 1-vector, but not including the extended 1-vector. See Figure 9
For the special case of a point x on the line through the 1-vector, ”the_ orbit
is that line; this orbit with its special form can be e'xcluded .from ‘R w.lth.vno
essential loss of generality in the sequel. Two orbits are either identical or
disjoint: the orbits form a partition of the space R" (see Problem 23).

X2 X} X3 X4 ‘,’:‘2 ‘51 ;3 x 4
Figure 10 A transformation [a, c] applied to four points.
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exp]pratory choice consider F to measure location, s, to measure scaling, and
[Z, 5,] to measure position;

s,=l: ! Z(;i—‘i)z]%-

n—1

A transformation [a, ¢] carries the point x into the point % = [a, c}x. The
effect on the variables Z, s, is
A Z = a + %,

Sz == CSg
which can be written
[é, s;‘:‘] = [a: C][E?, Sz]'

Thus, the transformation carries x into [a, cJx and correspondingly carries
[, s,] into [a, c][Z, s,]. See Figure 11.

xn

x2

Figure 11 A trénsformation [a, ] and its effect on the variable &, 5zl
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The inverse transformation [%, s.]™ can be used to reduce a general Ifoint '

. x to a standard or reference point on its orbit:

[ s, 'x = (xl -z R S 5)1 = Q(x).

SZ z

The reference point has location d == 0 and scale 54 = 1:
4, s;] = [7, 5,17, 5,] = [0, 1] =i.

The reference points d(x) index the orbits Gx.
The general point x can be reconstructed from its position and its orbit:

x = [z, s, Jd(x).

The variable [z, s,] takes values in the group G. The variable [z, 5.}, however,
is used for position rather than for transformation; accordingly the range of
[Z, 5] is designated G* to distinguish the special use.

Now consider in general a variable to describe position on an orbit.

Definition 3. [b(x), s(x)] is a transformation variable if
[b(la, cIx), s([a, c}¥)] = [a, ][b6(x), s(x)]
for all x, a, ¢; or equivalently if
' b([a, clx) = a + cb(x),
s([a, clx) = cs(x)

for all x, a, c. (c>0).

As examples consider

(max z; + min ;) .
S , max z; — min ; |,
fzwy, 2 — 2],
where x;) designates the ith smallest value of «,, . . . , z,.
A transformation variable [b(x), s(x)] leads to-a reference point on each
orbit, the point at which the variable equals the identity:

d(x) = [b(x), s = (’”_1_5?&’57&’.‘2 . s-(x;J(X))’
(5@, s@] = [b@®), s [b(x), sG] = [0, 1].

The reference points d(x) index the orbits Gx.
The general point x can be reconstructed from position and orbit:

x = [b(x), s(x)]d(x).
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Two transformation variables are simply related: On any orbit they differ
by right multiplication by a group element:
[5y(x), $;()] = [b2(x), s:(¥)][a; c]-

The group‘element in general depends on the orbit; see Problem 24.
Now consider the measurement model

T1f(e) 11 des..
x = [u, cle.
The points x and e are on the same orbit:
Gx = Ge or d(x) = d(e).
The positions of the points x and e differ by a transformation [u, ol:
[, 5] = [, ol[, 5.

The measurement model can then be reexpressed with composite structural

equation:
TI/f(e) IT de,
[Ey S:z:] = [1“7 G] [é; Se], Gx = Ge.

Or, with transformation variable [b(x), s(x)], it can be reexpressed as

Hf(e-z) H de;,
[b(x), s(x)] = [u, ollb(e), s(e)],  Gx = Ge.

13 HOMOGENEITY

. Consider a positive affine transformation [a, ¢] and view the transformation
as providing new coordinates for given points. The transformation rescales
by the factor ¢ and then relocates by the amount a:

F=a+ cx.

~

The observation vector becomes
X = [a, clx.
The scale characteristic ¢ becomes ¢ = co, and the response level u becomes
fi = a + cu; accordingly, the system characteristic [u, ¢] becomes
(@, 51 = [a, c]lu, ol
The transformation does not touch the physical problem being examined;

it affects only the numerical description of the quantities involved.
Consider the effect of the transformation on the model. The structural

equation
x = [u, ole

154
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can be multiplied on the left by [q, c]; it becomes
X = [fi, 6le.
Hf (ei) H dei’
x = [u, dle,
in the original coordinates becomes

Hf(ei) H deia

X = [@, Gle,

Thus the model

in terms of the new coordinates. The physical problem is untouched by the
transformation [a, ¢]; the model conforms and has the same form after the
transformation. The model is homogeneous under the positive affine group.

14 REDUCTION
Consider an application of the measurement model
TI/(e) T1 de,,
[, 551 = [w, 0llé, 5],  Gx = Ge.

The error distribution IT f(e,) IT de, describes the internal error of the system
asit affects the response; it describes the random process that generated the
realized error e in the structural equation. The structural equation gives the

_relation between the known value x and the unknown values g, o, e. .
Now suppose the system is being examined in isolation, with no outside
information concerning the unknowns; and consider the information in the

structural equation concerning the unknowns u, o, e. See Figure 12.
The orbit of e is known: Ge = Gx. And the information about the orbit
is in the form of an event based on the variable Ge for the random process e.
Now consider the position of e on its orbit. The second part of the structural
equation can be solved; it gives

[é’ se] = [lu: O‘]_l[‘i’ sz] = [A!‘C] [:—t: S:c]'

This equation represents the position of e as an unknown transformation
[4, C] applied to [, s,]. If the known position were different, [, s;] =
[a, c][%, s,] for example, then the structural equation would give

[é, 5.1 = [p, o1 [a, c][Z, 5,1 = [4, C][7, s,],

where [4, C] = [u, 6][a, ] is again an unknown transformation (homo-
geneity of the model). Different values for the position would provide the
same description for [, 5,]. There is thus no information from the structural
equation concerning the position of e on its orbit.
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Xn

x2

Figure 12 The known [£, s;]; the unknowns {é, s,l, [{1, d].

" In Summary. The error distribution describes the random process that
generated the unknown e in the structural equation. The only other informa-
tion concerning the unknown e has the form Ge = Gx, an event for 'Fhe
random process that generated e. The conditions are fulfilled for makllj:lg
probability statements concerning unknown -constants—exact proba}nhty ;
statements can be made concerning the unknown error e; they are baséd on
the conditional distribution of the error variable e given the orbit Ge = Gx.

15 THE REDUCED MODEL } ‘

Consider the derivation of the conditional distribution of the error variable
e given the value of the orbit Ge. The standard method }1§cd in S-e.ction 7
would proceed as follows: The two variables ¢, s, c}escmbmg po.smon are
supplemented by n — 2 variables describing the orbit; the.Jacob}an tc? the
new variables is calculated ; the joint density for the new varlables'ls den)/ed ;
the conditional density is obtained by normalizing over the variables é,.5,.
Consider instead a method based on the transformations that generate the -
orbits. This alternative method is easier here, even with the added explanation '
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x2

Figure 13 Anelement V at the reference point d and its images {4, C] V under the group G.

necessary for its introduction; for more complex problems it is simple and
direct.

Consider a neighborhood or element V at the reference point d(x) = d.
And consider the effect of transformations in G on this element. See Figure
13. The transformations [4, C] carry this element point-for-point along
orbits: Position is changed but orbit is not changed.

Consider first the effect of transformations i G as applied to the co-
ordinates of R™. The transformation '

€= [4,Cle
is a diagonal transformation,
& =A+ Ce,
g, =4 + Ce,,
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with Jacobian determinant

de
de
the transformation [4, C] applied to a point e changes Euclidean volume
in R" by the factor C®. The special transformation [é, s,] applied to the
element ¥ at the reference point d changes volume by the factor s7. This
factorcanbe used asa compensating factor to produce an adjusted differential

de;
dm(e) = E;;- s

an adjusted differential that gives the same volume measure to all the images

[4,ClF of V:
TIde, CrTlde; _ TIde

5% Cs, s ,
Note: A probability element such as II f(e,) Il de, is also an . adjusted
differential: the volume II de; of an element at e is adjusted by the factor
I1 f(e,) to give the probability associated with that element. For the invariant
differential 57 I1 de, the volume I de; of an element at e is adjusted by the
factor 57" to give the volume of the corresponding element at the r‘efe'rence
point d(e); the construction thus shows that this adjusted differential is the
unique differential that is invariant under the transformations and agrees with
Euclidean volume at the reference points d (where s, = 1.

Consider the effect of transformations in G as applied to coordinates
describing orbit and position on orbit. The transformations do not aﬁ’fact '
coordinates describing orbit: transformations carry points along .01'rb1ts.
Accordingly, any differential in terms of coordinates describing orbit is an
invarient differential. ’

The transformations affect only position on orbit. The transformation

Z=A+Cé

sy = Cs,

~

is diagonal with Jacobian determinant C?; the transformation [4, C"] chaf)ges

Euclidean area (on G*) by the factor C2. The special transformation [e, s.]

applied to the element ¥ at the identity [0, 1] changes area by the factor s2.

(See Figure 14.) This factor can be used as a compensating factor to produce
an adjusted differential

dé ds,

dulé, s] =~

s )

that gives the same adjusted area to all the images [4, ClV of V. T he con.-

struction shows that this adjusted differential is the unique differential that is
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Se

G*

déds,

dédsy

Figure 14 The volume element ¥ and its images as viewed in terms of coordinates [¢, s,]
in G*.

invariant under the transformations and agrees with Euclidean area at the
identity [0, 1]. .

~ Now consider the two invariant differentials as they apply to the element ¥’
in R™. Let 6(d) be their ratio at the reference point:

dm(e) = D;?ff = 5(d)43_5—;‘lﬁz = 8(d) dule, 5,).

e e

The differentials, however, are unaffected by transformations [4, C]. The
equality then holds generally, as the element ¥ is transformed along orbits;

the ratio 6(d) is a differential that measures V at right angles to the orbit.

This provides the change of variables ffom a volume element in the original

coordinates to a volume element in position coordinates conditional on a
neighborhood of the orbit d(e) = d:

]‘]:;ndei = 6(d) dest:sg .

The probability element for e on R™ is

Hf(ei) H dei = Hf(ei)sg H dez- )
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In terms of the position variable [é, 5,] conditional on a neighborhood of
the orbit d(e) = d, the probability element becomes

deds,

TI/(eds? (@) = TL/(2 s)d)sm= 8(d) de ds,.

The conditional probability element for [é, s,] given d(e) = d is obtained by
normalization: . :

g(é, s,:d) dé ds, = k(@) TT (e, s,}d)se 7t dé ds,.

s

The constant k(d) is the normalizing constant:

k() = f ) f ) TI & + s,d)si " dé ds,.
0 —0

The conditional distribution described in the preceding section has now .
been derived. The measurement model by its own information content pro-
duces the ’

Reduced Measurement Model
g(e, s,:4(x)) dé ds,,

[#, 8, = [, 0lle, 5.}
The model has two parts: an error prabability distribution g€, s,:d) de‘. c.is,,
(with [é, s,] as variable in the upper haif-plane G*) which provides probability
statements for the unknown [¢, 5.} in the structural equation; and a structural
equation which gives the relation between the known [Z, s,] in G* and the
unknowns [, o] in G and (¢, 5.} in G* (with [€,5,] as a c.onstant).. o
Any two position variables on an orbit are related by right multiplication

by a group element; see Problem 24. The conditional probability element for a
general position variable has then the form -

g(b, s:d) db ds = k(@) T f([b, s}d)s"~* db ds,

where d = d(x) = [b(x), s(x)]7x is the reference point on Gx and k(d) is the
normalizing constant.

16 EXAMPLES

As a first example consider the measurement model with standard norma
ecror variable:

T1f(e) T de; = @my ™ exp {—1 3 €} T1 des,
x = [y, dle.
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The transformation variable [¢, s5,] is convenient for the case of normal error.
- The conditional distribution of [¢, s,] given ’

d= (el—-—é e,,-—é)’
s, » 3 s,
2(2, 5,:d) dé ds, = k(@)2m) ™ ?exp {—} 3 (¢ + s,d)*}si > de ds,
= k' exp {—}[né® + (n — 1)s2]}s772 dé ds,.
The simplification in the exponent uses £d, =0, Zd2=n—1 (d=0,
53 = l).

_9 9
g(é, s,:d) déds, = k" exp {_ n_ze.} dé - exp {_ (_"__:_Qfgl(sg)(n—l)nA ds?

2
Y ~2
n ne
= —_—— d'
. (271') exp{ 2] ¢

'I‘((n _1_ 1)/2)(01 ~—2 1)55)(n—1>/2~1 exp {__ (n —~2 1)53} Fu —2 1)53‘

The density factors so that the variables separate; the two factors are of

ﬁ_ormal and chi-square form; the usual normal and chi-square normalizing
constants are introduced.

~ The conditional error distribution has the form: & is normal with mean 0
and variance 1[n; (n — 1)s? is chi-square on n — 1 degrees of freedom; &

" and s, are statistically independent. 1t is of interest that the conditional dis-

tribution of &, s, does not depend on the value of d; the -conditional dis-
tribution of &, s, is thus the same as the marginal distribution of &, s,.
A chi-square density function on f degrees of freedom can be manipulated:

1 Xz} (X2 121 xa A X2
———exp { — =} & do = L {———-)d,
. T(f12) p{ 2 2) 2 T amyrt TR|T
where - :

2 7Tf/ 2
TR

The conditional (or marginal) distribution can then be written

A

¢(@, s,:d) dé ds, = —— exp {— ne 4 J
N 2
An—-l

o e
-(Z—W)T‘W(‘/" - 158)"’2exp{” (n = Ds.

5 }dQ/n—lse.
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The density, as a marginal density, is the original density

exp {—1 3 ¢} = 25771)” exp {—iné® — }(n — Ds?)

b

@mm?
multiplied by the factor

Apa(n — 15y

The factor must give the result of integrating over the (n — 2)-dimensional
region corresponding to a value for the variable

e Nn—1s), v
the original density being constant on this region. The region is in the (n - 1)
dimensional linear subspace corresponding to a value for Jné=32 e,./\/ n,

x2

Figure 15 The invariant differential using coordinates in R" and coordinates in the group. }
The area A,,_; of a unit sphere in the (n — 1)-dimensional subspace Z e, = 0. The‘ vangb'le
V'n & measures distance in R” paraliel to the 1-vector, and Vr — 15, measures distance in
R™ orthogonal to the 1-vector.
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that is, corresponding to a value of e, + - -+ + e,. In this subspace it

 corresponds to a value for (n — 1)s? = X (e; — & The region is a sphere

of radius \/ n— ls,in the (n — 1)-dimensional linear subspace. See Figure
15. Thus the factor gives the area of a sphere of radius \/ n—1ls,inn—1
dimensions, and A4,_, gives the area of a unit sphere in n — 1 dimensions.
This derivation of the area A, of a unit sphere in f dimensions uses: the
invariant differentials as derived from Jacobians (involving local properties);
and the one-dimensional integrations that give the normalizing constants for

the normal and gamma density functions. No integration is needed in more
than one dimension.

The reduced model can now be expressed in the compact form:

5 % Xn—1
€ = —=, S, = ——/——,
Jn Jn—=1
z=pu + 0¢
Sg = OS,.

The error distribution is described by means of a standard normal variable
z and a chi-variable y,, , on n — 1 degrees of freedom.
Suppose the measurements.are

62.0, 60.5, 60.7, 61.6.

*The measurement model is

€ = %y, €y = 2y, €y = 23, €y = 24,
62.0 = u + oe,,
60.5 = u + oey,
60.7 = u + oes,
61.6 = u + oe,.

The position values are Z = 61.2, s, = 0.72; abﬁrdiﬁgly, the reduced model
is ’

612 = u + oé,
0.72 = os,.

The error probability distribution with ¢, s, as variables gives probability
statements for the unknown error values (¢, s,) in the structural equation.
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For example,
Pr{—1<eée<1}=95%%

Pr Mgseg\_/ﬁﬁf}-;%%.
NE 3 |

As a second example consider the measurement model with error yariable
uniformly distributed on the interval (0, 1):

Hf(ei) 1—.[ dei:
x = [u, ole,

where
fo=1 0<e<l,
=0 otherwise.
The transformation variable

[L, R] = [ﬁlin e;, max e; — min &}

leads to a simple form for the conditional distribution, and its choice avoids
a later change of reference point to gain simplicity. The conditional error
distribution for [L, R] given :

_; e, — L en——vL)’
T

is .
g(L, R:d)dL dR = k(@) f(L + Rdy) -~ - f(L + Rd,)R**dLdR
= n(n — Dg(L, R dLdR.
The indicator Junction @ gives the range of nonzero density:

sLB=1 O0<KL<LYRLIL

=0 otherwise.

See Figure 16, The normalizing constant is obtained by integration:
@ oo : 1 r1—-R
kY(d) = f f o(L, )R dL dR =f J R*%dL dR
0 —a0 0oJo
1 .
= j (R™* — R™™) dR
0
1 1
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Figure 16 The region of positive density for the error position [L, R].

The reduced model is

g(L,R:)dLdR = n(n — DR*?dLdR O<L<L-+R<I,
=0 otherwise.
[L(x), R(x)] = [u, 0][L, R].
17 TESTS OF SIGNIFICA_NCE

‘Consider the first example in the preceding section:

5 z Xa
e = —=, S, = =,
Ja N
61.2 = u + ae,
0.72 = os,,.

Suppose that an outside source has prescribed the value y, = 62.4. The
hypothesis p = 62.4 leads to information concerning the error:

61.2 = 62.4 + 08
072= . os
1.2

0.72

2]

e
Se

This value for &fs, can be compared with the distribution of the error variable
é[s,; or equivalently, the value
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t-distribution on 3 d.f.

=t 0 I 2 3 4 5

-3.33 ) ]
" Figure 17 - The error value ¢¥ = —3.33 calculated under the hypothesis u = 62.4. The
error probability distribution of *.

can be compared with the distribution of

\/Z e z
= e
Se Xs/ \/ 3
the t-distribution on three degrees of freedom. See Figure 1?. The valge
—3.33 for ¢* is just beyond the 2} point on the left-hand Faxl of the dis-_
tribution; and it suggests moderately that the hypothesis is not true.
Now consider in general the measurement model

k(@) T f([&, s.)d)s; ™" dé ds.,
[51 Sw] = [,u, G][E, Se]'

Suppose that an outside source has prescribed’ the value uq for p. The
hypothesis pr = w, gives »

&I
|

= Ly + 0€,

Sg = 08,

S, oS, Sg

for the error characteristic #. This value for ¢ can bf’ co.mparec_l with the-dis-.
tribution of # derived from the error probability distribution, g(é,s, : d) déds,:
the joint probability element for ¢ and s, is :

g(ts,, s,:d)s, dt ds,;
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the marginal element for ¢ is then
0
gz(t:d) dt =f g(1s,, s,:d)s, ds, - dt
0

= k(@)- j LA,y s)dst ds, - dt

= k(d) - L LA (st + d)s ds, - dt.

The hypothesis can be assessed by comparing the calculated value of ¢ with
the distribution of values described by g (¢:d) dt.
Now suppose, alternatively, that an outside source has indicated the value
oy for 6. The hypothesis 6 = ¢, leads to the value
s
S, = —
0o
for the error variable s,. This value for s, can be compared with the distri-
bution for s, as obtained from the error probability distribution:

gs(s,:0) ds, = k@) [ TLA(Ee s de - 27 ds,
and the hypothesis can be assessed accordingly.

18 GENERAL INFERENCE

Consider the measurement model and the information it contains concerning

the unknown physical characteristic [u, ¢]. For the numerical example
in Section 16 it has the form

€ = Z S, = X,
JZ b e . \/‘3‘ 3
61.2 = u + ae,
0.72 = 05,

with error probability distribution that describes the unknown [é, s,] and
with structural equation that links the unknowns [¢, s,] and [g, o].
Each possible value for [é, s,] corresponds to a possible value for [g, o]:

[61.2,0.72] = [u, olle, s.).

A probability statement concerning [€, s,] is ipso facto a probability statement
concerning [u, o}. The probability distribution that describes the unknown
[e, s,] thus gives a distribution, the structural distribution, describing the
unknown [y, o]:

[, o] = [61.2, 0.721[ 2 T,

NI
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t-distribution on 3 d.f. but
relocated (61.20) and
rescaled (0.36)

1 | | | |
60.48 60.84 61.20 61.56  61.90

Figure 18 The structural distribution for u.

or by coordinates

p=612—0.72 1/—‘@: = 61.2 — 0.36t5,
Xs/\/3 )

A
JANE

¢ =072

The distribution describing the unknown g has the form of a t-distribution on.

three degrees of freedom, located at 61.2 and scaled by the factor 0.72/\/:1 =
0.36 (see Figure 18). The structural distribution for ¢ has the form of a
41 distribution with three degrees of freedom, scaled by the factor 0.72\/ 3.

In general for the measurement model with normal error, the reduced
model is

2 Xn—1

Se = Jn—1 ’
E s = [ ol s)
The structural distribution is obtained by solving for [, ¢]:

[, 6] = [& s;1[&, s.1™;

— Se

=X Sy

© 5%
sz
o=
Se
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and by using the error probability distribution to describe [¢, s,]:
. S
SN PR N =
o=.n—1s," 51

The variables p, o describing the structural distribution are statistically
dependent, each variable involving . ;.

Now consider the general model
k@ T1 1, s,1d)s7* dé ds,,

Z 5,] = [, ollé, 5.]-

The error probability distribution gives probability statements for the un-
known [¢, s,]. The structural equation links the values for [¢, s,} in one-to-one
correspondence with the values for [u, o]:

[ia Sg) = [l"’ U] [é’ Se] or [E> SB] = [4”" 0']_1[5, sx]:

é—_____x——,“’ Se=s—”,
g
-1 _E-p
a(é,sa) . g 0'2 _&:
a(/,t,o') R 5 0‘3' —
o -=
g

The distribution describing the unknown [¢, s,] gives the following structural
distribution describing the unknown [u, ¢]:

g*(, 0:%) dp do = k(@) T f([u, o7 x) (ﬁf)ﬂﬁ Z~3 du do.

NOTES AND REFERENCES

The error variable of a stable system has been used as the basic ingredient
to develop a statistical model and a method of inference. Other approaches
to statistics examine the exterior of a system, and use the classical model
of statistics: a possible input value 0 denoting the physical quantity; an
output value z denoting the observation; and a probability density f(z:6)
describing the frequency behavior of output values « for any input 6. The
classical model effectively treats the system as a black box, a model that
describes external behavior characteristics and ignores any internal operation

. or mechanisms. The other approaches need a variety of principles and
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reduction techniques to obtain solutions to problcm§ of ipference. ‘The
approach here with a more comprehensive model obta}ns unique solutions
without additional principles and techniques; the solutions are in terms of
classical frequency-based probability. )

The origins for the approach here lie some.where between two diverse
approaches to statistics, that of R. A. Fisher in England and that of the
mathematical-statistical schools in North America. Both approacl.les use the
classical model. The Fisher approach perhaps more frequen.tly 1ntrc3duced
methods stimulated by the peculiarities of the applications being studled..

Classical models can be derived from the models studied here: the location
model f(z — 8) is obtained from the simple measurement model, anq the
Jocation-scale model ¢~f ((z — w)/o) from the measurement model. _F’lshe.r
examined these classical models in 1934 and proposed the use of a conditional
distribution given a configuration of a sample. These c?nditional models are
the classical-model analogs of the reduced models in this cl}apter. '

Fisher (1930, 1935) also proposed distributions to describe the unknow‘n
value of a physical quantity. His proposal was in the framework of the cla§51-
cal model; his derivations violated generally accepted rules for handling
probabilities and models.

Fisher R.A. (1930), Inverse probability, Proc. Cambridge Phil. Soc., 26, 528~535.}Also as
Paper 22, Fisher (1950). ) ) o

Fisher II)( A. (1934), Two new properties of mathematical likelihood, Proc. Royal Soc.
(London), A144, 285-307. Also as Paper 24, Fisher (1950). ]

Fisher R. A. (1935), The fiducial argument in statistical inference, Ann. Eugenics, 6,391-398.
Also as Paper 25, Fisher (1950). o ]

Fisher R. A. (1950), Contributions to Mathematical Statistics, Wiley, New York. ;

Fisher R. A. and Yates F. (1949), Statistical Tables for Biological, Agricultural and Medical
Research, Hafner Publishing Co., New York. ) ) ]

Fraser D. A. S. (1961), The fiducial method and invariance, Bu.Jmeml.ca, 48,. 261-280.

Fraser D. A. S. (1966), Structural probability and a generalization, B:ometnlfa, 53, 1-9.

Fraser D. A. S. (1968), A black box or a comprehensive model, Technometrics, 10.

Pitman E. J. G. (1938), The estimation of the location and scale parameters of a continqus ‘

population of any given form, Biometrika, 30, 391-421.
PROBLEMS

1. A strength measurement on batches of steel castings has error variati?n that is apgroxi—
mately normal with mean 0 and standard deviation 2.5 (units of 1000 psi). For a part_xcular
run of castings let 0 be the general strength level. A random sample of 10 castings yielded

59.5, 61.5, 63.5, 63.0, 64.5,
61.5, 60.0, 650, 59.5, 57.0.

(i) Obtain the reduced model. i
(i) Make central 95% and 99 % probability statements for the error position.

(i) Derive the structural distribution for 6; make 9534 and 999 probability statements’

for 6.

Problems 43

2. For the second example in Section 8 derive the structural distribution for 6; sketch the
structural distribution.

3. Consider the simple measurement model with error variable uniformly distributed on
the interval (—0.5, 0.5).

(i) For the measurements z, = 157.01, =, = 157.99 derive the reduced model; derive
the structural distribution for 6. Note. The conditional distribution can be obtained from

the general formula or by geometrical argument from the uniform distribution of (ey, €5)
over the square (—0.5, 0.5) x (—0.5, 0.5).

(ii) For the measurements 157.01, 157.99, 157.68, 157.92, 157.48 derive the reduced

model; derive the structural distribution for 6. Do the additional three measurements add
information concerning 6?

(iii) Test the hypothesis that 6 = 157.60.

4. Consider the simple measurement model with normal error in Section 8. Use the location
variable r(x) = min x; with d, = z; — min «;, and show that the conditional error distri-
bution for miin e, is normal with mean —J and variance 63/. Check to see if this is equivalent
to the conditional error distribution in Section 8.

5. Consider the simple measurement model with component error density

fle) =exp{—e}, >0,
= (, e<0.

(i) Derive the reduced model using r(x) = min z; as location variable; determine the
normalizing constant.

(ii) Derive'the structural distribution for 6.
*6. Consider the simple measurement model with double exponential componpent error:

f(e) = Lexp {—lel}.

NotaTioN. Let ;) be the ith smallest of (z;,

..., @,); then 2y = min=;, v, =
max ;; each 2, is a location variable.

(i) Derive the reduced model using %(;) as location variable; determine the normalizing
constant (integration can be performed interval by interval on the real line).
(ii) Derive the structural distribution for 6.
(iii) For the measurements 5.8, 6.5, 6.8 sketch the reduced error distribution; sketch the
structural distribution.

7. Co_nsider the card-dealing example in Sectién 5. Find-Pr {2 'spades} with the additional
information that the second participant observed both cards and would not have differen-~
tially reported the special case of two spades.

8. Show that the positive affine transformations form a group:
G={ac]: —ow<a<ow, 0<c< o}
the positive affine group or location-scale group.

9. For the numerical example at the beginning of Section 17 test the hypothesis thato = 0.3,

10. A method of measuring temperature remotely has an error variable that is approximately
standard normal. For a particular sequence of seven determinations (°C),

683, 688, 683, 687, 692, 687, 682,
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let 4 be the temperature level and o be the error scaling.

(i) Obtain the reduced model. .
(ii) Make central 907, probability statements for the error characteristics ¢ = &[S,, Se.
(iii) Obtain and sketch the structural distribution for p and the structural distribution

for o. .
(iv) Make central 90% probability statements for p and for a.

11. Test the hypothesis: ¢ = 680°C in the preceding example.
12. Consider the measurement model with component error distribution

e >0,
e <0.

fle) =exp {—el,
= 0,

(i) Derive the redgced model using [b, s1 = [rq) 28 Tyl — 1) — =zl as transform-

ation variable.
(ii) Derive the distribution of the error characteristic ¢ = bs.

distribution of .

Sketch the structural
13. Consider the measurement model with error uniformly distributed on the interval (0, 1).

(i) Derive the reduced model using [b, 51 = [w('l), T(py — z(y)las transformation variable.
(ii) Derive the distribution of the error characteristic ¢ = b/s.
(iii) Derive the structural distribution for [, ol.

#14. Consider the measurement model with double exponential component error
fle) = exp {—lel)

(i) Derive the reduced model using [b, 51 =24y T@) — EES position variable.
(ii) For the measurements 5.8, 6.5, 6.8 sketch several sections .of the conditional

distribution: for example, the section s = s and the section b = f4S.
(iii) Derive the distribution of the error characteristic ¢ = b/s.
(iv) Sketch the structural distribution for the response level p.

*#15, The general Weibull distribution is

BPAVIEN
0%,—(t—af)‘”“tf)ip{—(t ay)}dt,‘ t>7,

with0 < o < 00,0 < ff < 0, —®© < y < . Consider the measurement model with a
Weibull component error distribution (8 > 0 given):

Fle)de = BeP~Lexp (e} de, e >O. (J. Whitney.)

(i) Derive the reduced model.
(ii) Derive the structural distribution for [x, ol.

*16. The general Weibull distribution can be specialized:

8 .
f—ﬁtﬁ"l exp {— (—:—L) } dt = O%exp {Blnt —exp{fnt— lnw}}ding,  £>0.

. form a group, the scale group.
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Consider the measurement model with a Weibull component error distribution

f(e) de = exp {e — exp {+e}} de. . Whi;ncy.)

(i) Derive the reduced model.
(u) Der{ve the structural distribution for [y, o].
(m) Derive the structural distribution for o.

*17. Consi i ’
(x17 C n;ld;ar a?.ldﬁrst mf:':}surement model with error distribution f;(e), observations
s - d - ,t ,l,; s quantities [-"fl’ 6,]. And consider a second measurement model with
error distribution f;(e), observations (yy, . . ., ¥,), and quantities [x,, 6,]
2> Oal-

(i) Derive an integral expression for the structural distribution of g, — u
1 2°

(il) No suppose thatf (e) f( Ird norma how tha (-1 C
W 5 e) are standard 1.S istri i
: 1 f Zi N that th SFIU tural distribution

Jhere Hy — oy =& —F + r(t; cos 6 + t,sin ),

dz -vari
zfa:r : ﬁeag?s trrzi ta’u': ¢ vanable§ onm — l.and n — 1 degrees of freedom, respectively. Tables
o st ution of a linear combination #, cos 6 + ¢, sin 6 of t-variables ha've b
prepared by Sukhatme and are tabulated in Fisher and Yates (1949). (Fisher, 1935.) e

18. Show that the rescalings - -

G=1{0,c: 0<c< o}

19. Let e be an error variable with distribution f(e) de on the real line Ri;letfbea quantity

taking positive values;
; and let z; x, be measure i ipli
sitive . T i
The multiplicative measurement mt;del is " 7 ents with & multplicativ error

Hf (e) H de,,
x = [0, Ole = Oe,
where [0, 6] is an element of the scale group.

(1) Determine the orbit - of x under the scale group (delete the origin 0)
(u) Define a scale variable s(x). Show that (Z z%)}4 is a scale variable .
(fu) ShO}v that the orbits can be indexed by d(x) = (z;/s(x) x| ( 4
(iv) Derive the reduced model ' Tl GO

k@5 T sy -
5
s(x) == 0s,

where s = s(e) designates error position.
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(v) Derive the structural distribution for 6:

s(x)\* T\ é(_i
o §) T/ (3) 5
(vi) Suppose that fle) =0for —o <e < 0: Show that a logarithmic transformation

applied to the variables in this problem transforms the multiplicative measurement model
into the simple measurement model.

20. Consider the multiplicative measurement model with standard normal error. Show that
the structural distribution for 0 is

4, (s®V 1 df
e (-5—) exp —{ 6 SZ(X)} 5

use (z 2% as scale variable. ]
21. Consider the multiplicative measurement model with error distribution uniform on the
intervat (0, 1).
(i) Derive the reduced model using max z; = s(x) as scale variable.
(i) Derive the structural distribution for 0.
22. A radioactive source emitting particles at the average rate of one per unit time interval
gives the distribution
e>0,
e<0,

fle) de = exp {—e} de,
=0,
for the time interval e between successive emissions. Let B be the corresponding time interval

for a source under investigation, and let,, . . . , % ben it}del?endent measurements of time
interval between successive emissions. This is the multiplicative measurement model

TIsen Tl des,
x = [0, Oe. ‘

(i) Describe the orbits and reference points; use £ as scale vagiable.

(ii) Derive the conditional error distribution g(é:d) de.

(iii) Derive the structural distribution for 6.
23. For the positive affine group show that two orbits aré either identical or disjoint.
24. (i) Show that the following variables are transformation variables for the positive
affine group:

[, 51 = [wy, 12y — 21},

M, R] = [M%M , max z; — min z{\;

for the variable [b, 5] the exceptional set must be increased from the extended 1-vector to
the (n — 1)-dimensional subspace described by zy — %, = 0. )
(i) For the two transformation variables [%, s;] and [M, R] determine the connecting

transformation {a, c},
[M, R] = %, s,Jla, c,

and show that [a, ] is constant-valued on any orbit.
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(iii) Let [by(x), s;(x)] and [b,(x), 54(x)] be two transformation variables and dl(xj and

- d,(x) the corresponding reference points. Show that

[5,(x), 5,01 = [5,(X), s5(x)]a, €],
[a, cld, (x) = dy(x),

where [a, c] depends only on the orbit, is constant-valued on any orbit. Draw a diagram
of an orbit as a half-plane and indicate the significance of the equations.

+25. Consider the measurement model with position variable [b, 5] = [z, |z, — #,]] and
reference point
ar = (b T b
s s

(i) Use the method of Section 7 to derive the conditional error distribution. - -
(if) Find the form of the conditional error distribution for the normal example at the

beginning of Section 16; simplify by using the alternate coordinates [Z, s,] on the orbit
(see Problem 24).

26. (i) The positive affine transformations [a, c] can be reexpressed in terms of matrices.

Show that the set
10
G = :
a ¢

with matrix multiplication as the operation forms a group having effectively the same
multiplication rule as the positive affine group.

(ii) Check that the measurement model can be reexpressed in terms of matrices and
matrix multiplication:

1 .- 1 1 -1 e
E == , X = B
Gt =)
1 0
-0
u o
FEYE =T] fep I1 e,
1
X = OF.

—o0 L a< o
0<c< @

27. The positive affine transformations [a, c] form a group
—0 <a<®
G = {[a, cl: }

0<ec< @
with the multiplication rule

[a, clla*, c*] = la + ca*, cc*].

Let A be a p X r matrix of real numbers, and C be a p X p matrix of real numbers with

. positive determinant, Show that the elements [A4, Clform a group (the generalized positive

affine group or the regression positive-linear group)

G = {{4, CI}:
the multiplication rule is

[4, Cll4*, C*] = [4 + CA*, CC¥],
and the identity is [0, I] where Iis the p X p identity matrix.
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28. The generalized affine transformations [4, C] can be reexpressed in terms of (p + 1) x
(p + r) matrices. Show that the set

1 0i0 --- 0

G = ' . g. . : lC|>0 ,

A C

with matrix multiplication as the operation forms a group having effeptivcly the same
multiplication rule as the generalized positive affine group. » v
29. A set {4} of subsets 4, of a space & is a partition if (a) any.two subsets 4, 4 ﬁ(a .75 B
are disjoint: 4, N Ay = @, where & is the empty set; (b) the union of all the sets A, xs_-the
space L: \J, 4, =T.
(i) Show that the orbits in Section 3 form a partition of R™.
(ii) Show that the orbits in Section 12 form a partition of R™ (extended 1-vector deleted).

30, Show that a set G of one-to-one transformations of a set NE onto itself is a group if
and only if it is closed under the formation of products and inverses: if g;,g5 are in G, then
£18 18 in G; if g'is in G, then g7} is in G. .

CHAPTER TWO

The Structural Model

In the development of the measurement model the internal error of a system
was recognized as the primary entity. The error variable was introduced to
describe the response effect of the internal error; it is the basic ingredient of
the model.

The measurement model, however, corresponds to a rather special kind
of system, a system with all controllable variables held constant and with a
single real-valued response. This chapter introduces a gemeral model, the
structural model. The structural model corresponds to a general system
with internal error, and it has an error variable to describe the response
effect of the internal error. )

The development of the structural model follows very closely the pattern

"in Chapter One. The two measurement models were analyzed there in a form

that would best illustrate the general methods and concepts of this chapter.
Some of these methods and concepts are trivial for the simple measurement
model; all are nontrivial for the measurement model. The structural model
is developed without further illustrations; some simple extensions of the
measurement model are introduced in the Problems.

1 THE MODEL

Consider a system operating under stable—conditions. Suppose that
experience with such a system using appropriate measurement scales has
led to the identification of a response component of the internal error. Let this
be described by an error vdriable E having a fixed distribution on the space
& of the response.

Suppose the general characteristics of the system are given by a quantity 6,
a transformation belonging to a group G of transformations of X onto X.
To avoid triviality the group G is assumed to be unitary on X:

Definition 1. A group G of transformations on & is unitary if gyx = gy
for any « implies g; = g,

49
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A group is unitary if there is at most one transformation carrying any Pomt
into any other point. The quantity 6 applied to a value E of the error variable
gives a value X for the response: X = OE.

This description of the system produces the

Structural Model
E £

X = 0E.

The structural model has two parts: an error variable £ \{vith a known th-
tribution on the space X ; and a structural equation X = OEinwhicha realzzed
value E from the error variable gives the relation between the knowp response
X in X and the unknown quantity 6 in the group G of transformations on &I.

Consider how the group G affects the space L. The transformations g
in G carry a point X into the orbit of X: ‘

GX = {gX: geG}.
(see Figure 1.) ‘
Suppose two points are related by a transformation:

X, =hX,, Xo=h'X
Then any point generated from one can be generated from the othe;:
8%, = (ghX.,

and the orbit of X is the same as the orbit of X 5 It foll.ows thé.n.that any two
orbits are either identical or disjoint and that the orbits partition the space
L (Definition in Problem 29, Chapter One).

§Xy = (EF)Xy,

~

/ -
GX = (gX:g ¢ G)

Figure 1 Orbit, reference point, and transformation variable,
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[x],

Figure 2 Comparing two transformation variables and the corresponding reference points.

Consider a variable to describe position on an orbit:
Definition 2. A function [X] defined on L and taking values in G is a
transformation variable if
[gX] = glX]
for all g in.G and X in X.

A transformation variable [X] leads to a reference point D(X) on each
orbit (the point at which the variable equals the identity):

D(X) = [X]X,
[DX)] = X7 [X] =i
A transformation variable can always be defined by choosing a reference point

D(X) on each orbit GX and letting [X] be the unique element in G that carries
the reference point into X:

X = [X]D(X).
The reference points index the orbits, and the transformation variable gives
position on an orbit.

Two transformation variables are simply related one to the other. Along any
orbit they differ by right multiplication by a group element: |

X = [X], D,(X), X = [X]; Dy(X),
[X]2 = [X]I[Dl(X)]Za

[X]1 = [Xlz[Dz(X)]l-
(See Figure 2.) ‘

Consider the structural model again:
E,
X = 0E,
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and let [X] be a transformation variable. The points X and E are on the same
orbit:
GX = GE or D(X)= D(E).

The positions of the pbints X and E differ by a transformation 6:
[X1=0[E]

The structural model can then be rewritten with composite structural
equation:

E;

[X]=6[E], GX = GE. '
The quantity 6 is an element of the group G. The positions [E] and [X] are !
also elements of the group but designated G* to distinguish the use for |

position as opposed to transformation.
The structural model can be written alternatively
: g, ‘ |
[X]=06[E], D(X)= D(E)

Consider a transformation g and view it as providing new coordinates for
given entities:

¥ =X, : 6 =gb.
The structural model in the original coordinates is
E,
- X =0FE.

Multiplying the structural equation by g gives X = 5E~. The structural model

then becomes
E,
¥ =0E

~

The model thus has the same form in the new coordinates X, § as in the
original coordinates X, 6: the model is homogeneous under the group G.

2 THE REDUCED MODEL
Consider an application of the structural model
E,

[X] = O[E],

to a system under stable conditions. The error variable E describes the
response component of the internal error; it describes the essentials of the

GX = GE,
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random process that generated the realized E in the structural equation. The
structural equation gives the relation between the known X and the unknowns
0 and E.

Now suppose the system is being examined in isolation with no outside
information concerning the unknowns; and consider the information in
the structural equation concerning the unknowns 6 and E. :

The orbit of E'is known: GE = GX. And the information about the orbit
is in the form of an event based on the variable GE for the random process E.

The position of E on its orbit, however, is not known:

[E] = 071 [X] = glX];

the structural equation represents [E] as an wnknown transformation g

-applied to the known [X]. If the known position were different, [X] = h[X)for

example, then the description of [E] would be
[E] = 67 [X] = g[X],

where g is again an unknown transformation in G. Different values for position
would give the same description of [E]. There is thus no information in the
structural equation concerning the position of £ on its orbit.

The error distribution describes the random process that generated the
unknown E in the structural equation. The only other information concerning
the unknown E has the form GE = GX, an event for the random process
that generated E. The conditions are fulfilled for making probability state-
ments concerning unknown constants—exact probability statements can be
made concerning the unknown error E; they are based on the conditional
distribution of the error variable E, given the orbit GE = GX. The structural
model by its own information content produces the

Reduced Structural Model
[E]:GE = GX,
[X] = 6[E].

The reduced model has two parts: an error probability distribution (for the
variable [E] given GE-= GX) which provides probability statements for the
unknown position [E] in the structural equation; and a structural equation
which gives the relation between the known [X7]in G* and the unknowns 6
in G and [E] in G* (with [E] as a constant). (See Figure 3.)

3 INVARIANT DIFFERENTIALSv

In Chapter One the conditional error distribution for the measurement
mode! was derived by means of invariant differentials. An element about an
initial reference point was transformed along orbits; its volume was measured
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Figure 3 The orbit of X and E; the known {X]in G¥, the unknowns 6 in G and [E]in G*. Figure 4 Transformations in G applied to an element V at the reference point D(X)

. - e POl[l .
invariantly in terms of original coordinates and invariantly in terms of orbit ' Elg";; 4). A transformation 4 applied to a point X changes Euclidean volume
and position coordinates; the equivalence of the two invariant measures _ (in R%), -
gave the change of differential from original coordinates to position co- dhX = ohX ax
ordinates given orbit; the probability element (in terms ‘of position co- . ox ’
ordinates given orbit) was normalized over the range of the position by the positive-Jacobian factor
coordinates. This procedure is now used for the structural model. T (k- ohX

Consider a unitary group G of one-to-one transformations of X onto & v X) = ax |
and suppose the following assumption holds: : . )
A composite transformation hyh, applied to X changes volume by the factor

Assumption 3.1 X is an open set in Fuclidean space RY; G is an bpen
set in RL; the transformations

i

2.4 X
= Jy(hy: B X)J y(hy: X).

The particular trﬁnsformation [X] applied to th i
fe
changes volume by the factor PP ° reference point DC)

In(X) = Jy(1X]: D),
which can be used as a compensating factor to produce an invariant differential

dX
In(X)’

ahlx‘
- (.4
g=hg, X =hgX -
are continuously differentiable with respect to g, h, and X; and [X lis a
continuous transformation variable on L.

Consider a neighborhood or element ¥ at a reference point D(X) =
[X]2X; and consider the effect of transformations in G on this'g:lement (see

+ The methods and results remain valid if T and G are Euclidean manifolds; they also remain

valid if I and G are topological spates provided derivatives are réplaced by appropriate -
Nikodym derivatives relative to a given measure on &.
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Figure 5 The invariant differential that coincides with dX at the reference point D.

a measure of volume that is constant under any transformation h in G:
dhX  Jy(h:X)dX _ dX
InhX) Iy X)InX)  InX)
The construction shows that it is the unique invariant differential that coin-

cides with Euclidean volume at the reference point D(X). (See Figure 5.)

- As an example consider the positive affine group with transformation
variable [&, 5.] (Section 12, Chapter One):

d[A4, Clx = C™dx,

dm(hX) = = dm(X).

J (4, Cl:x) =
LT =sh
dm(x) = éﬂ{
N

x

Consider now the effect of transformations in G as applied to coordinates
describing orbit and position on orbit. The transformations do not affect

coordinates describing orbit: transformations carry points along orbits.

Accordingly, any differential in terms of coordinates describing orbit is an

invariant differential.
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The transformations affect only position on orbit. The transformatxon I
applied to the position [X] changes Euclidean volume (in RZ),

oh[X]
dh[X] = aix
h[X] ’ 2LX] x1,
by the positive-Jacobian factor
Ji(h:[X]) = a“—_al}g(}? .

The particular transformation [X] applied to the reference value i changes
volume by the factor

J(IX]) = J(IX1:0),
which can be used as a compensating factor to produce an invariant
diﬂerentt’al

d[X]
J(IXD°
a measure of volume that is constant under any transformation in G:

dh[X] _ Jz(h: (X)) d[X]
Jp((hXD  Jr(h:[XDI LX)

The construction shows that it is the wnique invariant differential that

du([X]) =

Au(hX]) = = du([X]).

_coincides with Euclidean volume at the identity i. (See Figure 6.) And the

method of construction shows that any other invariant differential differs

" only by a constant of proportionality, the constant being the ratio of the

differentials at the identity.
As an example consider further the positive affine group:
dl4, CI[z, s,] = C*d[7, s,],
To([4, CL:[7, s,]) = C%,
Jz([a’_, Sa:]) = Sms . !
dlz, s,] sm] d:v ds

du([z, s,)) =
Sa: =
. diX] _  dhXi
/{d[Xllmn = Som = J_L(h[Xl)\
: X W1 @

Figure 6 The invariant differential on G* that coincides with dlX] at the identity 7.
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Now consider the two invariant differentials as they apply to the element
V and to images of ¥ under transformations in G. At the reference point
D = D(X), let (D) be the ratio:

X _ sy -HEL = 5() auxy.

In(X) I (IXD

The differentials, however, are invariant under transformations’ in' G. The
equality then holds throughout the orbit; the ratio 6(D) is a differential that
measures ¥ at right angles to the orbit.f This provides the change of variables
from a volume element in the original coordinates to a volume element in
terms of position coordinates conditional on a neighborhood of the orbit
D(X)= D:

dm(X) =

dm(X) = 8(D) du([X])
or

_ Jn(X) ,
dX = §(D) WJL([X]) d[X1.

As an example consider further the positive affine group:
dm(x) = 8(d) dulZ, 5.},
dx = §(d)s7? dz ds,.

The factor §(d) gives a measure of area on the sphere s, = 1 in the subspace

% x; = 0; compare with Figure 15 in Chapter One. The variable \/ nE
measures Fuclidean distance in the direction of the 1-vector; the variable

vn — 1 s, measures Euclidean distance orthogonal to the 1-vector (radially
from the 1-vector): é(d)/\/ n~/n — 1 measures Euclidean area on the sphere
5, = 1 (with radius ~/» — 1) in the subspace T z; = 0."

4 THE ERROR PROBABILITY DISTRIBUTION

The conditional error density can now be derived. Assume that Assumption

3 in Section 3 holds and that the variable E has a density function f(E) with -

respect to Euclidean volume on &.
The probability element for E is

f(E)dE = f(E)y(E) dm(E)
= f(E) dm(E);

tThe differential (D) can be written 8(D) = 6,(D)J, where: (a) J, du(IX]) at the ’
identity gives L-dimensional Euclidean volume along orbit as calculated using the coordin- .
ates of RN; and (b) 8,(D) measures Euclidean volume at D in the: (V — L)-dimensional -

space orthogonal to the orbit.
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the modified f(E) is a density with respect to the invariant differential dm(E).
The probability element can be expressed in terms of orbit D = [E]AE
and position [E] by using results from the preceding section:

JIn(E)
J([ED
The conditional probability element is then obtained by normalization:

J(IE]1D) (D)

d[E].

¢([E]: D) d[E] = k(D) (LEID) 31—1%% d[E]
L

= Z([E]: D) du([E])
= k(D)/([EID) du([ED),
JIn(E)

k(D) = InE)
(D) L_f([E]D) Ty dIE]

The reduced structural model can now be given as

where

Reduced Structural Model
g([E]: D(X)) d[E],
[X] = 0[E).

The r.nodel'has two parts: an error probability distribution g([E]: D) d[E]
([E] is a variable on G*) which provides probability statements-for the

_unknown [£] in the structural equation; and a structural equation which gives

the relation between the known [X]in G* and the unknowns 8 in G and [E]
in G* ([E] is a constant).

Some distributions connected with the conditional error distribution need
further results concerning invariant differentials. In Section 3 the transforma-
tion :

E=hg
involving left multiplication by the group element 4 was examined. And the

invariant differential, more correctly-the left_invariant differential, was -
derived:

g
d T
u(g) AR
If the variable g is used as a position variable on an orbit, then the trans-
formation § = g can be viewed as coming from a transformation X =
hX on the space X, and it gives position of a new point relative to a fixed

reference point (Figure 7).
Now consider the transformation

g=zgh



Figure 7 A left transformation: § = hg. The same volume measure at the new point as at
the old point. : . )

involving right multiplication by the group element h. If g is being used as a
position variable on an orbit, then the “transformation” § = gh can be viewed
i as a change in reference point from. D to LD (see Figure 8). The right
“transformation” % changes Euclidean volume,

dgh = 9gh dg,
o8
by the positive-Jacobian factor
dgh
Tithig) = |2
g

. A composite “transformation” hh, changes volume by the factor
Jz(hlhz :g) = J1(ha: gh)J7(hs:g).

The particular “transformation” g applied to the reference value i changes

‘ volume by the factor
) T3(8) = Ji(g:1),

which can be used as a compensating factor to produce the right invariant dif- -

ferential

dn(g) = Jf(gg.),
L
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g—gh:
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%

//I g
dv(gh) = dv(g)

Figure 8 A r.ight transformation: g — gh. The same volume measure at a point using old
or new coordinates. :

.a volume measure that is invariant under any right “transformation”

dn(gh) = 28" _ Ji(h:g) dg
Ti(gh)  Ji(h:g)J7(s)

Tt%e (ionstruction shows that it is the unigue right invariant differential that
coincides with Euclidean volume at the identity. The right invariant dif-
JSerential measures volume invariantly under a change in reference point.

As an example consider the positive affine group:

= dv(g).

[@, &1 = [a, c][4, C],

G=a%+ cA,
¢ = cC,

TH(A, C1: {a, <)) = ~c,

1 Al
0 C
Ji(a, c) =,

dv([a, c]) = ia;c_l_g
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The left and right invariant differentials have some simple interconnecting The modular function has the form
e le

properties. With g as variable the diﬁ'ereqtial Ag) ____FJ 1) Ag™) = Ji(g)
dp, (g) = d(ggo) J1(g) JE(8)

For the positive affine group

A, o) — L20acd _ e _1

is left invariant:
dp,,(hg) = du(hgge) = dp(8g0) = dp, (8)-

" Accordingly it must differ from the left invariant differential z{p(’g) }Jy a con-
stznt of }ioportionalit}’, the ratio of volume measures at the identity:

dp(gge) = A(go) du(g)-
The proportionality factor A(g) is called the modular function of the group.
It has thie following properties: : .
AG) =1, '
A(gu‘,’z) = A(g) A(ge),
Ag™h =407
' ight transformation; it can
A easures a change under a 1ig nation; it
thizgoizcgj us(e‘gcr;)arsna compensating factor to construct a right invariant
differential

du(la, c]) = B

du((a, c]) = dadc _ (1)‘1 da dc .

c c?

5 GENERAL INFERENCE

The structural model by its own information content produces the reduced
model
[E]l: GE = GX,
[X] = 6[F].

Consider the information in this model concerning the unknown quantity 6.
The value of [X]in the structural equation is known. Each possible value
for the unknown [E] corresponds to a possible value for 8:

6 = [X][E]™,  [E]= 6'[X]. -

A probability statement concerning [E] is ipso facto a probability statement
concerning 6. The probability distribution describing the unknown [E] thus
gives a distribution, the structural distribution, that describes the unknown 6.

The structural distribution is obtained from the error probability distribution
of [E] by the map

dn(g) = %‘% = A7(g) du(g)-

The differential agrees with Euclidean volume at the identity; hence .

dvy(g) = dv(g)-

A rieht invariant differential ¢an also be constructed by assi'gning to a
differeftial change at g the left invariant measure of the corresponding element

1.
at g™ dvz(g) _ d,u(g‘l)

This element is right invariant:

duy(gh) = du(hg™) = dp(g™) = dna(g)-

6 = [X][E]*

from [E]in G* to 6 in G.
Now suppose that Assumption 3 in Section 3 holds and that E has a density
Sf(E) with respect to Euclidean volume. The reduced model is

([E): D(X)) du([E)) = k(D) f([E1D)J(E) dM([E])

At the identity i it agrees with Euclidean volume: Consider an element ¥ at i;

symmetrize the element, [X] = 6[E]
Vo= {g: geV or glteVl; The structural distribution is obtained by substituting:
the u measure and v, measure of ¥* are equal; hence dvy(g) = dv(g). [E] = 671 [X],
Tﬁe invariant differentials can be interrelated: du([ED = A([XT) du(67Y)
du(g) = A(g) dr(g) = (g™, = A(IX]) dv(0)

dn(g) = A7(g) du(g) = du(e™). = AGXD du(D).
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The structural probability element for 6 on the space G is

g*(8:X) db = g(87'[X1: D) A0~ (X1 du(®)

= k(D)f(67X)J y(67X) AOTXD) du(B)
JHO'XD) db
T (07X J£(6)

) . Lo JEIXD df
= K(IXT0) (07X §(07X) ZE—
(IXT7X) £(050)J (i )JL([X]) J1(6)

As an example, the structural probability element for the measurement
model can be obtained by substitution: :

= KXTX)f (67 X) 507 X)

g o1 i do = 10 L0 o0 (2 255
= k(@) lf[f (I, o17) (f_f)n Sl dpds

¢ TESTS OF SIGNIFICANCE

Consider the two tests of significance for the measurement model in

Section 17 in Chapter One. The first test concerned the hypothesis p =y .
and was based on the value of the error quantity é/s,. The possible hypotheses -
of the form p = p, produce a partition of G; and the possible values for the E

error quantity /s, produce a partitidn of G* (see Figure 9).

The second test concerned the Aypothesis ¢ = 0y and was based on the
value of the error quantity s,. The -possible hypotheses of ‘the form o = g,
produce a partition of G; and the possible values of s, produce a partition -

of G* (see Figure 10). N
Now consider the structural model and suppose that the space G is

partitioned into disjoint sets; let H(6) be the set containing 6 (see Figure 11).
Consider the hypothesis H(8) = Ho. This hypothesis combined with the.

structural equation [X]= 8[E] or [E] = 671[X] gives the information that
the unknown [E] is in the set
{(67'[X]: HE®) = Ho} = {07'[X]: b€ Ho}
' = Hy'[X]
(note that Ht = {g™': g € H} is the set of inverses of elements of H).
The sets H = H(6) form a partition of G; the corresponding sets H*[X]

form a partition P on G*, a reflection about [X ] of the partition on G (see.

Figure 11). .
The information concerning [E] is that [E] is in a set H;'[X], a set in the

partition P of G* into components H7[X]. Consider what the information
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o
G Hy ~s]
//— M=o
. Left cosets
of Hz

EJEN]
H

® [X, s}

Right cosets
of Hy

g yp L= U and a pamtlon of G. The value of the error characteristic
.
F/l ure 9 The hypothesis L 0 1S

concerning [E] would ‘be if [X] were different. If [X] were different, g[X]
for example, thep the information would be that [E] is in the set H;2g[X].
If the presentation of information has the form of events, then t(il(: sets

“H;'g[X] (various g) must all be sets in the initial partition P = {H*[X]} of

Hy'g[X]= H'[X], forsomeH,
Hy'g = H, for some H,
g 'H,=H, forsomeH.

G*. This implies

Thus the left r'nultiples gH, of H, must all be sets in the partition {H(6)}. By
group theory it follows that the partition {H(0)} consists of left cosets gH of a
subgroup H of G. See Problems 12 and 13.

SUreIm m el X l = |
3 € h
I or thC measur ent ()(l [+ a]IIP € “l ypotlzesm 22 Ho can be

LU" G} € [:uo’ I]Hﬁa



-
G
ag o= ag
Left cosets of Hy
H i=10,1]
_________________ R
Se
o !
Right cosets of Hy
H i=[01]
5¢ = 52/ 00

Figure 10 The hypathe.%is o = oy and a partition of G. The value of the error characteristic

5, and a partition of G*.

G

G*

Holx]

Figure 11 Sets Hy, H = H(f) in the partition {H! 0):

H=H(6) - Ho

H1[X], H-}[X]in the partition P = (HAO)X]: 0€G)of G*.

66

fe G} of G. The corresponding sets
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a left coset of the scale group H,. Show that the hypothesis ¢ = o, can also be

- put in left coset form.

Suppose now that some outside source has indicated that 6 is in the left
coset goH of a subgroup H of G. The hypothesis 8 € g,H gives information
concerning the unknown error [E] in the structural equation: The error [E]
is in the set )

{67X]: 6 € goH} = (gH)[X]

= Hg'(X]

= Hgy'[X],
which is a right coset or orbit on G*. (Note that H~* = H since H is a group.)
Thus the hypothesis 8 € goH (a left coset on G) gives the information that
[E] is on the orbit Hg;*[X] (a right coset on G*). This information has the
form

H[E] = Hgs'[X);

it is an event for the error variable and it uses the orbital variable H[E] on
G* or HE on L.

Let #([E]) be a variable that indexes the H orbits on G*. The hypothesis
6 € goH together with the structural equation leads to the value

H[ED) = t(ga XD
This value can be compared with the distribution of the variable r([E])

- derived from the error probability distribution; and the hypothesis can be

assessed accordingly.
_For the measurement model example the information that é/s, is equal to

Sg
is equivalent to the information that [, 5,] is on the orbit
) Hylpo, 1171E, 5,1 = HolZ.— o, 54,
a right coset of the scale group H, (see Figure 9).

*7 CONDITIONING BY OUTSIDE INFORMATION

The measurement model with normal error is a simple example to illustrate
conditioning. In reduced form the model is

Xn—1
Jn—1’
2, 5.] = [, ollé, 5.]

S, =




|
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(Section 16 in Chapter One). The corresponding structural distribution is

B e
p=T = 857
SB

0=S5;">
sﬂ

where [€, 5,] has the error probability distribution (Section 18 inv Chapter ‘
One).
Suppose the information o = Go

the form of an event for the error vari

becomes available. This information has
able (Section 6); it leads to the value

s
5, = —

for the error characteristic

«
=
.|
-t

As an event it can be used to condition the error distribution; it gives

.z s
G, Sp=
Jn A
- which then gives
y _ zlyn o
pu=71— Sz =T — 2=,
Sm/GO n :
1 .
o =S, = dyp
Sz/f’o

for the structural distribution. This str
the information ¢ = 0y is the same as t
simple measurement model

o
i

0,
é

g
; - o u

+ X

sl
i

in Sections 8, 10 of Chapter One. .

In this example, outside information concerning [, o] was introduced.

- The information had the form of an event for the error variable, and it
¥ produced a conditioned error
distribution. These conditioned

have been obtained had the informati

constructed. This agreement holds for t

distributions are the same as those that would
on been available when the model was
he general structural model.

uctural distribution for u, ¢ given -
he structural distribution from the

distribution and a conditioned structural’
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Consider the structural model in reduced form:

[E]:GE = GX,
[X]=0[E],

al,;;dszgtoposg t;herefis information concerning 6 in the form of an event
ion e info i i .
By 5 rmation has the form 6 € g, H,, where Hj is a subgroup

mgzt;trl}el tsy;;)ical cas;}nvolving a subgroup H, in a group G there is a comple-
ubgrou i i
men Pmducf p H, such that each element g in G can be written uniquely

g = kh,

zv(ﬁ;:\f:nliceljtli (fz:nd h is. in H,. This kind of decomposition} for G leads to
ation; it is examined here in lieu of the gen
: : eral case. S
G can be expressed in this manner, g = kf, and let ’ PPO%e

[g] = Kk, [g]l=h,

2 1
g = lellg]
The inverse of an element g is -

g™ = [g] g™ e

1 2

.An inverse can be any element in G; accordingly the decomposition of G can

be made in the reverse order:

g = lgllg]
and P
‘ 71 =1leI,  [g7]=1[el™
(See Figure 12.) - t
The quantity ¢ in G can be represented in terms of elements of H, and H,:

b=rp, T=[0l =16

The information @ € goH; can then be given as 7 = 7, where 7y = [g,] and
. 2

goH; = [g]lgo]H: = 7oH,.
(See Figure 13.) : !

t G is called the semidirect product of the subgroups H. and H,
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Hy :
Ha G+ 1
X 1
G i ) i
W _— . e=lallal .
2 1 2
=gl lg] ~Lx; o~ |
g 1 Hi[E] = Hy[ro~ X} (o ] /“’p‘\ /
lg] NIEd . :
2 il KT g .
e ‘5 E’ro X] ,
l []/ . d H,
7 ‘
{gl 1 ! ;
7o~ L !

Figure 12 G expressed as a semidirect prbduct of H, and H; and as a semidirect product

Figure 14 The orbit of [E] under H, as determined by the information + = Tg.
of Hyand H,.

orbit of E on X); the orbit can be designated alternatively by the reference

The information = = =, gives information concerning the unkncl.;wn error point
iti ion in the f E] = 6-1[X]can be written
position [E]. The structural equation in the form [E] [ EE]_I[E] e [TEIX;
2

[ENE] = ¢7'75'[X] = ¢7'[75"X]

1 on G*. The information also produces a restricted structural equation

and then separated: describing position on that orbit:
E = —1[T~1X ]5
E - =ein | [B] = ¢ F'X] K] = plE]
[E] = 51X L (See Figure 14.)

2 The error distribution conditional on its H, orbit can be expressed as

i i = 7, determines the H, orbit of [E] on G* (also the H;
The information 7 = 7, determi 1 B A = e ox
1

Hy,

G or equivalently as

[E]l: H.,E = Hyr'X.
1

0 roHy = goH1 The conditioned model then has the form --— . -

Conditioned Model
[E]l: H.E = Hy7'X,
1

[7a'X] = glE].
1 1

Alternatively, suppose the information = = 7, had been available when the
model was being constructed. The error distribution would be

E.

Figure 13 The information 0 € 7yH, or, equivalently, = o
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is invariant under multiplication on the left by an element of H, and on the

And the structural equation would be  right by an element of H,. The composite differential

H= et dpall)
or du,(h)
Y = 75X = ¢E. Ay(k)
Thi 1d give the structural model has the same invariance property. Let 6 be their ratio at the identity i then
is would give the str
Ak
E, k) = 8 1) - dp) = 8 () AE) doy).

based on a quantity @ in the group H,. The reduced model would be The substitution 2 — A1, k — k1 leads to a parallel relation:

[El: H,E=H,Y,
1

dv(kh) = § dv,(h) 2183 dvy(k) = & dvy(h) A(K) dua(k).
(Y1 = glEl. i

The probability element for the error variable [E] can be expressed in
terms of the components [E] and [E]:
1 2

8([E]: D) du([ED)

This is the same as the conditioned mode;l in the preceding paragraph.

*§ MARGINAL AND CONDITIONAL DISTRIBUTIONS

i i i istribution
The test of significance in Section 6 required a marginal distributi

i ' = k(D)f([E]D) du([E])
ide i ion in Section 7 produced a )
jable. The use of outside informationin roduc
(c)«]jna;;t?;;z:g Vgirslfribiltion of the error variable. Marglgal and cond1t1<?r}a1 ‘ A([E;)
distributions can be derived quite generally. They provide a decomposztwr{ _ k(D)f(l[E][EgD) s d[ul(l[ED o d‘ua([Eg)
of the error distribution and a corresponding decomposition of the structura ATF]
distribution. . . =T ' . AGED
i th error density f(E) on &; _ s
Consider the general structm‘?l model Wi \d that the quantity 6 in G = ky(IEID)/(EIEID) duy((E]) - (D) Y duED.
suppose that Assumption 3 (Section 3) holds and tha q ] 1 2 [ kl([EgD) Az([E;) :
can be factored uniquely: . -~

0 = ¢ The last expression is written as a product of the conditional distribution of

3 vely E] given [E] and the marginal distribution of ; the constant k,([E]D
where 7 and ¢ are in subgroups H, and Hj, respectively. [E] given [ } g [Eg ‘ 1 ]2 )

Let [X] be a transformation variable with invariant differential
X
: Jy(X)

on L. Let du(g), dw(g) with A(g) be invariant differentials og_G, ?:3:(1}3 "
dv, (k) with A, (k) be invariant differentials on Hl (an open setin L, une;:;l on h;
and du,(k), dv,(k) with Ay(k) be invariant differentials on H, ('fm op
L, dimensions).

The adjusted differential

1 2
normalizes the conditional distribution. - e

The structural probability element for 6 = ¢ can similarly- be expressed
in terms of the components ¢ in H; and r in H,:

dm(X) =

g*(0:X) db = k(D)f(6-1X) A([X]) dv(6)
= k(D)f (p7'772X) A([X]) & dvy () A7) dpuy(v).
The restricted structural equation for @ and [E]is
1

dp(hk)

[E] = ¢7'[+X],
Adk)

1 1
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Problems 75
and the corresponding differential is PROBLEMS
= A XD dvi(@)s
am((ED = S XD AP

1. A group G is called commutative or Abelian if gh = hg for all g hin G.
the remainder of the structural equation 18

[E] = X,

2

(i) Show that the location group and the scale group are Abelian.
(ii) Show that the positive affine group is non-Abelian.
(iif) For the location group

iti istributi then be
The normalizing constant of the conditional error distribution can
used:

£4(6:X) db = k([ X1D) /(¢ 1" X1D) Al XD dn(®)

Hy = {[a,1]: —w <a< w}
show that
du(la, 11) = da, dv([a, 1]) = da,

A(a, 1]) = 1.
(iv) For the scale group

D)o ACXD g oy

Hy,={[0,c]: 0<c< o}
"l X1D) Ay XD

show that
d d
du(o, c]) = —C‘f =dlne, (0, c]) == =dinc,

[
L nditional _
This expresses the structural distribution as & product of the co A0, c) = 1.

i istribution of T.
distribution of @ given T, and the marglnal distribu f (v) For an Abelian group G show that A(g) = 1 for all g in G.

2. Consider the location group
NOTES AND REFERENCES

' 100
. —o < a < @
i i easurement model have been D | I 4
In this chapter the essential elements of tltle m e e el model, : . Tecase
placed in a general framework. The resulting mocel, e coeoding o
covers a broad range of problems, many of which are examn,{ ing on 2
e I b found in Fraser (1961). . ool (4
) n be found in Fr
Some aspects of the structural model can ! o (1966, 1967). e A
The main pattern of development here appears 11 1 r e 1§54) L “
The use of transformation groups (fc_)r examp e{ wi’th respect to the & a 0 1 "
found recurrently through the statistical literature, aiways

classical model and usually as a device to gai'n ‘sxm}‘)hmty% i;x:;x;tg:ls't, their

use here is primary and essential: the seconfi 1ngred1entd9 e e and of
The analysis of conditional and marginal error dis e nge with

factorizations of the invariant measures has developed in 1

A. Kalotay, H. Levenbach, and J. Whitney.

The extra first element in the vector permits the use of matrix multiplication.

(i) Show that G, is an Abelian group. N e
(i) Show that G; is unitary on R2.
(iii) Show that Gx = R2,
(iv) Show that

dm(x) = dz, dz,,
du(g) = da, da,, dv(g) = da, da,,
A =1

(v) Show that g can be expressed alternatively as

GG

i i i i 1-280.

Fraser D. A. S. (1961), The fiducial method and invariance, B:qmeng;:',n:?r,ﬂfg 55, 1.9,
Fraser D'. A.. S. (1966)’, Structural probability and a gel?erallzatngzl, oo Math’, S isties,
Fraser D. A. S. (1967), Data transformations and the linear modet, .

e i Ann. Math.
Jame3$8 1634’]5?.6 (1954), Normal muitivariate analysis and the orthogonal group, ath

Statistics, 25, 40-75. . York.

Lehmann E. L. (1959), Testing Statistical Hypotheses, Wlley,‘ N;‘:i[;{;:ton University.
Peisakoff M. (1951), T ransformation parameters, Ph.D. thesis,
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Problems 77
(v) Show that !
dm(X) = ].—I (dwy; dzy))

76 The Structural Model : T wo

using the notation of Problem 27, Chapter One. Give the formula for

[ al] {1 oﬂ [%J SP)sH(X)
Lo 1JM= de, d d
. ap ‘ 2 . du(g) = =222 dy(g)z_c_l_d_%,
3. (Continuation). Consider the preceding group acting on Ram: €169 €163
o . Ag) = 1.
N toe : x (vi) Show that g can be expressed alternatively as
X= | &y 0 &y | =8 "n 77 Tin | TES 0 ¢ 0
By v Fon o1 Ton 0J L0 )]

is uni : ive the formula for
(i) Show that the group is unitary on R*™. ) ot o . Give
(i) Determine the form of the orbits GX. Note: X can be viewed as a poin lzl, .). u,l }1277:’
Ty - -+ By i RE™ or as an ordered pair of points, (&, - - - » T1a)> (Tgy, + - - » Tgp)y I R

(iii) Show that

(1] ey

i 00 5. Let du(g) be the left invariant differential on G that agrees with Euclidean volume at the
Xj=|2 10 identity: Assumption 3 in Section 3. Show that the compensated differential
=1 "%
Lz, 001 dry(g) = A7Y(g) du(g)

. i iables.
is a transformation variable. Give three other examples of transformation variab

is right invariant and agrees with Euclidean volume at the identity (see Section 4).
(iv) Show that

6. Consider the shear group

i 100
dm(X) = T (day; drz)- :
=1 Gy={| 01 0}, —o0 <k < @
(v) Give the formula for 0k 0
a, 10 } @y “’m) acting on R% -
[az’()l 2y Ty e 1 003(1
. . x=|& |={010 z; | =gx.
4, Consider the scale group o N ’
Lo 0 . : Zy 0 £ 1 Z,
0<e <® . . .
a=llo ¢ (i) Show that G, is an Abelian group.
2 : 0< < ® (i) Show that Gy is unitary on R?; omit the points having z, = 0.
00 ¢ (iii) Find the form of the orbits Gyx.
acting on R?": . SN (iv) Show that
1 - 1 1 : 1 0 0
X = By v Eyp | =&l T T Zin =gX. xl= |0 i of-—
%91 Zon T2 T2n 0 =yt 1

is a transformation variable.
(v) Show that

(i) Show that G, is an ‘Abelian group. o . —0 or
(ii) Show that the group is unitary on R*"; omit points X having (235, - - - » ¥1) = 07 OF
(”2:---,"”2):0'- .
(%ii) Deter?nine the form of the orbits G,X; see the Note in Problem 3.
(iv) Show that

dm(x) = dzy dz,,
du(g) = dk,  dblg) = dk,
Ag)=1.

(vi) Show that g can be expressed alternatively as

(o}l

1 0 0 1 0 0
[X]=j 0 (3 a})¥ 0 =10 sx) ©
0 o - (TR 0 0 5

is a transformation variable.
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(0

7 (Continuation). Consider the group in Problem 6 acting on R*":

Give the formula for

1 P 1 1 - 1
X=]2, " & |=g&|%n " Tm =gX.
Ty Zon Tgy T Pon

(i) Show that the group is unitary on R®"; omit points with (34, ... zy,) = 0.
(ii) Show that :

1 0 0
[xj={0 1 0
0 X)) 1

where 1(X) = 2 m, ,,/% @}, is a transformation variable.

(i) Show that .
dm(X) = [ oy, dzp)).

(iv) Give the formula for
o) (1 0 ] Zyy wln]
0 ) Lk 1 Tyy tt Tam )

8. Consider the progression group (scale and shear group)

1 0
o 0<c; <0
G, = ¢y o <k <o
0 k o .
acting on R%" (X as in problem 7):
X=gX .

(i) Show that G, is a group.
(i) For n > 2 show that G, is unitary on
(%, - - - » Tap) linearly dependent.
(iii) Describe an orbit GX; for convenience repre:

(iv) Show that -

R?; omit points having (@, - - - , %1,) and
sent X as an ordered pair of points in R™.

1 0 0
X1=|0 s;(x) 0
0 X)) 55X

is a transformation variable, where s;(X) = a2,

1H(X) = Zj}—z% » 5(2)(X) = [Z (w9 — t(X)zH/s(X))?]%.
Sl(X) .

Problems 79

(v) Show that

dm(X) = I;[ (dzy; dzy) i
SPX)sfy)(X)

dcy dk de
1 . 2 d(g) = dcy dk dey
€163 cic,

Alg) =3
&) o

(vi) Show that g can be expressed alternatively as

G2

check the multiplication. Give the formula for

(13301 by

9. Consider the location-progression group

du(g) =

s

1 o o 0<c; <
Gy = a ¢ 0 —wo <k <w
ay k Ca - <ag; < @

acting on R®" (X as in problem 7):
‘ , C X=gx
(i) Show that Gy is a group. i
(ii) Forr > 3 show that G. is uni 2n . omit poi i
2! 5 itary on R*"; omit points with (1, . . . -
(?02;3.. <+ » Tyy,) linearly dependent. pomte IR -2 D21
(iii) Show that .
1 0 0
[X]1=| % s(X) 0
. & X X
is a transformation variable with 2 10 sm®
51(X) = [z (zy; — 51)2]%,
. z (@3 — 2)(my; — Fp)

HX) =
51(X) ’ .
(iv) Show that 5@)(X) = [, (g — & — Gy, — &) (X))* 4.
dmxy = LL @052

SPX)shy(X) ’
day da, de, dk dc,

du(g) = o ,
1¢2
day day, dey dk d
di(g) = ..L—-?-c_%é_“iz ,
1
Ag) = .

&
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(v) Show that g can be exptessed alternatively as
o 4 e 0 ]]
ay k ¢
ay o 0 ][5‘11 e ’”an]‘
{ a, ) Lk ¢ Ty 0 Ton

10. Consider the positive linear group

Give the formula for

Lo 1 ¢y C©
1 €12
Gg = 0 ¢y L‘mJ:‘C e >0
21
0 cp Cag

“‘ acting on-R*® (X as in Problem 7): .
: F=gx.
: (i) Show that Gg is a group, a non-Abelian group. ‘ ] o .
' (i) Forn > 2 s?\ow that Gg is unitary on R*"; omit the points X having (11
‘ ' and (%yy, - . . , Tyy) linearly dependent. :
that ’
(i) Show tha ey, dey degs e
lgl?
deyy deyy dogy desp
lgt? ’

du(g) =

dv(g) =
" : A =1.
o ‘ (iv) Show that an invariant differential is

(daxy; dzg;)
dm(X) = I_l‘j{_jlﬁ/—zz—- . .

*(v) Develop a transformation variable. o
11. Consider the positive affine group (location positive-linear grgup)

1 0 0
€11 612 >0
G7= a; €7 Cip : ~
Coy Caz

Ay Cyy Cpa
acting on R*" (X as in Problem 7): .
=gX.
(i) Show that G, is a group. ) )
(i) For n > 3 show that G, is unitary on
i @11+ -+ » Tym)s Eags -« - » Tan) linearly dependent.
4 (iii) Show that
da, da, deyy deyy deyy degy
aa, ad, dcyy 9oy Tz 7 22
|13
day deyy deyy day, dcyy dcyy
e e Ty
ik

’

aug) =

- dv(g) =
Alg) =] gl

Two

L) m]_n)

R®; omit points X having (1,..., 1,

Problems 81

(iv) Show that an invariant differential is

H (dmlidxgi)
dm(X) == W .

*(v) Develop a transformation variable.

12. Let H be a subgroup of a group G.

(i) Show that the sets {gH: g& G}forma partition of G, the left cosets of the subgroup
H (Example: The first part of Figure 9; G is the positive affine group, and H is the scale
group). Similarly, show that the sets {Hg: geGlforma partition of G, the right coselts of
H (Example: The second part of Figure 9). The set-forming braces are used in the free
sense: the set of distinct entities g H formed as g takes values in G (the set g H = g,H with
g1 # ge occurs once in {gH: g€ HY).

(ii) H is a normal subgroup in G if gH = Hg for all g in G. Show that the partition into .

left cosets is the same as the partition into right cosets if and only if H is normal in G. !
(Example: Figure 10; G is the positive affine group and H is the location group.)
*13. Consider a group G and a partition {H,} of G; suppose that the partition {H,} is
closed under left multiplication by any element in G (i.e., for any g and H, there is a set H, f
in the partition such that gH, = Hj). Show that one of the sets H,, is a subgroup H of G
and that the partition is by left cosets of H.

14. Consider a partition {gH} of a group G into cosets with respect to a normal sub-
group A.
(i) Show that a natural multiplication of cosets is defined by

(&28)(goH) = g18,H.
(i) Show that the multiplication rule for cosets satisfies the axioms of a group. This
group defined on the cosets is the factor group G/H of G by the normal subgroup H.
15. Consider the notation for semidirect products on p. 69 in Section 7. Show that

g1 =[5, [gll=[gL
1 1 2 2

16. (i) Show that the location group Hj is a normal subgroup of the positive affine group
G (Section 11 in Chapter One and Figure 8 in Chapter One).

(i) Show that the factor group G/H, can be represented by the scale group H, (Figure
8 in Chapter One).

(iii) Show that

la, ] = g, clla, €] = [g, 1[0, ¢}~
1 2
= [a, clla, c] = [0, c}[c'q, 1].
2 1
Note that
[a, c] = [0, c],
2

~la, el =0, ],
2

a consequence of normality of H, (see Figure 12 with G, H,, H, as defined here).

*17. Consider the example at the beginning of Section 6. Use the notation of Section 7
and the results in Problem 16.
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i t the orbits
(i) Examine the hypothesis g = o OF [n,0 ]_E luo, “Ijﬁgvlgtizgfésﬁiﬂ[l:/se, 11 is in
of H, on G* can be indexed by #([&, s = [& sg]1 gn.e., > Se
one-to-one correspondence with H,lé, s,1)- Determine the value of
H(Ipq, 117ME, 52D
Compare with Section 17 in Chapter One.

z, g i t [&, 5,,] is in one-to-one corre-
H, on G* can be indexed by 1([¢, s,]) = [e, sg]2(1.eA, show that [ !

spondence with H,[é, 5,]). Determine the value of
£([0, 017, s
Compare with Section 17 in Chapter One. . . con.
18 (?) Show that the location group Gy (Problem 2) is a normal subgroup of the location
: joni G, (Problem 9). . . .
Pw(giir)esssgg;/g:}?:tpth: éactor group Gs/G, can be represented by the progression group G,
(Problem 8).
(iii) Show that

1.0 0
181 =10 ¢ 0 }s5.
4 0 k ¢
1 0 0
0
0

[gl=
4

a consequence of norfnality of Hy.
(iv) Show that

100
1
g =la 1.01,
! a, 0 1
1 0 0
g1=1_ olay 1o
1

— ~1g ™
— cglkeray + czlag 7O}

(v) Check the preceding components using the alternative notation:

T

: : rbits of -
(ii) Examine hypothesis ¢ = o, or [#, 61€ [0, 0y}, (Figure 10). Show that the orbi

Problems 83
19. (i) Show that the location group G, (Problem 2) is a normal subgroup of the posiéive
affine group G, (Problem 11). :

(i) Show that the factor group G,/G, can be represented by the positive linear group G
(Problem 10). :

(iii) Show that

1 0 0
Lg] 0 e e,
6
0 ¢y o
1 0 o©
[gi TO0 ey e,
0 cy e
a consequence of the normality of H;.
(iv) Show that
100
Eg ] = a, 1 01,
a, 0 1
1 00
{gg T | May %z, 10|,

cHa; + c¥a, 0 1

R RT ey e )t
2l o2 | o1 Con -
is an inverse matrix.
(v) Check the decompositions using the alternative notation:
U:‘al] [‘-’11 cmj] _ [[GIJ [1 OJ] [[0] ["11 cm]J
ap )’ Co1 Cop a )’ 01 0 Len co
_ [ 0] [‘:11 Clz]i} [[Cn 012]*1[01] [1 0]]
0J’ €21 Cp2 Co1 Ca2 az Lo 1
*20. If A, is normalin G and H, < H, < G, where H, is a subgroup of G, show that Hj is

normal in H;. Compare Problems 18 and 19 and check Gi='Gs < G,.

*21. (i) For the measurement model with normal error determine the conditional error

probability distribution and the conditional structural distribution given the information
4 =y, (see Figure 9).

(i) The structural model constructed with the information s = g is

where

II flep 11 de,,
Y1 =Ty =08

Yp = Tp — o = O€p,
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is is a simple measure- -
where the error distribution is that of a standard nor_mal sample(.)’}"‘:)ls ]x; ; :rlrr:ll; g
ment model with multiplicative error (Prob?em. 19 in (;,hapter . :
probability distribution and the structural distribution for 0.
are the distributions for o. 0 may have
*Z(ZX")InC Zn;sré application of 2 structural model the v.alue of thedgut;rl;ﬁtgon ﬁﬂ{dv(ﬂ)_ ﬁ
OCC;JIer as a realized value from a random process thh. known xsthe O e model .
Primary interest would center on the information Foncernmg 0. from e e formation ;
itself. Iyn certain circumstances, however, there m1g¥1t also be interes . ‘
from the combined processes. The composite model is
p(0) dv(),
J(E)dm(E),
X =0E.

6 value in the
The model has a distribution describing the process that pro;i:ecseést;t;: oroduced " e
structural equation; it has a distribution describing the error pr e P own X 2nd :
value in the structural equation; and it has a structural equation i g th |
the unknowns 6 and E.

i i i lue of X.
(i) Consider the contours corresponding to the information that specifies the va

. . bits:
Show that this information is based on the partition of G x & into orbits
‘ G, E)= {67, gE): §E€G}
. DIXY) i
(ii) Show that [E}isa transformation variable for t.hese orbits; show that ([X], (X)) is
the reference point; and show that X indexes the orbits.

(iii) Show that (@ dinCE)

is an invariant differential. L ) ) o is
(iv) Show that the conditional distribution given available informa

I*(X)f(E1D)p((X] [ET™) dp((ED
in terms of [E] or is

KT O )p(0) AULXD dv(6)

in terms of 63 k*(X) is the normalizing constant.

#23. Let fy(E) dE, X = 0E and fo(F)dF, Y = BF be two structural models with a common -
- 1 s

quantity 6 in a group G. ) o
(i) Check that the composite modet,

FLUEYL(F) dE dF,
X, Y) = 0(E, F),

is a structural model. ! ) ) del
(ii) Show that the structural distribution for 6 from the composite mo

§*(0: X, V) dv(0),

can be obtained from the joint distri 01 t
the second model by imposing the condition 8, = 0, relativeto t
ential.

= 0, from
i — 6, from the first model and 0 , from.
ot xe he right invariant differ-

CHAPTER THREE

Linear Models

The measurement model was developed to describe a system with all con-
trollable variables held constant: the response variable was real valued; the
internal error as it expressed itself in the response was distributed with known
form.

In this chapter two structural models are developed as different extensions
of the measurement model. The regression model handles a broad class of
systems in which the controllable variables are allowed to vary or are manip-
ulated. The progression model provides an extension in a different direction
and handles a rather special kind of system with vector-valued response
variable, special in being progressively structured in terms of error compo-
nents. The range of applications of the second model is limited, but it supplies
some of the notation and method to be used for a more comprehensive
model that is developed in later chapters. -

- The regression model and the progression model can be combined in a

single general composite model. A succession of problems presents this
extension. :

THE REGRESSION MODEL
1 EXAMPLES

Consider a stable system having a real-valued response. Suppose that
selected controllable variables are subject to manipulation and that the
response component of internal error has a known distribution f(e) de on
R Suppose also that twelve performances of the system have been made and
Y1, - - - » Y12 ar€ the observed values of the response variable.t

1.1 If the controllable variables do not affect the response level, then the
measurement model is applicable. Let x designate the genéral response level

1 In the presence of controllable variables a response variable is typically designated by y
and a controllable variable by .

85
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tion can be
and ¢ designate the response scaling of error. The stn‘xct\tllizzl :};Zx n can o¢
written in the special notation of Chapter One 'orfm e T venient
dicated by Problem 26 in Chapter One; the ¥nat1-71x orm
for generalization here. The structural equation 18

111111111111

Y1 Yo Y3 Ya Ys Ys Yz Ys Yo Yo Yu Yi2 1
1 0 11111111111

poolle e e e € € € f O €o €n €
The positive affine transformations
1 0] —w<a<®
3 i i = (Ygs -+
form a group under matrix multiplicz‘ltlon. The orbit og adpgm:}i on(e{ji o
1) in R is the half-plane containing y and subtende . ty e e in
sional subspace L(1) = {al: —o0 < a < oo}. The orb
the two-dimensional subspace
—w< < 00}

L,y ={a11 + any: << ®

but consists of points with positive coefficient for y:
—n<a< oo}

. e - c : .
*(1;y) {al-k y b< ok ®
See Figure 1. . dom
( ele.Z lgNow sz.lppose that nine of the performanc§s ‘werehchos;;gr:t l;(\l,:n m
and given a certain treatment, and that the re_rg;umlngzt r?)eeand‘mise " i
treatment; designate those with no treatment by 1, 2,

i treat-
treatment by 4, . .., 12. Let §, designate the response level with no

i - ent to with=
ment, and B, designate the increase 10 level from no-treatm ‘

treatment. The structural equation can be expressed as 1
{1 r 11 11 1 11 1

00011111111,1

Y1 Y2 Ys Ya Ys Ys Y1 Ys Yy Yo Yu 1y121 1
1 0 0 111111111

1
={0 1 O 000111111.11

ey €12
B Bo @ e; e, €3 € € € €1 € ey € fu Cu

§1
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1 T

L)

Figure 1 The subtending one-dimensional subspace L(1); The orbit G-y = Lt(1;y),
a positive half of the two-dimensional subspace L(1, y).

An additional row has been adjoined to the error and response vectors to
permit the continued use of matrix multiplication.
The transformations

1 00

—0 <ag, << ®
G={(|0 1 0
0< ¢c< @
a a, ¢
form a group under matrix multiplication:
1 0 0)(1 00 1 o0
0 1 0 0 1 0] = 0 1 0 |,
A, 4y Cjla a ¢ Ay + Cay A4y, + Ca, Cc
1 0 00 1 0 0} 1 0 0
i=101 0}, 0 1 0} = 0 1 0
0 0 1] a, a, ¢ —cla, —cla, ¢!
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s s ion-
This is a simple generalization of the positive afﬁne' g.rc:]ip, ztt is a regress
scale group. The orbit of a pointy = ¥, - - , Y1) is the s

: —w0 < a, < ®
Gy: a1v1+a2v2+cy: 0<e< H

wheref 4 ,
v, = (1: 1: 1’13 1: 15 1:1’ lsla lal) >
v, = (0,0,0,1,1,1,1, 1, 1,1,1, 1),

(See Figure 2.) The orbit is a half three-space; the orbit is contained in the

. three-dimensional subspace

L(¥y, Vp, ¥) = {@Vy + aa¥2 + da¥: —® <a,< o} '

Gy
=L (v, Va3 3)

it Gy =L y,023 s
Figure2 The subtending two-dimensional subspace L(¥y, Va)- TheorbitG -y (7

a positive half of the three-dimensional subspace L{v, Vo, y)- |
es a transformation acting

H 2. 1 t !
+ The elements of G are transformations on R2; the dot.demgn:ct o o liplication -
ony in K%, A transformation as represented by a matrix can ‘ ’

provided the additional vectors are adjoined to ¥.

§1

but consists of the Aalf with positive coefficient for y:

Examples 89

—w <L a, <

0<c <o

L+(v1: Ya; y) ={ & + asVy + cy:

The orbit is subtended by the two-dimensional subspace

L(vla Vz) = {a1V1 + [lzvz}

and consists of the positive translates

L(vh 72) + cy

of that two-dimensional subspace. Note that points y in the subspace
L(vy, v;) are implicitly excluded ; compare the measurement model, Section 12,
Chapter One.

The characteristics of the process can be described in various ways. As
alternative quantities describing the process, let «, designate the average
response level corresponding to the twelve performances, and «, designate the
increase from the average level for no treatment to the average level with
treatment. The structural equation can then be expressed as

1 1 1 11 1 1 1 1 1 1 1
-3 -3 -2+ 1 % %} F O} O} o3
Y1 Ya Ys Yo Ys Ys Y7 Ys Yo Yo Y11 Y12
1 0 0 1 1 1" 1 1 1 1 1 1 1 1 1
SN SN S TN S S T

€y

—3
1

o Uy O €y e3 ey €5 €5 €5 ey el €1 e

The general level corresponding to the first three performances is
a —do =y, ~
and corresponding to the remaining nine is
% + 3o = By + B
The orbit of a point y is of course the same as before. The orbit is
—o < a, < 0

G-y ={aw + &w, + cy:
I< c<w

= L*t(wy, Wa; ¥},
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~

The new structural equation can be related to the old:

in brief, the change of basis for the subtending subspace is

()= 300
W B -1 1 \

A 1 Oy v
s MRS
= Lt (wy, W3 ¥) Yy —pa 1)y,

Wl [ 100w
w, =|—% 10 v,
—~ e — Y L 00 1)Ly
55555 “ptwy " (1001 0 0)(v
“““““““““ = —% 10 1 0 Vé
::;?0 ~ 00 1) \ﬁl I32 o)l e
e " (1 00)f1 0o o) 10 0)
s / ———
\\\4:/ J// \“\\\ = ..._2_ 1 0 1 0 —_% 1o
A _zm,
i ilefJWJ:W) L 0 0 1JUB B oJ 00 1
. 1 00 v;
V 3 = . The orthog-

i i -di ional subspace L(wj, wg) = L(v, Vo) - orth ! ’
Flgﬂf"g Tttle sub‘eirsld;%%agr‘:;% ;:2:5:,2 by subtracting the (.:ompc?nen; pzévlazepL(::l. ’ £ 1 0lw
f;itlxzibitvg'o; :2L+(wl, Wy ¥), @ positive half of the three-dnmensxoria subsp: b o "
Wy, ¥). Do o y
where oL "

1y, s
w,=(1,1,1,1,1,1,1,1, 1,1, 1’ ) S And the new guantity in terms of the old can then be extracted:
w=(—b-L-bbLbbbbELED oo oyttt an then b cxmteds
is 01 Oof=|-2 1010 1 0} -2 10

The basis V4, v, for the subtending space has been replaced by the new basis .
oy (see jLl;i 2ure 3). Note that w, is orthogonal to w(= Vy)- o 5 o o 0015 g o o
e gtrix expression for the observation vector y can be expre

) The new ma e P . O
e (04, %) = (By, Bo) , = (B, B2) 3 1

w; 10 0}{v —3 " .
wil=/|—2%10{|v|; = (B, fo)P = (ﬁl,ﬂz)[ ) 1].
y 0 0 1LJuy ’
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Note that a; = fi; The alternative structural equation with its orthogonal
basis vectors wy, W, has some advantages for later analysis.

1.3 Now suppose that three of the nine treatment performances were
chosen at random and given a level 0 of a variable z integral to the treatment,
that three of the remaining six performances were chosen at random and
given the level # = 1, and the remaining three were given the level % == 2.
Let the performances be numbered 4, 5, 6 for level z = 0; 7,8,9 forz = 1;
and 10, 11, 12 forz = 2.

If the additional variable = affects the response level linearly with coefficient

B, then the structural equation can be expressed as :
1 1.1 1 1 1 11 11 1 1
' o 0 1 1 1 11 1 1 1 1
| 0o 0 0 1 1 1 2 2 2
Yy, Y2 Yz Ya Ys Ys Y1 ?Js Yo Yo Yu Y2
1 0 00 111 1 1 1 1 11 11 1
o 1 00 o 0o 1 1 1 11 1 1 1 1
=1y 0 1 0llooooo0oo0o 11 1 2 22
By Be By ol e € € € & e; e€; €y € €w fu Cfu . -
Figure 4 The three-dimensional subs ;
CGey =Lt " pace L(v,, Vy, ¥5) Which subtends the half four-
“The transformations ¥ =L, vy, va5 ). ¢ hall four-space
where
0 0
— < a, < © v, =(0,0,0,0,0,0,1,1,1,2,2,2).
1 00 T ' (See Figure 4.) Th it
G= 0 0 10 dimens'g ; .) The orbit is a half four-space; it is contained in the four-
0< ¢ < coeﬁicilj::f subspace L(V‘x,‘v‘:, ¥, ¥) but consists of the half with positive
4 a4 4 C 2 or y. The orbit is subtended by the three-dimensional subspace

. D . L(VL, Yay V3) = {alvl + ay¥, + asva}’
form a group under matrix multi

plication, an example of a regression-scale’
group. The orbit of a pointy = Yy - - - i :

, Y1a) 18 the set

and it consists of the positive translates

L(¥1, Y2, ¥3) + ¢y
of that three-dimensional subspace.

-0 < a, < @
0< ¢ <

© As alternative quantities d ibi i
werage roanomm, ? 1 escn?mg the process, let «; designate the
P evel corresponding to the twelve performances, let o,

= + N de M .
L+(vy, Vo, Va3 ¥)s signate the increase from the average level for no-treatment to the average

93
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level with-treatment, and let o, be the coefficient for change of level with

respect to the variable . The structural equation can then be expressed as

. 1 1 1 1 1 o1 1ot 1l
4 -2 -3 + + t t % it
0 -1 -1 =1 0 0 0 1

1 1 1 1 1 1 1 1 1 1 1 1
g -3 -3 &} ¥ 3 & b 3 F 3
0 0 0o -1 -1 - 0 0 0 1 1 1

L 51 e 3. € e € €7 €y e e € fu

The orbit of a point y is of course the same as before. The orbit is
—w<a, < oo}

G-y = {aW; -+ agWp + 3%y + ¢y
0< ¢c <
= LH(wWy, Wa, Vg3 ¥)s
where
Wy = (01 07 0: '_'1: '—1’ —1:03059: 1’ 13 1)/'

The basis v,, Vs, Vs for the subtending subspace hés been replaced by the new
basis w;, Ws, Wy (s€€ Figure 5). Note that ws, W, and wy(= vy) are mutually
orthogonal.

The new matrix- €Xpression containing the observation vector y can be

expressed in terms of the old:

W 1 0 0 0llv
Wo —2 1 0 0|
W3 - -1 1 01| va :
vy o o o 1|lY

e Yo — ot . .
3 = V3 — Vp; the diagram illustrates the more general case in which

Examples

L(vy, v, v3)
=L(wy, wg, W3)

Figure 5 T i i 7
! hg: orthogor;z I?IZJ:dspace L(w,, Wa, w3). which subtends the orbit G-y = L*(w. -
o catvatontin vector wj is obtained from v; by subtracting compon o v Wi ).
y by subtracting components p3w;, p32w, (note py, = pgz) elmstlfalvv re
30 = . In the example

by removing both v;- and v,-components. W is formed from v,

in brief, the change of basis for the subtending subspace is

w; 1 0 o)(vw)L
we | = | —1 1 0 \
W3 0 -1 1)Ly
K 1 0 0)(w
=Plv|=|— pm 10|
¥ —Pun —Pz 1J){v

The ne i
W structural equation can be related to the old equation and the new

95
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97
; : Regression Model
quantity in terms of the old quantity can then be extracted ‘ g ) ) “
' L1/(e) T de.,
1 0 00 . S
v 1 0 ;
01 00 1 0w
0 0 1 0
®% Oy O3 C - = .
~ - v, 0 1 0l|w
i o o ol)ft1t o 00 1 0o o0 0 r .
0 1 0oo0fl-32 1 0 O y Bo - B ol
3
=] o 0 —1 1o’ The model has two parts: an error distribution which describes the internal
-1 1 ojffo o 10 - operation of the system (with € as a variable); and a structural equation in
0 1B B Bs © 0 0 0 1 which a realized vector e from the error distribution has determined the
0 0 v relation between the response observations y and the unknown values
in brief Bs, - - - » B> o for the system characteristics (with e as a constant).
or 1 HEL 1 0 0 100 The notation can be made more compact by letting
‘ = 310 ' e
(ot = (B fu B| =2 1 0| = s Bos )| 2 Vi U ™
0 —1 1 1l
= (B, Ba ‘3'3)1)—1 = (B1; {32’ B | P 1 0 v, U " Upp —
o1 o Y Vi Ya
Note that ag = B,. The alternative structural equation with its OthOgonal- | des?gnate the response vector y with appended structural vectors vy, . . . v,; by
b s t - v:- w. is convenient for some analysis in later sections. letting
asis vectors Wy, Wy, W3 | v .
2 THE MODEL . _
. se
Consider again a stable system with a ‘real-valued‘ response zr/ld Stltllgt)ct)h'
that selected controllable variables are subject-to m?.m;‘)ula’_tlor}?e) 4o on R E= —
response component of internal error has a known distribution ) y v
Also suppose that there have been n performances of the)f;yiSx % sappos " e D,
observations on the response variable are y = (?{nu 1 a.xt.e él?nd that informa e e v e,
that various controllable variables have been mamp nse leve designate the error vector e with appended structural vectors; by letting
tion concerr{ing the system presents the sequence of general respo o 1 e
as linear in structural pectors ¥y, ..., ¥p: The vectors tvl’n X e :l;; siable
values of treatment indicator-variables, or values of con.r;)th s
or values of combinations of these variables; compare wit . ethe reEponSé .
Section 1. As quantities characteristic of the s.ystem let o be - i = .
scaling of error, and let By, . - - » B, be the coefficients that present z - P')ché i 0 L o
levels in terms of the structural vectors vy, ... Ve The system ;

performances can then be described by the
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designate the composite quantity in matrix array; and by letting
f(E)dE = T f(e) 11 de:

designate the error distribution. The regression model can then be written

J(E) de,
Y = OF.
The transformation 6 is an element of the regression-scale group
1 0 01
. : —w<a,<®©
=187 0< ¢ <@
0 1 0
ay a, c
with group properties )
1 00 ( 1 0 0 1 0 W
| 0
0 1 0}i0 1 0 0 1
Ay A, C Lal a, ¢ tAl + Cay A, + Ca, Cc}
( 1 0 0) (! 0 0) 1 0 0
L= . P Y . = . ' .
0 1 010 1 0 0 1 |
0 --- 0 1 4 " oa ¢ —c g, - —ca, )

The orbit of a point ¥ is the set
GY = {gY: geG},
or equivalently the set ‘.
—0 < a, < w0}

Gry=jamt bR T AT o cw

= LH(vy, . .., V3 Y)

§3 A Transformation Variable 99

Suppose now that n > r ++ 1 and that V1, .. . V. are linearly independent; this
* avoids trivial cases with more quantities than effective measurements. The

orbit is a half (r + 1)-space; it is contained in the (r + 1)-dimensional
subspace

L(vl’ e ,Yr, Y) = {alvl + e + arvr + ar+1y: — < a, < OO}

but consists of the positive half corresponding to positive coefficient for y.
The orbit is subtended by the r-dimensional subspace

L(Vh R ) V,.),

and it consists of the positive translates

CL(vy, oo, v) ooy

of that subspace; see Figures 1 and 2. The poinisy in the subspace L(vy, . .., V,)
are implicitly excluded without loss of essential generality in the sequel.
A point y is carried into a point

~=a1"1+"'+arvr+cy

by a transformation g. The vectors Y1, ..., ¥, ¥ are linearly independent;
there is then no alternative choice for a transformation carrying y into y.
It follows that G is unitary on R™ (subtending subspace excluded). And it
follows then that the regression model is a structural model.

3 A TRANSFORMATION VARIABLE

Consider the choice of a transformation variable [Y] to describe the
position of a point Y on its orbit. For the measurement model the Jocation
variable Z gave the projection Z1 of the vector x onto the one-dimensional
subspace L(1), the scale variable s, gave the distance of x from L(1) (units of
length (n — 1)*%), and the transformation [%, s,] gave position (see Figure 6).
A transformation variable can be defined for the linear regression model in an
analogous way: Location can be described by the projection of y into the
subtending subspace L(vy, ..., V,), scale can be given by the distance of y
from the subspace,-and position by combining these into a transformation
matrix.

Consider a point y (or Y)in R”, and let
bl(y)vl + - + br(Y)vr

be the projection of y into the r-dimensional subspace L(vy,...,v,): The
Projection of y into the subspace L(v,, . . . ,v,) is that vector

byvi+ -+ by,




onal subspace L(1).

Figure 6 The vector ¥, and its projection 41 on the one-dimensi
Squared lengths of vectors are recorded.

y

1 0 0
¢ ‘ (OY) v
b baly) s b
1(¥) 2 \y — by(y)v1 — ba(¥)v2

.

Figure 7 The projection b;(¥)vy
Squared lengths of vectors are recorded.

100

+ by(y)¥, of y into the two-dimensional subspace L, ¥

§3 A Transformation Variable 101

in the subspace for which the residual vector

. Y= (v + -+ by,
is orthogonal to each of v, . . . , Y,, and hence to each vector in L{v,, . . . AN
(See Figure 7.) The orthogonality conditions in the definition are

(y——blvl"—..'_brvravl):O

¥ =bvy =+ =by,v)=0,
where (X, y) designates the inner product
G =2y + -+ zy, = (y,%
of the vectors x and y. The inner product is linear in each argument:
(@%;, + a%s, ¥) = ay(xy, y) + ax(Xs, ¥),
(O biyy + beys) = bu(X, ¥1) + by(x, ¥2);

accordingly, the conditions can be rearranged to give the orthogonality
equations:

(vla vl)bl + A (VU vr)br = (vl’ Y)

(V,., vl)bl + o + (V.,, vr)br = (vr) y)

The inner products as they appeaf in the preceding array form the first »

rows of the matrix product:

~

L P
U1 U1 Y
YY = .
U1 e vrn
Uln  * Urn - Yn
\yl e y’n
p
(v, v) - O %) (v, )

(V,., vl) o (V,., V.,.) (V,., y)
SO R A AR )

\0 ADE
§F e

Q\ 9

(O
F8 ammmen ©
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Let the first r rows of ¥ be designated

[ Uin

the orthogohality equations can then be written:
by
|44 = Vy.
b,
The vectors vy, . . . ; ¥, have been assu

V is of rank r; and the matrix VV'is
The orthogonality equations can then

bl(Y)

be solved uniquely to give

= (VV'y V.

b.(y) |- »
The projection of y into the subspace L(vy, - - - v,) is
bl(}’)vl + e + b‘r(y)vr’

where the coefficients by(¥), - - - > b,(y) are given by
by(¥)

= (VY)Y

b.(y)

. . -
the coefficients are called the regression coefficients of y on ¥y,

case of a single v the regression coefficient 1s

™.y .

b(y? = v’

med linearly independeni: the. matrix
then of rank r, hence is nonsingular.

.., v, Inthe ©

§3 A Transformation Variable 103

the general form is analogous: the inner products with y multiplied on the

 left by the inverse of the inner-product matrix.

The projection of y into the subspace L(v,, ..

., V,) can be defined alter-
natively as that point
bvi+---+ by,

in the subspace at minimum distance from y. Let b,(y), ..., b,(y) be the

coefficients obtained by solving the orthogonality equations. The difference
vector

y— z b uVu
1
can be represented as a sum

@—émm&+§mm—mm

of two vectors that are orthogonal; accordingly, the squared length of the
original vector,
2

ly—zbuvu
1

is equalf to the squared length of the first vector plus the squared length of
the second vector:

s

2

+

2

Iy—é%@n

Ez;(bu(Y) - bu)vu

Choosing by, . . . , b, to minimize the length of the original vector is equivalent
to choosing by, . .., b, to minimize the length of the second vector, but the
second vector can be made equal to the zero vector by choosing b, = b,(y).

Thus the projection into the subspace is the closest point in the subspace
(see Figure 8).

The residual vector is

Y= b(y)vy — - = b,
Let s(y) be the residual length:
S(Y) = Iy - z bu(Y)vuly
Sy =1y — 2 b0y,
=¥ = 2 b0V ¥ — 3 b(NV.);

T Pythagoras. If x and y are orthogonal, (x,y) =0, then |[x +yP =(x + y,x + y) =
&%) + 2, ¥) + (5, 9) = (X, %) + (7, ¥) = [x|2 + |y
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104 " The variable
1 0 0
y [Y]= - .
—'Ebu(y)vu 0 1 0

{Ebuvu
: bi(y) -+ b(y) s(y)

is an element of the regression-scale group; the matrix

’

nnnnn Zbu¥IVy Vi Vg 0 Uy,
""""" ' 30, = bu)V.
T Foas pry=| . |=
~— < ,
/7‘,~~\ _— e vy Un Urn
4 ‘~~‘_~‘ ,
~~~<l_ -~ d'(y) di(y) - dly)
T~ V1, vy then demgnates a vector on the orbit of y, a vector d(y) which has unit length
=~ and is orthogonal to the subtending subspace L(vi,...,v,). It follows that
secti Y)is a fixed point, a reference point, on the orbit G Y. And it follows then
,¥,), and the projection % b, (v, of D( . © °P !
Figure 8 A general point T, b,¥, in the subspace L(vy, V2) is the point in L(vy, ¥y) that - that [Y]is a transformation variable. The transformation [¥] as an element

y into the subspace L(v;, v2) The projection point 2 b, Wy,

ofa duphcate group G* gives the position of Y on its orbit; see Flgure 7.
is closest to y.

The regression model can now be written -
J(E) dE,
[Y]=06[E],  D(Y)= D(E).
The structural equation conditional on the orbit has simple form:
bi(y) = B, + oby(e)

and let d(y) be the unit residual vector:

d(y) = S“I(Y)(Y — by — br(y)v,).

: ' : has
The unit residual vector is orthogonal to the subspace L(¥vy,- .-, V),

F(Vyy e Ves Y):
unit leneth and is a vector in L¥(vy, . . -, Vo nd
The \;g;ctor y can be reconstructed from the regressxon coefficients a

residual length: . .
. d(y). Co
y = b(@vs + - - + bV, + 5(3) 4O b(y) = B, + ab,(e),”

_ This can be expressed in matrix notation: s(y) = os(e).

v | 1 0 0 A The regression coefficients and residual length have produced a transforma-
. ) tion variable with some convenient matrix properties. The regression coeffi-
cients and residual length are based on Euclidean distance:
=117 . 0 v ly = x| = (X (v — 2%,
\4 0 , " -and on the related inner product:
Y b(y) -0 by s®JLID

(X, Y) = z xzyz
= [Y]D(Y).
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The use of other distance functions such as

d(y, x) = 2 19: = =l
can produce other transformation variables in an analogous manner.

The distance function Y, |y; — ;| has some computational advantages in
that certain quadratic calculations for Fuclidean distance are replaced by

linear calculations; it is amenable to the linear programming algorithm and

in some problems can be convenient for high-speed computation.

4 WITH ORTHOGONAL BASIS

In the examples in Section 1 structural Vectors Vs, Vg, V3 WEIC successively
introduced to describe successively more complex dependence of the general
response 1ével on controllable variables. Then, as an alternative, structural
vectors Wy, Wy; Wy WEILE successively introduced to describe the same succes-
sively more complex dependence. The vectors Wi, Wp, Wy WeEIe mutually
orthogonal, and there was mention that this orthogonality had advantages
in later analysis. - ’

Now consider in general the regression model and suppose that the
structural vectors vy, Vg, - . . , ¥, 2I€ in a natural order of decreasing intrusive-

i
§4 With Orthogonal Basis 107
I sid i 1 Wy, W Y, e
esidual vector and is orthogonal to v s Vo and hence to 1 2 Finall j I tv
C Prts s e s Pror—1 be the regression coefficients of v, ony; Vrois the Vé;tOI
T 3 <y Tyl

;vrfl ‘115 }tlelzgetktxe corresponding residual vector and is orthogonal to v A/
and hones oWy, ..., W1 The matrix W records the orthogonalbstn{c’tu;;i
1 - - - » W, derived successively from the structural vectors in V.

Th 0O an be presellted n term Of the altel native baSIS fOI the
.
€ Im del C S

W ottt Wi
Y =
Wiy Wren
yl " e y,".

designate the res
ponse vector i
appended; let y but with orthogonal structural vectors

. . . . W e
ness, in the manner indicated by the examples. The corresponding sequence 1 Win
of orthogonal structural vectors can be constructed by the results in Section 3. )
For notation, consider-the equation Fe
Wi 0t Wi
Wiy " W, -
[WH Tt W e .- ¢
X 1 .
W= =PV designate th ; )
e the error vector e but wi
. and let t with orthogonal structural vectors appended;
Lwa = W I 00
~ D
1 0
U1 Uin =
—Pa1 1 6 = .
Vg1 U2n -
| TP —Ps2 0 1 0
C ' * o, ©
. designate th i .
Vg " Upn tura% Vectorse ;C;ll':posue quantlty appropriate to the new orthogonal struc-
L_ P e —Prra L form . regression model can then be expressed in the alternative
Let p,y be the regression coefficient of v, on v;; the vector Wy is then the o
corresponding residual vector and is orthogonal to v, = Wy. Let pa1, Pse be J(E) dE,

the regression coefficients of v; on vy, Vy; the vector wy isthenthe corresponding

=i
1

D
try
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The new matrix ¥ can be expressed in terms of the original matrix ¥
ro1 0{0)
—pa 1
—Pan —Pz 1 P 0
V4 . - . Y — Y,
' 0 1
—Pn T —Prr 10
L o e 0 0{1]
And correspondingly £ can be expressed in terms of E:
I IV
E=
01
The new structural equation can be related to the old:
| P 0O
Y= PO Y = 0E
0 1| 01
-1
‘ P O
| P 0 o P O . E
“lo 1| lo 1 01
P oY) (P O
= 01 - E.
01 0 1
The new quantity in terms of the old can then be extracted:
Ppo) (P o)

a— ]

o 1| |0 1]~

with ¢ common to § and 6, this can be expressed more briefly as
(,0(1‘, R 0(,.) = (ﬁla s .BT)P‘]"

The inverse of P has the following form:

1 0
p21 l
pi=| )
1
Prl Pr —1 1

Three

Note then that «, = §,. Compare with examples (1.2) and (1.3) in Section 1.

The general response level is of course the same regardless of the basis for
the subtending subspace:

W W] v
(0('1:'~'3°(1‘) s =(ﬂ1:"'1ﬁr)P~1 ) =(ﬂ1:'-'=ﬂr)
W, w, v,

The general response level has new quantities for a new basis.
Consider the transformation variable in terms of the new matrix ¥:

1 0 0

[¥]

0 1 0
41(Y) aly) s(y)

The elements ay(y), . . ., a,(y) designate the regression coefficients of y on
Wiy e, Wt . B

a® | [ mow) 0 |7 ()
| af(Y) 0 (w'r’ wT) (WT’ y)
= Wy
)= s

The orthogonality of the structural vectors allows the regression coefficients
to be calculated individually: a, is the regression coefficient of y on w,. The
projection of y into the subtending subspace by its definition depends only

ony and on the subspace; it does not depend on the basis for that subspace.
The residual vector

Yy —ay)w, — - — (Y)W,
=y — bV, — -+ — bV,
= s5(y) d(y)

§¢4 With Orthogonal Basis 109
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: i 1 0
then has the same property; hence the residual length -S(y)Yacr:i trkllzwurll:; { 0 1 8 \
. i . The matrix

residual vector d(y) also have this property aly) axy) sy ¥ = ax 1 — oy ]

written = s(y)d(y) ;
Wit s Win

7= [TID(Y)=[T]| - ‘ ; . PTE) A . i
Wo o T Wi N - T 5
ay o do) L T gy
. . . v d_ ‘
(see Figure 9). Note that the reference point 1n matrix form D(Y) rzzc:lre ds e
the unit residual vector but with the orthogonal structur al vectors app )

The new position [¥] in terms of the old can be extracted in the same
manner as the new quantity 6 in terms of the old:

)7 = Ys
0 1

Figure 9 The projection ay(y)w, + ay(y)wy of y into the two-dimensional subspace
L(wy, wg) = L(vy, v,). Squared lengths of vectors are recorded.

These equations have the same form as the corresponding equations for
§ in terms of 6, and (ay, . . . , ,) in terms of (4, . . . , B.)- Note that a,(y) =
by(y)-

The regression model in alternative form can now be expressed with com-
posite structural equation:

S(E) dE,
(¥Y1=6[E], D(Y)= D(E).

The structural equation conditional on the orbit can be written

I
lcuammmEn)
o N
<v-—‘ (=]
=
lcammmanY
o
- O
—

|
o]
~~
=i

a(y) = o« + Gal(ej |

thus

I
=

(]

With s(y) common to [¥]and [Y], this can be expressec} more briefly as

@@ - - a@) = G, - B

.

a.(y) = «, + oa,(e),
5(y) = as(e).

The orthogonal structural vectors wy, ..., w, can provide directions for

the first r of a new set of axes. For the first axis, a,(y) measures distance in
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f‘igure 10 The observation 7 as y; the error E"'as e; the transformation
i 0 0
F=lo 1 0
233 g o .‘.,
units of length |w,|; the coordinate for the first axis is'then
_ (W1, ) [wl:—(—vb—’-ﬂi
a(y) [w| = (5, W) 1 Il

(il
. Similarly the coordinate for the uth axis is

. R S
auy) ) = =2

(See Figure 10.) f a vector is invariant under an

The sum of squares of coordinatesf oqLmres b cxpressed as &
ion. The sum ot s Zy? ce )
orthogonal transformatio

sum of squares with respect to the new axes:

i Y= i al(y) wl* + 5

i
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This can be recorded component by component in an analysis-of-varignce

- table.
Source Dimension Component Structure of Component
Mean (w,) 1 (a1 () [wy])? (ay [wy] + oay(e) Jwy])?
Tree.ltment (wy) 1 (as(y) [wy])? (e [Wal + oas(e) [wy))?
Variable (wy) 1 (a5(y) |wy|)? (g [wg| + oag(e) [wy))?
Residual (d) n—3 s*y (os(e))?
Total n 32

The sources for the components are labeled in the manner appropriate to the
examples in Section 1.

5 COMPUTATION

The position [Y]is a matrix containing regression coefficients b,(y), . ..,
b.(y) and a residual length s(y). The matrix P, which produces the new
orthogonal basis W = PV, contains regression coefficients of w-vectors on
v-vectors. And the matrix P, which produces the new quantities

(“1’ R ] ocr) = (.81’ R | ﬁr)P_l
and the new regression coefficients
(@, ...,a)=(b,...,b)P,

- also contains regression coefficients, the regression coefficients in fact of
v-vectors on w-vectors. All of these regression coefficients can be calculated
from the elements of the inner-product matrix Y¥’. They can all be calcu-
lated by a simple repetitive operation applied to that matrix.

The three examples in Section 1 concern a single response vector y and its
relation to structural vectors vy, v,, vy: to the first vector; to the first two
vectors; to the first three vectors. Correspondingly, in general, there may be
interest in a response vector y and its relation to structural vectors

R 7T 7N

to the first vector; to the first two vectors; to the first three vectors; ... .
All the regression coefficients for each step can be calculated from the inner
products that appear in the matrix YY", In fact they are obtained as part
of applying the repetitive operation to the matrix YY".

The notation can be extended temporarily to handle the succession of
steps by ‘introducing a superscript to indicate the number of structural
vectors involved: With r structural vectors the response matrix is ¥ ; the
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. ; - Itiplication by the triangular matrix
: (y): 1 length is s (y); mu
regression coefficients are BO(y), . .-, B the residual leng (

and so on.

. r 7
. : : ily by considering two 1
:ple operation can be described most easily O : 0
Vegtt;i:}l,mf;z an% a single structural vector V. The regression coefficients are (v, v
1y J2
(1, v)
(v, ) _(ny) - 1
b(yl) = (v, v) ’ b(YZ) ‘(V, V) (V, V)
. 1 . — (YZ, V) 1
A typical inner product of residuals 18 L (v,v)

Y:i — b(y)v, ¥; — b(y,)v)
( = (y; ¥;) — by, ¥ — by, v) + b(Yi)b(Yj)("a Y) .
— (V, Yi)(va yJ)

v

(a generalization of this appears‘in Problems 14, 15, 16); the inner-product
matrix for residuals is

Left multiplication by a matrix produces new rows that are linear combina-
tions of old rows.

Now consider the inner product matrix YY":
= (¥s yi)

((vla v) o (v, ) (v, W)

YY' =
, YOV, Ya) e
(Y1a Y1) . S‘l}(_%x%;_ll_) (YD yz) — (1—-)’(—‘/)&%"— (V,? Vl) (Vr> V.,-) (Vr) Y)
? ’ . (y’ 1) T (Y» V,.) ()’: y)
vy ¥2i¥) = SR DAAD) (v, ¥2)(¥, ¥o) ' -
oy — I ()

(¥, V) v, V)

The first » rows contain the matrix array of coefficients for the orthogonality
equations for b (y), ..., b(y). If an equation is multiplied through by a
constant, if equations are subtracted, if this operation is repeated so that the
coefficients on the left side of the equations become the r X r identity

matrix, then the new “equations” state that the coefficients on the right side
are the solutions:

Now consider the inner-product matrix for v, ¥1, ¥a!

(V, V) | (V, Yl) (Vz Y2)

OV, ¥1,¥2) = ¥y, ) i (i, 71) o ¥2)
(¥2o V) (Yo YD ™ (¥ar ¥2)

L 0 bW
] e . - . N
i ion is: Divi - he first row by the leading element
simple operation is: Divide through t me
’zz)h(jbtainpa neg first row; subtract multiples of the new first }:om; fr(ol{n reer;;z’z;zz:f . .
’ e . 1 .
rows to produce zeros m the positions corresponding to the leading ) .
1 b(y,) b(y2) L )

Q(YD Yo! V)

In the same manner the first s rows and the first s columns plus the last

column give the corresponding matrix array of coefficients for the orthogo-
. . : o 3 s . (5) . b(s)( ) If the preceding operations are
i i d the inner- - nality equations for &{"(y), , BEI(y). p g op
i i tains the regression coefficients an
The resulting matrix clearly con

. P q ' € ﬁ st Ssrows to pIOduce the S X SIC [E]li 1‘]y then the “Coefﬁcientsu
uct matrix fOI T eSIdua]S Tlle S1my 16 ()peI ation 1S ¢ ulvalel 1t to le{t ] aPPhed tot [\ {
Pfod I st
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on the right side are the solutions:

" (s)
1 0 % -+ * bl(Y)}
0 1 % - % bYW
PR ] PR * &
L* N A E3 J

The simple operation can be applied successively. It generates successively
the 1 X 1identity and the solution b{(y), the 2 x 2 identity and the solutions
b2(y), b(y), . .., the r X r identity and the solutions &7(¥), - - - » b ();
and it generates related elements of interest.

For consider the inner product matrix YY' together with an (r + 1) X
(r + 1) identity matrix: ' '

(vl’ vl) st (VJ.’ V,.) (vl: Y) 1 00

.o . . .

(V,., vl) s (v vr) (V,, y 0 1~ 0
(Y> vl) T (y’ V,.) (Y5 Y) 0 : .. ) 0 1

Apply the simple operation to the rows of the augmented matrix with the
first-row-first-column element as leading element: ,

1‘ p21 L. prl b(ll)(y) E (vx: vl)——l ': 0 0
O(Wa -+ s Ve ¥iV2) 4 :
0 : * 0 1
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The array contains the “solution” b{"'(y), the regression coefficient of y on
vy; it contains the matrix Q of inner products of residuals; it contains the
inverse of (v,,v;), and it contains the regression coefficient py;(= p*) of
v, on v;. The array also contains the elements p*, ..., p™ for the first

column of the inverse matrix P~: the matrix P~ gives the original basis
‘from the orthogonal basis:

V = P'W
vi 1 0 W,
1
' 7r—1 » ’
v, P 1 w,

the vectors W,, ..., W, are orthogonal; the elements of P~1 are individual
regression coefficients of v vectors on w vectors; the elements PPt
are the individual regression coefficients of the vectors vy, ..., ¥, on the
vector wy(= v,).

Now apply the simple operation to the rows of the modified array with the
second-row-second-column element as leading element:

T .. @ ‘ R
1 0 {[pm] * © BT | ey 0 0)
o 1ip p® --- pﬂ b%”(y) 0 --- 0
00 P e 1 0

Q(VB, ) V,., Yivy, VZ) %
00 Goew 00 1]

The array contains the “solution” 6{¥(y), b$'(y), the regression coefficients
of y on v;, ¥y; it contains the matrix Q of inner products of residuals; it
contains the regression coefficients py,, pa(= p*) of vg on vy, Vs and it
contains the individual regression coefficients p*, ..., p™ of Vs, ..., ¥,
on W, The array also contains the inverse of the inner product matrix
V@@’ the row operations reduce V® )7 to the 2 X 2 identity; the same

row operations applied to the 2 x 2 identity must produce the inverse
matrix.
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Now apply the simple operation to the rows of the further modified array
with the third-row-third-column element as leading element;

(100 B | 0 0
010 b(y) (V“"V“" yLio
001 BOY) | 0 0
000 ; ¥ x % 1 0
Q(v4: AR 4 vr’ y:vl) v21 Va) E
§ . 0 1)
L0 0.0 I

N ( ) .
The array contains the “solution” b{(y), b (¥), b;”()f), the ¥e(giFeStSlOl}
coefficients of y on vy, v,, v5; it contains the matrix Q of inner products o
residuals; it contains the inverse matrix (V@ V®")1; ft contams the regression
coefficients py;, Pus, Pas(= p*) of v, 0N V3, ¥, V5 and it contains the regression
coefficients (individual) of v, ..., v, On Ws. . )
The simple operation applied r times produces t.he regression coefﬁmen.ts
bi"\(y) b (y), the inner product matrix of residuals, the inverse matrix
Voo fhe d i 1)st row of P, and the elements to
(VYY1 the elements to give the (r +1)st ro ,
give the rth column of P~1. -

Justifications. For b{(y),...,b"(y): the first s columns and the hy
column contain the coefficients in the orthog<?na11ty equations for. :1 e
regression coefficients of y on vy,.. .Y, the Sl'mplf operatxog apgmtc.: nz
times solves these equations; the resulting “equauops present the s‘ohu i0
in the y column. For p, .y, . .., Pssas: the preceding argument wit ytr.el;
placed by V.. For (V@ @)-1: the first s rows and s columns conta%
Ve y®’ and the first s rows and first s columns»{e.lfte.r the y col'umn con a;n
the s X s identity matrix; the simple operation applied s times amounts fo

i i O :
premultiplication by a matrix—the matrix that carries V¥ into the

N S
identity, hence carries the identity into (I{‘”V“” ). For p3+181, th, p;;aezilii
OWes1s- o5 ¥ ¥ Ve, .., V) (by inc'luctxon from s to s —i—f ): tc patrix
OVei1s - o>V ¥i ¥y, .., V) is the mnejr-product n?atnx' ort t:Iec 'oreSSion
bWV, With v = V,, ..., ¥, ¥: the simple operation gives the regr |
coefficients c(v) for the vectors v — 2§ b (v)v, (with V= Vogm oo v“a fe
on the single vector Wy .q = Vg — 2§ bﬁf’(vfﬂ)vu; since Vo, ... ves e
orthogonal to w,,,, it follows that the ¢(v) (with v = ¥, TR _1/,) ar
the regression coefficients p**¢, . . ., p™ of the vectors v (W1thvt = V.0, d .u.c ;
v,) on the single vector w,,,. The simple operation gives (it))e 1nner-}?ro uer
matrix of the residuals v — =2 6 (v)v, — c(V)(Vers — 2§ b (V541)V,); SUC

replacing standard deviation Sy
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residual has the form v minus a linear combination of Vi,
- is orthogonal to vy, . .
must then be the residual of v orthogonalized to v,, ..., v,, Ver1, and the
inner-product matrix must then be the inner-product matrix of such residuals.

6 THE EXAMPLES

.3V, Vo1, and it

Consider the examples in Section 1, and suppose that the response vector
y is given by the final row in the augmented matrix

1 11 1 1 1 1 1 1 1 1 1
6 00 1 1 1 1 1 1 1 1 1
0 00 0 0 0 1 1 1 2 2 2
712 8 15 13 14 17 14 14 17 14 17

In this example the structural vectors have a simple form that allows the
orthogonal vectors to be written down by inspection and the regression
coefficients to be calculated as averages. This simple form also allows the

examples to serve as a transparent first illustration of the computation
methods in Section 5.

The inner product matrix with appended identity matrix is
’ \2) vjz \A y

v 12 .9 9 162 1

Ya 9 9 9 135 0

o 9 9 15 141 0

0

0
0
1
y 162 135 141 2302 0

0 0
1 0
0 0
0 1

A first application of the simple operation produces the numbers appro-
priate to the regression modelf with one structural vector:

V1 Vo V3 y-© [ —
w8 @ oo o
v: 0 22 23 133 —% 100
vs Of 21 8F 193 | —2 o0 1 0
y 0|13 19 [I15| —13; 0 o 1.

T The model in this case is also a measurement model but with residual length s (y)

«» Vg» Woyq, hence to vy, ..., v, v,,,; such a residual
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The position and the reference point are given in the expressions

YW = [Y®] D(YW) = [1;% VHQJ D(YW),

11 1t 11 1 1 11 1 1
p(ywy=| —6} —1} —5% 1} - 3 33 3 %;__ 3%~ lr“_ '3.%__
VTS Vits V115 V1is V15 V1is V115 V115 V115 V115 Viis V115

The analysis-of-variance table can be calculated:

Structure of Component

Source . Dimension Component
-+ Mean (w,) 1 2187 (4,V12 + oay (V12
Residual (d) 11 115 (c:\'s‘l’(e))2
12 2302

The component 2187 is the difference between the original squared length
lyl? = 3 2 = 2302 and the squared residual length (sV'(y))* = 115. Some

elements in the full matrices, P, P™%, are available:

1 00 1 00
p=10
1

A second application of the simple operation produces“” the numb
appropriate to the regression model with two structural vectors:

¥y Vg Vs Y
v 10 [0 9\%;%00
v201g-—% 400
woole 6/ 0110
'y 00 | 6 P4 -9 —6 0 L

The position and the reference point are given in the expressions
10 0
Y® = [Y@p(y®) =101 0

9 6 /34

D(Y®),

€rs
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11 11 1 1 1 1011 1 1

pyemy—| ° ¢ ot oot 1
—2 3 -l -2 -1 2 -1 -1 2 -1 2
v aE  E G G aETETE e

34 V34 V34 V34 V34 V34 V34 V34 V34 V34 VR

W@ — pepe — 1_ 01w
-3 1ilwv

1 1

1

111 1 111111
o S T T T T T N T S N S -

The analysis-of-variance table can be calculated:

Source Dimension Component Structure of Component
;dean (wy) 1 2187 (V12 + aay()V12)?
reatment (w,) 1 81 (apV2} 21

: v L,V 21 4 aaye)V2))?
Residual () 10 34 2(0'3(2'(;%2
12 2302

Tk(xle) corznponent 81 'is the difference between the squared residual length
(s™(y))? = 115 relative to vy and the squared residual length (s‘”(}j)é = 34

‘relative to v, and v,. The remaining elements in the matrices P and P~ are

~ available:
00 10 0
P="%10,P._1____%10‘
0 —1 1 g@l

A third applicatiop of the simple operation produces the numbers appro-
priate to the regression model with three structural vectors:

Vi V2 V3 ¥

vv 1 0 0 |9 1 -1 ol o
v 001 0|5 |-} 4 - 0
vv 0 0 1 |® 0 -2 il o
y 0 0 0 [28) -9 -5 -1 L
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The position and the reference point are given in the expressions given in the expressions

1 0 0
100 O Lo o
010 0 Y= [Y]D(7)= D(Y),
= = D(Y), 01 o
Y = [Y]D(Y) 001 0 ( 2
L IE 133 6 1 /28
9 5
11 11 1 111 1
1t 111 11 11 1
1 L1 - -1 -t -3 3 3 t % 3 1 % t %
o o o 1 111 1 o, DPH={ 0 0 0 -1 -1 -1 0 o0 0 1 11
py)y=| .0 0 0o 0o 0 0 1 1 1 -1~ o 0 -2 3 =1 1 -1 0 2 -1 -1 1 -2 1
2 3 -1 1 -1 0 2 -1 -

2 3 -1 1 -1 0 2 -l -t 121 Vi VE VE VE Ve V& vV VE VE Vh v 75
The regression coefficients for [¥] are circled in the three matrix arrays.

The computations on the matrix ¥ can be used to illustrate a matrix

factorization that will appear in later sections of this chapter. The matrix ¥
has been factored:

-1

- : P O _
1 1 1 1 1 1111111 Y = [X1D() = [¥] - oh
=|-2 -3 -2 %+ %t tiiiiia B
0 0 0 -1 -1 -1 0 0 1 11 r 1 0 0 0)(1 0 0 0)(w
- " o 1 o oflz10o0]|lw
The analysis-of-variance table can be calculated: =, . 1 olls 11 0llu
Source Dimension Component Structure of Component \9 5 1 \/28 0 | 00 1 &
= < - — N - r‘ l
Mean (w;) 1 2187 (v 12 + oay (€)Y 12 . 1 0 0 . 0l w
Treatme:t (wp) 1 81 (v 2t + aaa(e)‘{_ 21 3 0 o] w
Variable (w3)2 1 6 (%36 + oaa(e)\/a 6) . = : . X o
Residual (d) . 9 28 (o%(e) 0 !
. Y 2302 3 ¢ L vl e

The vectors wy, Wy, W3, d are mutually orthogonal. Let wy, u,, uy, d be the

. : i length ) . -
The component 6 is the difference between the squared residual leng corresponding unit or normal vectors:

i 2 = 28.
5 (y))? = 34 and the squared residual length (s(y))
( TS;, %umbers are also available for the analysis in terms of the orth‘ogonaL " " .y
basis. With three structural vectors, the position and reference point are

— Uy = —=, U = —
[wy] [yl [wsl

Uy =
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the vectors uy, u,, u,, d form an orthonormal set (the vect‘ors uy, Uy, Uy are
unit vectors for the new axes mentioned at the end of Section 4).

(- 0 o olv12

1 o o olfuw
3 1 0 off o 0 || u
= 3] 1 1 0 0 0 6 of|lw
L1335 6 1 /28 o o o 1Jla
Ji2 0 0 ol w
ENSTIENGY! 0 0] ul|
Tlowe Va5 oflul
L1312 6v2r /6 Aﬁé &
{11 11 1t 1 1 1 1 11
o 0 0 1 1 1 1 1 1t 1 1 1
0o 00 0 0 0 1L 1 1 2 2 2
7 12 8 15 13 14 17 14 14 17 14 17

Jz2o o0 o0 0
Wi Yoo o
W12 V21 V6 0
1312 62 V6 28

~

101 3
33— -% 3 t ¢ 3 ¥ ¢ % & 3

-1 —1 S

0o 0 == o 0 0

2 3 -1 1 -t 0 2 —t-t t =21

LEEE@E 28 73\/%:/—5“—%\/—?873:&\75_‘%

k\

0%\/6\/8 Vo o e |
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The original matrix Y has been factored into a positive lower triangular

. matrix and a matrix with four orthonormal vectors. The four row vectors in
the original mairix can be represented by the four row vectors in the triangular
matrix: These row vectors in the triangular matrix are with respect to axes
given by the orthonormal vectors in the final matrix. The inner product
matrices in the two representations are of course equal:

V12 0 0 0 V12 o o o0
. W12 V2 0 o Ji2. 2
Wiz V22 Ve o W2 vz Ve o |
1312 621 V6 V28 J{ 13112 62 V6 Va8

a triangular square-root factorization of YY'.

o
<o

B

7 THE REDUCED MODEL
Consider the regression model as developed in Sections 2, 3:
J(E) dE,
[¥Y]=6[E], D(Y)= D(E).

Let [Y] be the transformation variable defined in Section 3 and W = PV be

the orthogonal basis defined in Section 4.

The invariant differential on the.space X = R" can be obtained (Section 3,
Chapter Two) from the Jacobian of a transformation on that space:

h=awy+ " +aqu,+cy,

gn = yUip + e + QUpyp + CYns
RACIETS
Ja(¥) = 57(y),
dm(Y) = -H—Ci% _4r

s"(y)  s"(y)

The left and right invariant differentials on the group can be obtained
(Sections 3 and 4 in Chapter Two) from Sacobians of transformations on the
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group: And the structural probability element for f given ¥ can be obtained by
0 . 0 0 1 0 0 manipulating invariant differentials (Section § in Chapter Two):
1 0 : .
g4(0:Y) db = k(D(YV))f(67*Y) (i()Q) (s(y)) ™" dv(6)
g
= ’ n Yy — U\ /8 "' _ d w do
0 10 0 1 0410 L0 = k(D(Y)) Hf(i.__z_@_u_) (.(_y_)) (s(¥) 11 4B, do .
. c a 1 o e o
a a & a, a, c¢Jla a ¢
L 4 . 7.2 Decomposition. The structural equation for the regression model,
d; = ay + ca-l
by(y) = B + oby(e)
51' = a, + caf, ]
" - b,(5) = B, + ob,(e),
&= ) .
1 0 af i s@y) = as(e),
0 ! ~
¢ 0 can be separated into a part concerning the #’s:
. . _
Jo = . L=t J::Ll = : I e by = B = by(©) =1ty(e)
Al o1 RS _
0 c ' !
0 --- 0 ¢ ' 0 -+ 0 c*
_n | g =, ' ;
Joa(g) = : Tt ; b,(y) — ﬁr= b.(e) = 1.(e);
da, dc g e
du(g) — LLdeude _ 28 dy(g) = E*f;‘“ T W
¢t < and a part concerning o:
c _1 s _
A(g) = CT+1 = —Er - - = .Sv(e).

istributi iti bility element for the
71 General Distributions. The conditional probability t
error position [E] given the orbit D(E) = D can be obtained by exchanging

In a related manner the regression-scale group has a location subgroup:
invariant differentials (Section 4 in Chapter Two):

1 0 0

g([E]: D) d[E] = k(D)f([E1D) S dE)

sr+1

= kD) TI f(z bov: + sdi) s ] db, ds.
i=1 .

u

—0 < aq, < 00);
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§7 The Reduced Model
the marginal distribution of (1,(e), . . . , t,(e)) is
g2(t: D) T] dt,, = k(D) f I f(s (2 s + d,.))s"-l ds- T dt,.
[ 1 u
L LB)is

Linear Models
The structural distribution for (8,,

wi F di)) s* 7 ds - T dB..

(See Figure 11.)

128
S[EJ\

E
o (es(B), an(B), s(E))

= / g7(B: V) IT a8,

L 4 ) © n

(E), to(E), 1) _ kD) I f(s (z by) = B,
s(E) S(y) Jo q « s(y)
1 A group element g can be factored uniquely,
. (1 0 0 (1 0 0)
/ b B G
oL, P T .
,:' T I/tz(E) ‘T‘
/I t(E) = 4 /:
sy ! as(E) g = [gllg] = ,
J Tt~ H s L 1o 10 10
2 D t
ad) T ‘\\\J.’ 0 0 cJ o &y
, . . ¢ c
: iti bit. ~ ~
’ ion-scal as G*, recording the position [E] of E on its or . :
%fﬁ:@;:;é:ﬁﬁ?ﬁ&ﬁt; iro”ll‘lge scale subgroup S; and an orbit or right coset S[E] as an element of § times an element of L (G is a semidirect product of §
of the scale subgroup S. . and L; definition on p. 69) The scale group S generates orbits (right cosets)
. on the error space G*:
and a scale subgroup: 1 0 0 1 0 0
1 00
S = S ;
S = 0<c<K
0 1 0 0 10
0 1 0 ~ .
: bi(e) b,(e) s(e) ne) - A
0 0 ¢ 4 A
see Figure 11. The error variable (t(e), - . ., 1,(e)) indexes these scale-group
N orbits. A group element g can alternatively be factored uniquely:
ion Distributions. ider inference concerning the f’s. The
7.3 Location Distribufions. Cons ..., 1t,(e)) can be obtained 1 0 0O(1 0 01
g = lgllgl = e
L s
0 1 0f|0 10

a, a. 1J10 0 ¢

marginal distribution of the error v?.riable (tl(e),
from the error probability distribution
k(D) ([E]1D)s™* 1L db, ds:

., 1, 8)is

the joint distribution of (#;,
k(D)f([E1D)s** ] dt, ds;
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as an element of L times an element of S. The scale group S generates the

left coset

1 0 0 1 0 0
6S = L |s= S

0 1 0 0 . 1 0

b boa) b b 1)

for the quantity 6. Thus the right coset distribution of the t"s produces a
left coset distribution for the f's.

7.4 Scile Distributions. Now consider inference concerning o. The
marginal distribution of the error quantity s(e) is

* © n—r—1
gs(s: D) ds = k(D)J . f I;If(z by + sdi) Tl db, s ds.
The structural distr‘ibution for o is

g5(o:Y)do = k(D)f;. . J:,ﬁf(% b, +3_(_y_)di) IT db, (S—(g))wéf.

. o

The location group L genérates orbits (right cosets) on the error space G*:

1 0 0
L{E]=L . s
0 1 0
0 -+ 0 s(e
and correspondingly generates a left coset
- 1 0 0
0L = N VA .

0 10
o --- 0 o

for the quantity 6. The right coset distribution of s(e) produces a left coset .

distribution of o.
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i

7.5 Tests of Location. Consider tests of significance concernilig the
location quantity £ = (f,, ..., f,)’. Suppose some outside source has indi-
cated that

ﬂ1=ﬁ105"'5ﬁr=/31'0'

The hypothesis-B = B,, together with the structural equation, leads to the
value

by(y) — Pio b(y) — b
(tl(e),...,fr(e))=( (ys)(Y)ﬂ (ys)(y)ﬁu)

for a characteristic of the unknown error e. This value can be compared
with the distribution

g (t:D(Y)T] at,

derived from the error probability distribution; and the hypothesis can be
assessed accordingly.

Now suppose some outside source has indicated that 8, = f,,. The
hypothesis = f,,, together with the structural equation, gives the value

b‘r(Y) - ﬁro — ar(Y) - /31'0
s(y) s(¥)

for a characteristic of the unknown error e (the coefficient of the last structural
vector is unaffected by the shift to the orthogonal basis). This value can be

t r(e) =

* compared with the distribution of the variable

_ b _ale)

s(e) s(e)
derived from the distribution g([E]: D(Y)) d[E] or equivalently from the
distribution gz(t: D(Y))dt and the hypothesis can be assessed accordingly.

t,(e)

7.6 A Test of Scale. Now consider tests of significance concerning the
scale quantity ¢. Suppose some outside source has indicated that o = g
The hypothesis ¢ = g, leads to the value

S(e) = fgl)

for a characteristic of the unknown error e. This value for s(e) can be
compared with the distribution

gs(s:D(¥))ds,

and the hypothesis assessed accordingly.
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8 WITH NORMAL ERROR .
Consider the regression model with standard normal error variables:

f(E)dE = (2m)™*exp {—} (e|*} T1 de.,
[Y]=0[E], D(¥)=D(E).
The alternative model with orthogonal basis is

f(E)dE = @m) ™ exp {—% lel*} T1 des,
[7]=6[E], D(Y)= D(E).

8.1 General Distributions: Error. The error probabiliﬁy distributlon: ;
(orthogonal basis) is

g(lE]: D) d[E]
= k(D)2m) ™ exp {—} |2 auW, + sd*}s" 7 [1 da, ds
= k(D) exp {—3(3 a [w,]* + s)}s" 7 [] da, ds

W
= :g———)v;;-z— exXp {"’% z a?z lwu‘z} H da'“‘

2
nvi A, 1 5_}
ww’|” , ' L Onr X ds.
] szZ)T}?e"P (bWl da o ¢ °=3

ror regression coefficients a,(€), . .. : v nor
z:ereialf;es withgmeans equalﬁqto zero and with uar:qncgs h?'ll 2. ..,_lv;lrld e,r:};i
squared residual length s*(e) has a chi—squc.zre dzs‘z_‘rzbuztzoz on nr ,obai,my
of freedom; a(e) and s(e) are statistically zf'zdependfnt, ; le1 erroth{:n babiy.
distribution does not depend on the orbit as given by D.1tfo ows;) fhen tha: e
elements a2(e) [wyf%, . .. , a3(e) |w,|%, s*(e) in .the structu'rec—1 endeﬁt ont
column of the analysis—of—varianc; ta;le (?ectlon 14) nare inase%iven ot
i .with degrees of freedom 1,...,1, n—7 '
ficilr‘;il:si‘;fitl’llfrsrx: 1Note: :gThe density factored so that the variables ?epiéat;i:
the factors have normal and chi-square form; the usual normal a

izi i ced.
square normalizing constants were introdu

The error probability distribution (original basis) can be obtained by the

change of variable: . Do
g (ala"'ﬁar)':(nl""’of)}) 1’

s =5,

, a,(¢) are independent normal

§8 With Normal Error 133
and the substitution W = py:

g([E]: D) d[E]
(2my'?
The error regression coefficients by(e), . . . , b.(e) have a multivariate normal

distributiont with means 0 and covariance matrix (VV')2; the squared residual

length s*(e) has a chi-square distribution on n — r degrees of freedom, b(e),
s(e) are statistically independent.

’ ’ An—T =71 52
TR LV b T ep {" 5} “

8.2 General Distributions: Structural. The structural probability element
(orthogonal basis) can be obtained from the error distribution by substitution,
or from the expression in the preceding subsection:

= oy an |WWH S WW
g*(0:Y) df = W exp {-—é(a — a(y)) g (o — a(y))} da
n—r—1 2
s () g [ £ s
(2,”.)(nvr)/2 20.2 o o
The quantities a,, . . ., «, conditional on o are independent normal variables

with means a,(y), . .. , a,(y) and-variances [w,|™2 a2, . .. , |w,|~% o2; the marg-
inal distribution of o® is that of s%(y)y~2, where %* has a chi-square distribution
onn — r degrees of freedom. -
The structural probability element (original basis) is
Vv “ Na4
exp{ — — b —{B—0b d
(et P | 1B~ b)) T (B — b)) ap

e R e OECFE

'(zn)(n—r)/z 20 ¢ o

The quantity (B, . .., B,) conditional on & is multivariate normal with mean
&), - - -, b(y)) and covariance matrix (VV')y20?; the marginal distribution
of o is that of s*(y)x~2, where y® has a chi-square distribution on n — r
degrees of freedom.

g*(0:Y) do =

8.3 Location Distributions: Error. The marginal probability distribution
(orthogonal basis) of the error variable t = te),

@) =49 g = %O

s(e) * s(e)

t A nonsingular linear transformation of a vector of independent normal variables
gives a multivariate normal variable; e.g., b’ = a’P, a’ = b’P~1, Note that E(a) =0,
Ba?) = (w,, w, ", E(a,a,) = O(u 5 v), E(aa’) = (WW')™; hence that E(P""b) = 0,
E(P™1bb’P7Y) = (WW'Y™; and hence that £(b) = 0, E(bb’) = (Fp'yL,
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can be obtained from the joint distribution of a, s by substitution and -

integration:

F Wt A,
o (2 W)»r/?. ’(2 _n,)(n—r)lz

2 - iy — -
exp {—- %—(1 + E'WW't)}S““l‘dS dt

T+ Ewwy”
A, |wwit
T4, A+ ewwy »
This is an r-dimensional analog of the t-distribution: The d’s are independent

S or &
normal Variables with means equal to zero; the s is thx on7 trh, t?;;::; lt
is the vector of a’s expressed in units of 5. The distribution in the

and |wy| = 11is

e L] 1 ) uZ -
W A, " Anr " 2 ex {-— -’—}u" du
= at) G P\ 2

Let 1—2 /2 di;
A, @+
the variable 7 is a simplified t-variable; it is an ordinary t-v'arlgble.dmdfed by
the square root of its degrees of freedom. The marginal distribution o

i b(e) ale) .

O T s I
can then be obtained by noting that f is a central normal variable in units of a
chi variable; the marginal distribution is

Ao WL g
(n—r+1)f2 T
Appr (1 + t Iw,1%) . -
distribution on n — r degrees of freedom. The distribution

it is a rescaled #- . s
of T for general r and with [yl = -+ - = |w, =1is

A 1

n—r _t- ;

e S,
An (1 +zti)n/.

. I3 03 s [y - ees 0
this is the simplified t-distribution in r-dimensions with n — r degr of

freedom. ;

The marginal probability distribution (original basis) of the error variable

t(e),
208 b,
te) = b e = bi(e)

s(e) s(e)
can be obtained by the change of variable

ZONAC) EX IOy 1,(e))P.
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The marginal distribution of t(e) is
A VP
A, (14 tvyip?

This is an r-dimensional #distribution; note that the quadratic expression in
the denominator now contains cross-product terms.

8.4 Location Distributions: Structural. The structural probability element

(orthogonal basis) for the location quantity a = (%, ..., «,) is
Ny —r
fi;-r . IWWIW;V/(Y) —da;
"1+ (@ —ay) o — a(y)))
(’ ) s (

this is a relocated and rescaled multivariate #-distribution.
The structural probability element (original basis) for the location quantity

B=(h,...,B)1is
Any Vv s(y)

b (14 @ - by

7/2 dﬂ’

vy
—b

this is a relocated and rescaled #-distribution (with cross-product terms).

8.5 The Example. Consider the example with three structural vectors

- (Sections 1 and 6) and suppose that the error variable is standard normal.

The regression model for the example is

e1=z1...,em=z12,
1 11 1 1 1 1 1 1 1 1 1
0 00 1 1 1 1 & 1 1 1 4
0 00 0 0 0 1 1 1 2 2 2
7 12 8 15 13 14 17 14 14 17 14 17
1 00 Off1 1 1 1 1 1 1 1 1 1 1 1
01 0 0ffj0 0 0 I 1 1 1 1 1 1 1 1
1o o1 0llo0o0 000111 2 2 2/

B B. Bs o €1 € € e € e e e e ey e ey
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§8 With Normal Error 137
where 2 2y, designate standard normal Variablés, The arithmetical The reduced model relative to the orthogonal basis is ‘
1y 0 ¢ 0 3 712 '
i f Section 6 are
calculations from ay(e) = A . ay(e) = 2, ag(e) = Zs . s(e) = 10
162 1 0 00 V2 VA V8
9
12 9 13} = a; + oay(e),
9 9 9 135 0 1 00 6 = ay + cae)
— Y2 2 >
9 9 15 14l o 0 10 1= oy + oay(e),
162 135 141 2302 0 0 01 J28 = as(e),
3 s 131 1 0 0 0 where 2y, 2, 2, de novo designate standard normal variables and % is a chi
1 Y z ¥ variable on nine degrees of freedom. The reduced model can also be presented
0 2% 2 13} -1 1 00 relative to the corresponding orthonormal basis
0 2% 8 193 —‘% 0 10 215 Zg, Z3, Xo»
0 134 19 115 —13 0 01 1333/12 = a/12 + oy,
' \ . 0 0 6\/23; = ctz\/Qé + 0z,
i 0 9 —3 - _
:> (1) 16 -3 ¢ 00 6 = o6+ o2,
V28 = v
o 0 6 6 0 -1 10 _ : %o o
_ _ 9 6 0 1 In this alternative form the adjusted regression coefficients 133/12, 64/ 2%,
0 0 6 34 - 14/6 measure Euclidean distance in the directions defined by the orthogonal
‘basis and they produce directly the components in the analysis-of-variance
0 9 3 1 00 Y P y p y
1 0 - © . table:
11 i R
0 1 0 5 -3} - 1B s 0 Source Dimension Component Structure of Component
1 190 —
o o0 1 1 0 —% =% Mean (w,) 1 2187 (V12 + oz,
0 0 0 28 -9 =5 -1 1 Treatment (w,) 1 81 (a2\/ 2} + 0zy)?
o . Variable (wy) 1 6 (ag\/g + o0z5)?
. . is are given b Residual (d 9 28 : 2
The new quantities relative to the orthogonal basis are given by esidual (d) 2 = (o%9)
1 0 0 . S
' Consider whether the variable z affects the response level. The hypothesis
C (g agig) = (B P B —2 10 Bs = 0 or, equivalently, the Aypothesis a; = 0 leads to the value of an ecror
0 —1 0 characteristic:
1 = gay(e),
1 00 28 = os(e),
= 310
= (3613 ﬁ2’ /33) ; X t3(e) — as(e) = 1
1

s(e) :/3? ;
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the corresponding error variable is

@ |
This can be related to an ordinary t-variable on nine degrees of freedom:
The value is .

and the variable is

The value is a reasonable value for the distribution: The observations are in

d with the hypothesis «3 = 0. ' .
ac?['okfe hypothesisysan also be assessed from the analysis-of-variance table.

The hypothesis az = 0 leads to the value

6
28
for the variable.
(02)° _ _"'_:23
(o) 2 |
This can be related to an ordinary F-variable on one over ‘nine degrees of
freedom: The value is

and the variable is -

23
a9

' This is equivalent to the preceding test.

Suppose now that the effect of the variable = is negligible. The model then

becomes a regression model with zwo structural vectors, and the effect of the
treatment can be assessed.

The hypothesis a = 0 can be tested in the preceding manner, or the struc-

. . der the
tural distribution for the treatment quantlt.y %y can be denvecfl. Ccflon§;§; e
structural distribution. The structural distribution can be derived wi

= 3 r’ i
model that has two structural vectors. As a reasonable précaution, howeve

i 1
it is preferable to derive it within the larger model having three structura
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3

g =6 — > — e
%2 5(e) as(e)
\/ﬁ s
:6——-.—.—. —
Xo \/Zi“

— ———1-/:%8—: ¥
NGING
=6 — 1.17¢*,

The distribution has the form of a t-distribution on nine degrees-of-freedom,
but relocated at ay = 6 and rescaled by the factor 1.17.

THE PROGRESSION MODEL}
9 THE MODEL

Consider a stable system with a sequence of response variables y,, . . ., Yo
Suppose the internal error of the system produces a sequence of errors
ey, ..., e, with a known distribution f(ey, . . . , e,) on R?. Suppose also that
the sequence of errors progressively affects the sequence of response variables.
As system characteristics for the first response component let u, be the
general level and oy, be the response scaling of the first error component;
and for the second response let u, be the general level, oy, be the response
scaling of the second error component, and 7, be the response multiple of

- the preceding error component; and for the pth response let u, be the

general level, o, be the response scaling of the pth error component, and
Tyl - -5 Tppeq De the multiples of the preceding error components. A
realized sequence of errors and the corresponding sequence of response
values are then connected by the equations

Y=t + oey,
Yo = M2 + T21€y + G (3)€s —

.

Yp =y + ey + o1y ae, 0+ ()€

T The remainder of this chapter may be omitted for a first reading: the methods of the
regression model are used to construct a multiple response model, the progression model;
the progression model has 2 limited range of applications but its notation and results are
needed for the more useful muitivariate model in Chapter Five. The material here can be
read as preliminary material for Sections 4, 5, 6 in Chapter Five,

vectors, in case the effect of «, is not negligible. The structural distribution is
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or by the matrix equation
(1) (1 o)1
1

€

Yy Uy Oy

Yo Ho Tar O €;

Tpp-1 T Lep
- -

Now suppose there have been n performances of the system with observa-
tions ¥, = Wy - - - » Y1) fOI the first response, Yo = WYars -+ s Yz, fOI the. :
second response, . .., and y, = Wps - - - » Ynn) for the pth response. The
system and the n performances can then be described by the

Lyp_’ Llu‘p Tp1

" Progression Model

n

Hf(elia s ) ]_:.[ dey- - I:_[ dey;,

1
1'1 i 0 1)
Y1 WAL 7

¥Ys Uo T O

Lyfl'lJ LMp Tm crt Tpp-1 Ty Le:;)J
The model has two parts: an error distribution with ey, . . . , &, as variables;
and @ structural equation in which realized errors'e;, ..., €, determine the
relation between the unknown system characteri

observations.

" The notation can be made more flexible by letting
o] (o] (]
¥i Yu 7 Yia Y

Ly;) Lypl o ypﬂJ L - |

stics and the known response

9 .
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desi ; :
‘ gnate the sequence of response vectors with appended 1-vector, by Ietfing

1 1 - 1 1
€ fin Tt ey
E=| || - S .
el
] € Tt ey,

desi
esignate the sequence of error vectors with appended 1-vector, by letting

r 1 0 PR 0 )
H1 | O
O=|FH | T O 1 , 0
' wis
WMp | Tpr 7" Tppa G(p)J

desi i ibi
gnate the quantity describing the system characteristics, and by-letting

F(E) dE = 1:[ Fers- - - e;) TT deys - - TTdeys
. 1 1 i

designate the error distributi
; 18t ;
written ribution. The progression model can then be

J(E) dE,
Y= gE.

The transformation 6 is an element of the locatioti=progression group

(1410 --- 0

ol a -
G=(g= ay | kg o _ 10 —°O<Z<oo
o —0 <k <o),
: noE 0<e< @

Lap i ko o ko)
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with group properties

R R I
a;, K a, K ' ay + K3, KKy

1 o 1 o)™ 1 o1
=lo 1| |a x| |-k Kk

1 atrix
The component matrices K form the progression group Gi undzrtrrircl:es x
multiplication: The product of two positive lower triangu a_rlm triees
positiI\)/e lower triangular; the inverse of a positive lower triangular

i 0
k21 kZZ

K=
kpt . kP

i d
is positive lower triangular (the elements of the inverse ca; !:»e caacl}clurlits)
sugzessively from top row to bottom row, from right to 1.e t ;n etion-scak;
The progression model can then be written in the alternative locati
form F(E) dE

Y = [p, GIE. _ '
The. notation [a, K] designates the general location-scale transformation
(Problem 27, Chapter One):
Y1 el 51

‘o

I P R

‘la, K]Y = al' + K¥;
note that
al a]_ “« e al
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and note that the transformation applies column by column to the matrix Y.
The orbit of a point Yisaset GY = {gY: g€ G}in R*". The orbit can be

examined alternatively in R by considering a point ¥ in R*" as a sequence

Y1, .- -, ¥, of p points in R*. A transformation g has the following effect:

Vi—al+ ay,
Yo = a1 + kyyyy + coys,

Yo>ad +kyy, + - + kyp-1Yp1 + CoYp-

The effect of the group on y, is that of the regression-scale group with
structural vector 1; the effect on y, is that of the regression-scale group
with structural vectors 1, y,; the effect on Y, is that of the regression-scale
group with structural vectors 1, y,, . . ., Yp—1- Suppose now thatn > p + 1,
and 1,y ...,y,are linearly independent. The orbit of the first point in the -
sequence is L*(1;y,), of the second point is L*(1,¥,;¥.), . .., and of the
pth pointis L+(L, y,, . .., Vo1 ¥p):

Gy, = ,L+(1; ¥1)

G N Yp = L+(1, YI, ceey y:p—l; yp)'
The vectors y,, . . ., ¥, added successively to the 1-vector generate 2, ...,
P + 1 dimensional spaces; the orbits for the successive elements in the
sequence Yy, ..., ¥, are the positive halves of these spaces (see Figure 12).
Suppose a transformation g carries yi,...,y, into §,..., ¥,. The
assumption that 1,y,, ..., ¥» are linearly independent ensures that g is the
only such transformation. It follows that G is unitary (linearly dependent

sequences excluded); and it follows then that. the. progression model is a
structural model. :

10 A TRANSFORMATION VARIABLE

The transformation variable for the regression-scale group can be used
to construct a transformation variable for the location-progression group.
For the first response y, let m;(Y) be the regression coefficient of y,onl,
let 5)(Y) be the residual length, and let d,(Y) be the unit residual vector:
Vi =m ()1 + 54)(Y)d,(Y).
The unit residual vector d,(Y) is a fixed vector in L+(1; y)).
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The coefﬁcients'and lengths can be obtained by applying the computation i
methods of Section 5 to the Inner-product matrix (1, y,, . . . Y.)- : i
Now let o :
(1 0 .. 0 ) l
y2 N
m(¥) | sy(Y) 0 |
YL, Y5 Y2 |
N . [Y] —_ mz( Y) t21( Y) S(2)(Y)
\mw(Y) tm(Y) e tap—l(Y) S(D)(Y)J
. 1 | 0
m(Y) | 7(¥)
and
R - IR E:
4(Y) di(Y) .- d1(Y)
Figure 12 The orbit of yy, is L¥(1; ¥y); the orbit of ¥y is L, 45 ¥gh - - - D)= - |=| - =| D(Y)

For the second response ¥, let my(Y), tz(Y) be the regression coe%cxent-s*‘
of y, on 1, d,(Y), let 55 (¥) be the residual length, and let dy(Y) be the um

idual vect COJ Ldn(®) o dyu(¥) L |
residual vector:

The ?quations in the preceding paragraphs can then be collected in a single
matrix equation:
1'}

M
Y= | =1¥Dp).

g2 = oD + (DY) + 5 (D).

The unit residual vector d(¥)is a fixed vector in L*(1, 1 ;bya)t.h resrcsion

For the pth response let my(Y), 1Y), s lp ~1(Y) be % ualglength :
coefficients of y, on 1, dy(Y), . . . d, ,(Y),let s5¢;{Y) be the res :
and let d,(Y) be the unit residual vector:

g = My + Ea (DG + - F by s (D5 a(1) + 5 (DT

*The unit residualnvector;‘d,,(Y) is a fixed vector in L*(1, ¥1, - -+ » ¥p15 Yo

. v,
The orthogonality and normality give

The variable [Y]is an element in the location-progression group; the point

i o S v D(Y)is a pc_)int on the orbit of ¥, a fixed point. It follows that D(Y)is a
=1 1 g mY) = T = Ty reference point and [ ¥]is a transformation variable.
m, ——-—n ) n In the alternative notation the equation ¥ = [Y]D(Y) becomes

00 = ZondedD: < ¥ = [n(¥), TNIB(Y) = m(0N + TN D(D);
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pote that ' 11 THE REDUCED .MODEL
= .. 5 - Lo i i i :
| oy o ey o e smplsac. A oo
(DM =¥ —m(NN =| - s s ’
Yn—Fp * Y~ [a, K] : —a4k| -,
The progression model can now be written: . .
f® dE, o Yo
[Y]=6[El, D(Y)= D) which has Jacobian |K| = ¢;- - - c,,. Hence
= B[E]; it has the' Jon(gs V) = K" = |g|* = (cy* " ¢,)",
| Tl 1) = ITCOI = Y] = (s0(1) - 56 (VD)

dm(y) = — 1Ly _ dY
sp(¥) - siy(Y) Yy

The structﬁral equation, conditional on the orbit is [l

form
7=t + owés
sp(Y) = oaswE);

Go = s + Tuls + o Now consider the invariant differentials on the group:
1(Y) = rS@(E) + o) 1 0 )
s(Y) = U(z)s(z)(E)Q a &

: &’2 Ezl 52 -
Jp = php + Tl 4 Ty S
tm( Y)= ’I‘,,XS(]_)(E) 4t Ty pafpa 1(E) + U(::)tpl(E)! \'ﬁa) km /E,, p—1 Cp
J
N
. 1 olf 1
a; cy a* C*
S(w)(Y) = G(ﬁ)s(p)(E)' a, k21 ¢ ; 1 M-
o y T
In the alternative notation the progression model can be written = ay Tk
Sf(E) dE,
D(Y) = D(E).
LS O
The left transformation operates cdlumn-by-column. ’
Cﬂ;—l—l

[m(Y), T(N] = [, BIm(E), TE],
1 on the orbit can then be separated int
J=(ee)ee)ea ) (e) = cto -

The structural equation conditiona
two component equations:
m(Y) = g + Bm(E),
@ =ci g™ =gl

T(Y)=  GI(E).
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where |a;;|, designates the increasing determinant,
7
a; 0
Qyy Qo )
) = ahagz < Oges
Gy Gz "7 Gxla
T1 da, T1 dk;y 11 d¢; - dg ]
du(g) = R c:—kl 1gla

The right transformation operates row-by-row: *
* -
7 =gy (et a)
JH(g) =t - ¢ = lelw

designates the decreasing determinant,

where la; 1y
ayn 0
gy G2
= afaly’ s
g Qg2 Qyere |V
1T da, T dk;y T1de; _ _‘lg_
dv(g) = P Ci, gl
The modular function is .
A(g) = lely = al _‘:’\1 .
P, ili tfor the
11.1 General Distributions. The conditio!rxal probability elemen
error' position [£] given the orbit D(E) = D is
g([EY: D) d[E] = k(D) (E1D) IL L
my dy; .
‘ n—2, .. n—p1 d[E]
5 T S St
k( )Ef

H
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The structural probability element for 6 given ¥ is

g*(8:7) b = k(D(V)f (o) I ¥y

161" 1[Y1la
Yii
d o] Y™ |[Y]lv
=k 1 e d 7}
CONILA| . o 1or,
Y
Y — 14y
n ) s@(Y) * - sy(N\
= k(D(Y — e
(())Hf © ( Oq) " * " Oy )
Yps — My
S(X) - - shy(Y) ._ dpds )
st(Y) - - sTEN(Y) Ol * Ol

11.2 The structural equation for the progression model,
m(Y) = p + Bm(E),
I(Y) = BI(E), -
can be separated into a part concernihg # and a part concerning G:
THN((Y) — u) = THE)m(E) = t(E),
TI(Y) = T(E).
In a related manner the location-progression group has a location subgroup
L={[a,l1]: acRn
and a scale subgroup
S={[0,Kl: KeG};
note that § and G, are the same group but differ in Hesignation and in the
spaces to which they can be applied by matrix multiplication.

11.3  Location Distributions. For inference concerning i, the marginal
distribution of the error variable t = t(E) = (1(E), ..., 1,(E))" is needed.
The full error probability distribution is

8(IE]: D) d[E] = k(D)f([E)D) |[E]" I—‘[%l

la

= k(D)f([E]D) ITI"% ;
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the transformation m = Tt from t to m for fixed T has Jacobign 1Tl; Fhe “ _
marginal distribution of t is obtained by substituting for m and integrating

out T

~ The notation tr S designates the trace of a square matrix,

S11 "t S
dT
: = k(D E1D)|T|"—— - dt S
gr(t: D) dt = k( )Lf([ 1D) I ] - . =zls,,-.
. . . j=
tl + dli
o T . Sp1 T Spp
= k(D)f TIA T ’ lTinTT—r - dt. Note that tr ABC = tr BCA = tr CAB,—provided the matrix operations
T . a are permissible.
t,+ dy

The sum of squares can be expressed in terms of the position variable:
Y e, =trEE —n
Y v D(E)D'(E)[E] — n
n 0

The error.variable t = t(E) indexes the orbits (right cosets) of the scale
* .
' BOWP S ONOTE i T] = 5[0, 706, 71 = ST6 11
11.4 Scale Distributions. For inference concerning G the' marg'mazl
distribution of the error variablé T = T(E) is needed.. The rflarglnal distri-
bution is obtained from the full error distribution by integrating out m:
dT
IT|Tls

= tr [E] - (B — n

¢s(T: D) dT = k(D) f F(E]D) dm - |T|* |
= tr [E](E] — n, B
Where

Vn 0

| S0
[E]l=[E : =
] : [ﬁm(E) T(E)

0 1
[(Vn 0 0
Vné, s 0
Vné, 1n(E) s(E)

my | du
= k(D) J‘ ].—:IL[f . +T . dm * 3?1”)‘2 e s?p—):v—l aT.

m, | dy;
The error variable T = T(E) indexes the orbits (right coe:.ets) of the location
roup L on G*:
. L{m, T] = L[m, I}{0, T] = L[0, T].
12 WITH NORMAL ERROR A .
Consider the progression model with standard normal error variables:
n p
f(E) dE :;(2”)—"1)'/2"6’913 {12 e} g Edejia
[Y]=6[E, D(Y)=D(E). |
The sum of squares in the exponent of the normal density function can be
expressed in matrix notation: :

>en= i le)* = il(e:', €;)
i,7 =1 g

= tr BE'
= tr EE' — n.

(Vre, 1u(B) o 4,0 sp(E) )
The row vectors in [E] describe the row vectors in E, but relative to basis

vectors given by the rows of D(E) (compare with the concluding paragraph
of Section 6); the rows of D(E) form an orthonormal set, except for the
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i I .
I 152 . . ; :
; where the 2’s are independent standard normal variables and the y’s are

: i iti trix [ E] describes the
Bt o e B e i the adfurol o o e + chi-variables with degrees of freedom as subscribed.

] . . o
row vectors of E relative to an orthonormal set; thus the inner produ »

matrices are equal, EE" = [EILEY. The trace of EE’ gives the sum of squares .

of elements of E; hence

i Se=tr [EXEY —n

f‘ — ntr m(E)m'(E) + tr T(E)T'(E)

| = (Z né;) + (Z 5(E) + Z s%:i)(E))‘ .

robability distribution is

12.2  General Distribution: Structural. The structural distribution for the
quantity 6 can be obtained from the general expression in the preceding
section. The matrix form for the sum of squares in the exponent and the
substitution E = 6-1Y give

- A

g*(OY) 4 = 14"—2.;:;"—17/2—"‘:2. exp {-—%(tr H—IYYIB,_l _ n)}

12.1 General Distribution: Error. The error p

- 4LE] : (Sm(Y)"-s(m(Y))" Sta(¥) "+ stu(Y) n°*dy. d'6
g([E]: D) d[E] = k(D)(2m)™"* exp {—(tr [ELEY — m} ILET" m; e e

— n—p—1 y
= k(D)exp {—¥2Z né + Y0+ 2 SEISE T St d{E]
= Apa® Ans exp{—%2 né—%2 fhy — 12 Sthd
(z,n,)nPIZ i ’

Rl B an & T1 dt; 11 dse-

-2 .
: S?l) (p)

The location and scale components in the exponential can be expressed
in terms of the quantities w., G. The formulas

m(Y) = p. + Bm,
T(Y) = BT

t.., are independent standard normal variables;
”s( , are independent chi-variables on n — 1,
" th distribution does not depend on the -

can be used in the expression for the sum of squares of the error variables:
Sei=trEE —n
= ptrmm’ 4 tr TT"

The error components Jney,

the error components Sqys - - ’ ;
; the error
...,n— p degrees of freedom; the

orbit as given by D.
The error distribution can b

(Jn O - .01
Jne sw 0

\/;léz tyy S

= ntr THm(Y) — p)(m(Y) — w)T + tr BTV T(Y)E
= n(m(Y) — wY(BE)(m(Y) — ) + tr (GG HT(NT'(Y))
= n(m(Y) — w)Z'(m(Y) — @) + tr TS(Y).

The inner-product matrix GG’ is designated

e described by the equation

[E] = Z = BT,
o and the inner-product matrix T(¥)T'(Y) is designated
(Vre, . foer S0 S(Y) = T(NT'(Y) = TNDMND'(NT(Y)
, (Jn 0O V=8 0 V=0 | {wm—0 o =7 |

2y Zgy Xn—2

Yor = Fp """ Ypn — Yp Yor = Yo "7 You — Yy

Note that S(Y)is the inner product matrix for the response deviation vectors
i—Fd=Wn— T Ys— G

Lzy Zp1 Zpp-1  An—p
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The definitions in Section 10 identify s(;y as the length of the first deviation
" yector, fy a§ the regression coefficient of the second vector on the unit first

The structural distribution can now be written:

g*(0:7)db vector and s, as the residual length, ..., ¢, ..., ¢, ;1 as the regression
- Apy: = Ans exp {__%(m( Y) — “)'n Z"l(m(Y)‘ — p.) — Ftr Z*IS(Y)} coefficients of the pth vector on the unit orthogonal vectors derived succes-
Qm)m" sively from the first p — 1 vectors and s, as the residual length. Thus T(E)

can be derived from S(E) as the unique positive lower triangular square root
(compare the end of Section 6). It follows that there is a one-to-one corre-
spondence between the matrices T(E) and S(E).

Consider the probability distribution for the inner product matrix:

si(E) 00 s,(E)

sw(¥) sV sw(¥) - sn(Y) n”'*dp.dB
. ( Gy " O ) sw(¥) - say(Y)aty - ip
Note that the conditional distribution of . given TG is nc?rmal with mean
m(Y) and covariance matrix n-'%; the marginal distribuu‘on for G can be
described in terms of normal and chi-variables by the relation

T(Y) = BI(E):

T o1 SEy=| - -
z —2
w SalE) <o+ 55,(E)
T=T(Y) . o .
a symmetric matrix with s;;, = s,.;. The transformation from 7 to S,
. P sy Foeee ¥ I 0 n I "0 tn
pl P P o
: s 9 . 1 t !
123 The Error Inner-Product Distribution. The error scale matrix Sar Saa ‘ 2 la2 22
T(E) has a distribution described by % - >
Sy 0 Xn— 0 B
In S #21 An—2 Spr 7T Spp Iy Loy 0 Loy
T(E) = ) = ’ has lower-triangular form when the variables are taken in the order s,;
: Sa1, Sogs o v 3 Spr e v ey Sppt
. A
ta)l “e s tﬁ =1 s(p) za:l zp p—1 xn-—ﬂ :.g_l_l - _tl_l 2t11
with probability element Ry Sy = Inly L%
e — 2 2
A Aoy o (35, — F S shalsint s AT m= it - 2,
(27’,)(11—-1)17/2
A closely related matrix is the error inner-product matrix:
= T(E)T'(E) = T(E)D(E)D'(E)T'(E)
S(E) = T(E)T'(E) = T(E)D(E)D ] e St fiutp t
—_— cev gy, — € ey — € 7 e @
€11 €y in 1 1 Spy = byt -+ t22z£2_ o
e — &y epn— & | | &1 % € = & Spp = ot e+ Gy | 2
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The Jacobian matrix is lower-triangular, and the Jacobian determinant is.
Lo then the product of the diagonal elements (the diagonal elements are recorded
4 in the right margin):

' ‘ as ,
’ ‘ lﬁ* l = 2t35(t2tp) -+ * * (tuatan "~ * 2tpp)

i =27 |Tly.

The probability element for S is obtained by substitution:

A-—l'“ n—p 9 , n—1 aT
=Pl exp {3t TT'} |T" —
(271_)(."__1)1,/2 P { 2 } I ‘ ‘TIA
A A’Il——li 1 (n—1)/2 as -
=Lt mp o (—3tr S}IS -
L (e P LSS i oy
Au— e An (n—1)/2 as
= (2;)(n—1)p/;n exp {—}tr S} |S| 27 S|V
— Apy

A, _, : i
= exp {——%(311 4+ Spp} lsl( 1—(p+1))/2

(271)('"”1)”/2
. dsyy(dsgy dsg) * *  (dsy * * * dsyy) )
2% .

The density applies to all péints S for which the matrix S is positive definite. -

The distribution of S is the standard Wishart distribution.

NOTES AND REFERENCES -
The regression model as developed in this chapter can b‘e used to
generate a corresponding classical model f(y:@, 0). The classical model

F(y:B, o) gives the distribution of possible response vectors y based on a
fixed value of the quantity (8, 0):

ilj #e lj de; = zI:IIf (e‘-)s:gf

‘ =1 o al s]

I n o : 1 .

" = T (B 202) ~ ay = 10 ) .
‘ i1 ¢ o

The classical regression model with normal error has an extensive literatur? :
Its essential form appears in the work of Legendre, Gauss, and Laplace and is

Notes and References 157

tied closely to the classical methods of least squares. Some current baoks

. on the topic are Plackett (1960), Scheffé (1959), and Williams (1959).

The classical model with other error forms has received little attention.
Classical theory does not produce a set of natural variables to be in corre-
spondence with the parameters 8, 0. And the use of the regression variables
of normal and least-squares theory leads to the intractable problem of finding

. the marginal distribution of these variables. The little attention that has been

accorded the nonnormal model has been concerned with examining the
methods of normal theory as used with an error form that departs modestly
from normality. .

The structural distribution for (8, o) was developed in another framework
as a distribution for (8, 6): Fraser (1961), Verhagen (1961). The development
here follows closely that in Fraser (1967).

The progression model also leads to a corresponding classical model.
For single values on each response variable, the distribution describing
possible (¥4, . .., y,) for given w, T is

Yv— Uy
dv.
f(e13-~'>e1))l—_[dej=f 06_1 M
. : G|
Yp — Up _
=f( - Yo't B[] dy;
With standard normal error form the distribution for (yy, . .., ¥,) is
f(?./l’ LI yz):y" ﬁ)H dy]
Y — Yy —
1 a0 ' o \TT dy;
=-————exp{ —3tr G| - ‘ Byl
2 o7z SXP 2 ‘ |Gl
Yp — :unJ Yy — My
o .
Yo — Yy
[ 1 _
=Wexp -5 -t 11 dy;;
Yo — Uy Yp — Uy

-

the distribution is multivariate normal with mean (u,, ..

. and covari-
ance matrix X = GG'. )
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i istributi cribing Y i

For n values on each response variable, the distribution describing Y is
iz‘—nl‘l
(zﬂ)uﬂ/z

inal distributi = (7 7Y can be obtained by the
1 distribution of m(¥) = (F1, . - - » F5) can /
Elkll:ng;m;gfmjariable m(Y) = p. + Gm from the conditional (also marginal)
distribution of m = m(E):

f(m(Y):p, 2) dm(Y)

exp {—}tr(Y — w2 )Y — wl)}dY.

f(Y:p,2)dY =

’

Py — 1 Yo —
= Wexp 1 N O n II dl’?i‘_’
@my"® 2
Z?p — Ky Up — Ko

The marginal distribution of T(Y) can be obtained by t.he ghange of variablei
T(Y) = GT from the conditional (also marginal) distribution of T = T(E):

dT
/‘1%__1 .. An—-J' ex {""Ji tr TT/} ‘Tln—l el
= 7]
(277)(71-—1)11/ . » . dT(y)
An—l e An»—p .{___1_ tr rG—lT(Y)TI(Y)AGr—l} IT(Y)l -
= w0 B 1Tl

= Aao e oxp (— B SI} T s 7y,

(zﬂ_)(n-—l)nl‘l
= f(T(Y):, 2) dT(Y).

The variables m(Y) and T(Y) are statistically independent. Th‘e distri‘butilc;n'
of the inner product matrix S(¥) can be derived by the results in Section 12:

S(Y):p, 2)dS(Y) ~ q
f( ( A A » - ” \S(Y)l("_n/' dS(Y) .
= —'(22::5(.:7————1)11/2« exp {—% trE S( )} ‘Zlm-nm 2° \S(Y)\(w'l)/?'
This is the general Wishart distribution with covariance matrix Z and degrees

of freedom n — 1. ) N
The progression model with normal error leads to the classical multivariate

normal distribution and to related distributions for. the samPle means atx)ld ’gllz
sample covariance matrix. The internal structuring provided here by

L o
progression model is, however, rather specialized; a more generally appr

priate structural model relating to the multivariate normal is examined in .

Chapter Five.
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PROBLEMS

1. Consider a measuring instrument with error distribution f(e) de and suppose that four

measurements have been made on a quantity x,, three measurements on a quantity z,, and
three measurements on a quantity s,:

T1/]] desss
1 1 1 110 0 0i0 0 o0
0 0 0 0i1 1 1i0 o0 o
0 00 0 0i0 0 o0i1 1 1
Y1 Y1z Y13 YiaiYer Yoz Ye3iYar Yse Yass
1 0 0 0(11 1 1;0 0 0i0 0 0

0 1 0 0ff 0 0 0 0/1 1 1{0 0 o
0 0 1 0f{0o 0o 0 0f0 0 0i1 1 1
My Mg My O €15 €12 €13 Cwiea € €’23%‘331 €3 €33

Note that the structural vectors, designated vy, v, ¥,, are mutually orthogonal.
(i) Show that the projection of y into the subspace L(vy, Vo, Vq) is
Giva + Go¥s + Fav3 = (F1, §1, F1s F1s Tos F2s Tas Fas T T’

where §; = > y,,/4, §, = > yul3, Gy = > g;3. This projection gives the location of y
relative to the subspace L(vy, vy, v4).

(ii) Check that the residual vector is
\Y(Y)d(&) = (yu —¥1:Y12— F1, Y13 — T1. Y14 — Y1» .
Ya1 — Ya, Yoo — gza Yoz — 272, Yz — ga, Yz — Tg, Yzz — :‘73),
and show that the squared residual length is
32(3') = z (yy - 371)2 -+ E (yzi - ?72)2 -+ Z(yai - ?73)2

= >y — (47 + 353 + 35D

. 2 (z ?Il:‘)z (z Yps)? (z Yaj)

B e e e R B

Interpret each expression in terms of the geometry. The length s(y) gives the scale of y
relative to the subspace L(vy, ¥y, Vg).
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(iii) ‘The position and reference-point decomposition of ¥is
1 0 0 O v
6 1 0 O A
Y=1o0 01 o v,
G, s Ts s(y) a')
Check that the reduced structural equation has compopents
gy =ty + 08y,
Jy = pg + 08,
93 = pg + &3,
s(y) = as(e). .
(iv) Show that the positive-lower-triangular and orthogonal factorization of Yis
va 0 o 0
0 V3 0o 0
0 0o V3 0
L \/Z N \/3 Jo VE Js s(y)
1 1 1
Va Ya Y& V4
0 0 0 .
0 0 0
—9 Yp— 0 Y3~ T Yu—H
L ® s e s
0 0 0 0 0 0 ‘1
Lo o o 0
V3 V3 V3 -
o L L1
0 0 Y Y S
o~ s Yoo~ T2 Yo3—Fpi ¥ —Fs Y T T3 Yaz — U3
5(y) s(y) s(y) s(y) 5(y) s(y) )
and check that the analysis-of-variance table is
Source ' Dimension Component Structure of Component
2 _ L
First 1 g§4 = M. (,ul\/4 + o'él‘\/4)z
Second 1 723 = (z y27 (sV3 + 08,V I
- E ) A3 5/ 3)?
Third 1 733 = -——3—1— (uV'3 + aé,V'3)
Residual 7 s2(y) (os(e))?
10 Sl
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2. (Continuation). (i) Show that the invariant differential for the transformanon y =

© myV¥y -t MgV -+ mgvy + cy is

dy
s1%y)

as based on Euclidean volume at d(y). For the left and right transformations described by

1 0 0 o0 1 0 0 O 1 0 0 O
0 1 0 0] 0 1 0 0 0 1 0 o0
0 o0 1 0 h 0 0 1 0 0 0 1 o
my Wy, g m my mg c ) m¥ mf mf c*

show that the left and right invariant differentials on the group are

dmy dmy dmg dc

dmy dmy dmg dc
c* ’ ’

c

(ii) Show that the error probability distribution for the reduced model is

4 3 - 3
k@ 111 + 5dy) TT e + sdo) T f(25 + sd3,)s0 dé; de, deg ds,
1 1 1

that the marginal error distribution for £, = &/s, ty = &yfs, t3 = &y/s is

w 4 3 3 -
k(d)f TGty + dy ) TT Aty + do ) TT f(sCts + dy ))s®ds - diy dity dity,
0 1 1 1

and that the marginal error distribution for s is

? 4 3 3
k() f f f T1rGE + s p T fE, + sdp) T1 f(85 + sdg;) de, déy dey - 55 ds.
1 1 1

(iii) Obtain expressions for the structural distribution for (u,, 45, ¢3, 0), the marginal
structural distribution for (14, uy, 1), and the margmal structural distribution for o.
(iv) For the case of normal error

10
TIfe,) = @mSexp {(—33 ¢2}
1
verify from (ii) that the reduced model can be presented as

Zl, 22, 23, Zv.
7] ‘/Z = ,ul\/z + oz,,
yax/z = u,V'3 + oz,

‘ vaV3 = ppV3 + oz,

s(y) = EFaD

[ S, P I LI 1 Lt L L L O



 Note that the three structural vectors, to be designated Wy, Wy, Wy, are mutually orthogonal.
“TH& usual conventional has w-vectors obtained by successive orthogonalization of v-vectors.
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of freedom. Also verify from (ii) that the error probability distribution of (#3, f5, ty) is
Viv3vi
Ay VAVEYI o drgdry
Agg (U + di? + 312 4+ 313)° ‘

and of the t’s individually is

A, Vady A, V3dr, A, V3,
A ATAD A A 13D A T+ 3

(v) For the case of normal error give equations that describe the structural distribution
of (uy, lg, Mg, 0) in terms of normal and chi variables, the structural distribution of
(&1 tg, 1) in terms of simplified t-variables, and the structural distribution of o in terms
of a chi variable.

3. The model in Problems 1 and 2 could apply equally to a process: with stable internal
error f(e) de and with four response observations under a first set of conditions, three
response observations under a second set, and three under a third. If the general response
level is unaffected by change of conditions, the measurement model in Chapter One is
appropriate. If the general response level is viewed as dependent on the conditions, the model
in Problem 1 is appropriate. The general response-level vector in the first case lies in L(1)
and in the second case, in L(vy, Vg, Vg) With v’s as defined in Problem 1. The change from
the one-dimensional subspace L(1) to the three-dimensional subspace L(vy, Vs, v3) requires
effectively two additional vectors. The two additional vectors could be chosen from
vy, Vg, Vg, OF they could be constructed directly with a view toward orthogonality and ease

of interpretation.
117 e ] 1 dess

1 1 1 111 1 it o1
-3 -3 -3 -3¢ § #1000
"—l%l Y ""xlo ”“157135 "'1’3‘0 “1’:!?0 4“1‘3‘0% 110 110 1‘2‘0
Y11 Y12 Yz Y i Y Y2 Y §y31 Y32 Yas
1 0 00 1 1 1 141 1 1 1 1 1
o1 oof| % —+ -3 -3¢ 5 40 0 0
- 0 0 0 0 ~—io ”“1%) "1%1 '_‘1%1: "1304\"‘1% "'1!0 ; 1%) 110 110
Ly Uy O3 O €51 €1z €13 fua | oeg € a3 5331 €39 €33

This convention does not apply here; the w-vectors are not derived? from the use of two
v-vectors in addition to the 1-vector. The w-notation is used merely to suggesta constructed
orthogonal set.

(i) Verify the interpretations: a, is the average general-response level for the 10 per-

formances, o, is the general level for the second conditions as it exceeds the general level
for the first conditions, o is the general level for the third conditions as it exceeds the average
general level for the seven performances with the first two conditions. :

+ For comparison, construct an orthogonal set by successively orthogonalizing 1, vy, ¥s-
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(il) Show that the projection of y into the subspace L(wy, wy, w;) is ‘
a, (y)w. = (T, F1, T1» T1» To» Tay To, Tay Fa, G
where 1( ) 1+ aZ(Y)wz + aa(Y)wa = (yl, Y1 Y1, Y15 Yoy Y25 Yo, Ug, Ya,s ?/3),
(W, y) (Wa, ¥)
@) =1y Y L)
(W1, Wwy) ° (Wz, Wz) () (Wsy W3)
e XY - by + 39
—y—‘T“, =Ys — Y1, =$73“éy'1—-.|7~—3“y‘g-
Check that the squared-residual-length is
Bron .
s%5(y) = Z (y:u‘ b y]_)z -+ z (?/25 - ?72)2 + z (?/3;,‘ - 373)2
_ - 12 21 7 75\2
_ 2 _qom2 _ 12 _ _ 4, + 37
z Yis 10y 5 (3/2 ?/1)2 - ‘R)(yg - —17'—‘2) .
The reduced structural equation has components
a(y) = ay + U'al(e):
ay(y) = oy + oay(e),
ay(y) = ag + Uaa(e)y
s(y) = as(e).
(iii) Show that the positive-lower-triangular and orthogonal factorization of Y is
V10 0 0 0
0 Vi 0o o0
0 0 Vi 0
VI0g ViEay) Via®) sm) “
(I T S U N U RS U UE S SR
vio vio vio Vvio{vio vio vioivio vio vio
=3 3 3 34 40 4
V84 VB4 VE4 V3| Vea Vaa Vi 0 ° 0
j —_3 —3 -3 -3 -3 -3 7 7 7
V210 V210 V20 V210{v210 V210 V210 v210 V210 V210
) L diy  dy dyy | dy dyy— . dyy | dy dyy dgz
Check that the analysis-of-variance table is
Source Dimension Component Structure of Component
Wy 1 7210 (V10 + 0&V10)
Wy 1 @ =70 (VE + oG — VR
ag+3g,) 21 5 +38) 21
W, . (ya- 7+ yg)_Z_l(aa o (4 +35) 2
‘ 7 10 10 8 7 10
Residual __7_ s2(y) = z g5 — )2 (os(e))?

10 2k
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Note that the first three components in Problem 1 have, in effect, been combined and new
first components formed: one set of orthogonal axes in L(vy, Vg, Va) = L(W;, Wy, W3) has
been replaced by another set of orthogonal axes. ‘ }
4. (Continuation). (i) Check that the usual error probability distributions for the reduce
model are :

k(@) T flagwiss + aowas; + agwass + sd;)s8da ds,

(=3 e
k(d)J TG Wi + Bwae + Fawas; + dyy))s® ds - df,
[ :

o0
k(d)fﬂ T 1 faywyi; + agwass + agwas; + sdij)da s8 ds.
— ' :
(ii) ‘For the case of normal error

10
TIftes = @8 exp (—32el}
1
verify that the reduced model can be represen’ged as

& Z1 %2, 2, e
al(y)\/Ta = al\/l-d + 0zq,
a )V = agVEE + oz,
@)V = agVE + oz,
s(y) = 0%z
Also verify that the error probability distribution of (ty,29,13) IS

Ay V10 V12/7 V21/10
Az (L + 1022 + (12/Dif + 21/10)55)°

dE, di, di,

and of 3, for example, is
4 VD
45 (T + @0
(iii) For the case of normal error give equations that describe the structgral distributions ~
of (ag, &g, oy, 0), (%7, %y, &), and o (use normal, chi, and simplified -variables). 4
5. Consider a process with stable error f{e)de and a response y whose general level is knowr

to depend linearly on a controllable variable ». For five response observations the model
would be '

5‘ -
T1/E T dess
1
11 1 1t 1 i1 0 0 11 1 1 1

@ w, Ty Ty Tz =] 0 1 0|z T T3 Ty T

Y1 Ys Y3 Yy Ys Bo By oJ)ler €2 e e &

Problems 165
(i) Show that the projection of y into the subspace L(1, x) is b1 + by(y)x, wﬁere

b ) ='Z (z; — %)y, _ > (@ — By — 9
! > (@ — 42 S@—-ar
by(¥) =4 — b;(%)%;

and show that the squared residual length is

525y = 3 (y; — by(y) — by(y)z;)?
=3 (y; = — b;(¥)(z; — B
Qv (@ — 2),)?
=42 —
24— S @ —aR

(ii) The reduced structural equation has components

bo()') = 130 + aby(e)
bi(y) + By = oby(e)
s(y) = os(e).

Give expressions for the error probability distribution of (bg(e), by(e), s(e)), (14(e), £,(€)),
and s(e).

(iiiy For the case of normal error
5 .
T1 fen) = @my-¥exp (=3 B
1

record the error probability elements for (by(e), by(e), s(e)), (#4(e), 1,(e)), and s(e). (The
‘quadratic expressions have cross-product terms: the general-case nonorthogonality of 1
and x.)

6. (Continuation). Consider the preceding model in orthogonal form

1 1 1 1 1
Ty —% Ty—~F Ty—F ¥y —%F Ty—F
Y1 Ys Y3 Yy Ys
1 0 0 1 1 1 1 1
=10 10 -2

Ty —F Ty—3F Xg— T Ty—F T5— &
%y 0Ly O ey ey e e es

() Express the «’s in terms of the f’s with P~ and the f's in terms of the o’s with P.
(ii) Show that the projection of y into the subspace L(wy, wy) is

(D1 + ay(y)(x — z1),

where
ao()’) =7
ay(y) = > - 5‘-’)%' _ > — 57)(.1/3 -9 :
z (@; — @)? z (2; — 2P
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and show that the squared residual length-is
s2y) = D(y; —§ — a;(N(w; — B)°
s Cw? _ S @ — ;)
=>yi— S = .

Note that the highest order coefficients in the two forms for the model are equal: By = ay;
b,(y) = ay(y). The reduced structural equation has components

ao(}') = 0y -+ Uao(e)r
a,(y) = a; + oa,(e),
s(y) = os(e).

(iii) SﬁOW that the positive-lower-triangular and orthogonal factorization of ¥ is

Vs 0 0
V5g 3 @ —tay) s)
1 1 1 __1__ L
V5 Vs V3 VE VE
xy —Z Ly — & Ty — & Ty — T Ty — &
VSe—27 JS@-a2 V2 @—2 J2@—a? X @—a?
dy(y) dy(y) d3(v) dy(y) ds(y)
Check that the analysis-of-variance table _is
Source Dimension Component Structure of Component
Constant 1 725 (ogV 5 + geV'5)?
Linear 1 a3y (= — & (°‘1\/ > (@~ )2 + oaye)/ D, (@ — B )2
Residual 3 s2(y) (oxp* :
s 2

(iv) Give ' expressions for the error probability “distribution of (ay(e); ayle);s(e),

(i5(8), F1(8)), and s(e).

(v) For the case of normal error verify that the reduced model can be presented as

Zep P Xa
y'\/g = ao\/g + 07,
ay WY @ — R =D @ — D+ oz,
s() =~ X3

Problems
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Also verify that the error probability distribution of (#y(e), f;()) is

Ag V5 (5 — o2
Ay (U5 + 3 (& — 2P0

diy df,

aﬁd of F,(e), for example, is

Ag \/Z (z; — )2 ;

(vi) For the case of normal error give equations that describe the structural distributions
of (e, %y, 8), (&g, %), %y, and o (use normal, chi, and simplified z-variables).

Note: On the assumption that there is no dependence on the controllable variable, the
measurement model of Chapter One is appropriate. On the assumption that the dependence
is linear, the type of model in Problems 5 and 6 is appropriate. Now suppose that several
observations are taken at each level of the controllable variable. On the assumption that the
dependence is of unknown form, the type of model in Problems 1, 2, 3, and 4 is appropriate.
An analysis-of-variance table for such a succession of models can be calculated by using the
results from the various problems; tests and structural distributions can be obtained from a
particular model. For examples, see Problems 13, 20, 21, and 23.

7. Consider a process with a known error distribution and suppose that 12 observations
are taken, two at each combination of levels 4;, 4, for a first factor 4 affecting the process
and levels By,'B,, By of a second factor B affecting the process:

B, B, By -
Ay Yirx Yz Y121 Yi2e Y11 Yiase
Ay Ya1 Yase Ya1 Yese Yam Yase

If the factors were known not to affect the general response level, the measurement model
in Chapter One would be appropriate.

If the factor B were known not to affect the general response level, the kind of model in
Problems 1, 2, 3, 4 would be applicable (two levels for the factor 4 and, accordingly, two
structural vectors):

IIr (ei:is)H deyj,
1131 1§11

1 1i1 1

|
—

Y y112§y121 yng'»’/ml Yisz 1 Yo YaraiYom yzzagyzal Yoz
1 00 1 ---1
=]01 0| -1 1
Hop GJ) &1 gy

Similarly, if the factor 4 were known not to affect the general response level, the kind of
model in Problems 1, 2, 3, and 4 would be applicable (three levels for the factor B and,
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accordingly, three structural vectors):
TTfeadT T dewss. _
111 1i1ooryo1ooriob1p1 ol
1 Z1h 1 1j0 o0i-1 —1i 1 10 0

1 —1io1 —tl2 2i-1 —1-1 —1p2 2

H

‘ | ; s | g
Y Yaaz Yz Yiee Yisi YaseiYen Ymai¥am YameiYam Yae

1 0 1. 1
0 1 —1-- 0
1o o 1 1 2

b Yy Y2 O 2111 T Cage

Nots that the lengths of the structural vectors have been chosen‘ to avoid fractions.
More generally, perhaps the factors are known to have possible effects on the general

. response level but only in an additive manner: a change in factor A changes the gen-

eral level by the same amount at each level of B and a change i.n factor B changes the
general level by the same amount at each level of 4. A combination of the preceding two

models is then appropriate.
Hf(eiis)n deyj,

,_.
o
"
=
-
—

|
-
|
_-
|
R
|
-
|
-
|
-
-
—
—
-
-
—

-1 —*1% 1 i 0 0; -1 -1 1 1: 0 0
-1 -12—1 12 2i-1 -1 - -1y 2 2
Yz y112§:y121 y122%y131 Y1gs | Yo Yoz Yam Yoge | Yoa1 Yase

1 0 1--- 1

0 1 ) —1--- 1

=10 0 L —1--- 0

0 0 1 -1 2

0
[.'“' P Y1 Y2 O €111 " " ez

Note that the four structural vectors are mutually orthqgonal: in particular, the sefzo.nd
vector describing row differences is orthogonal to the third and fourth vectors describing

column differences. )

And more generally still, if the factors are known to have possible effects on the general
response level unrestricted by additivity, the kind of model in Problems ! and 2 would be
applicable with six general levels given by the table

B, B, By

Ay M M2 M3
Ay Moy Moz Hes

Problems 169

and with a corresponding six orthogonal structural vectors. Alternatively, the model canbe
. structured by adding two vectors to the four structural vectors in the additive model:.

T1 /)T deuss
1 1 1 1 1 1)

1 1 1 1 1 1

0 0

2 2
-1 -1 1 1 0 0
-1 —-1i -1 -1 2 2

WY1 Y12i¥ier YisaYi; Yasai Yo YeioiVaer YaseiVYas1r Yasa

(1 o) 1e- 1)
01 -1 1
0 0 1 —1--- 0
=00 0 1 —1--- 2
00 0 0 1 1.++ 0
00 0 0 0 1 1--- 2
LA P V1 V2 % % O J €55 " ez )

(i) Check the mutual orthogonality of the structural vectors in the final model. The
fifth vector is obtained by multiplying corresponding e¢lements in the second and third
vectors, the sixth vector, by multiplying corresponding elements in the second and fourth
vectors. Justify this procedure in terms of the interpretation of vectors as describing row
differences and column differences.

(i) The projection of y into the six dimensional subspace determined by the structural
Vvectors Wy, . .. , Wg in the final model can be written

mwy + rw, -+ c;Wa -+ oWy + ayws + agwg.
Give expressions for the coefficients in terms of averages such as
2 Vs > Yan,
s __ 18

2 s Y= 7

Iy =

(iii) Determine the positive-lower-triangular and orthogonal factorization of the matrix
Y; use the notation m(y), . . . , a,(y). Record the analysis-of-variance table. -
8. (Continuation). For the case of normal error

TIfles) = @yt exp (—33 e}
express the reduced model in terms of normal and chi variables (cf. Problems 4 and 6).

9. Eleven pieces of material were sampled at random from a lot; five, chosen at random,
were subjected to a first treatment, and the remaining six to a second treatment. Suppose the
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regression model with normal error is applicable. Let u; be the level for the first
treatment and u, for the second treatment; and suppose the observations yield
7, = 0.275, Fq = 0.293,
s2 =0.00045, sZ = 0.00039."
Derive the structural distribution for &, — u; (note that variances are recorded)

10. Show that the location group L is a normal subgroup of the regression- scale group G
(Section 7).
11. Measurements are made to estimate a period of oscillation. Let Y, be the measured time
when the oscillation is in a certain phase, and y,, ..., %, be the measured times for
successive recurrence to that phase. Suppose the measurement error is normal: then the -
regression model with equation

Y; =By + Bol + oe;

is applicable; B, is the period of oscillation. Show that the structural distribution for B; is
located at

> yli —nf2)
2 G — 2

and has r-form on n — 1 degrees of freedom; obtain an expression for the scaling of the
t-distribution. .

ﬁz=

12. Consider the regression model with normal error, with structural relationship

y = Pl + Box + Pyx® + oe,
and observations
x 26 27 28 29 3.1
Ty 121 125 127 13.0 13.5.

on the response ¥ corresponding to the controllable variable .

(D) Test the hypothesis iy = 0.
(ii) On the assumption that f; = 0 derive the structural distribution for Bs.

13 (Continuation). Two determinations of the response ¥ were made at each of five levels of
a controllable variable : )

z 26 27 28 29 3.1
y 122 125 125 13.1 135
120 125 129 129 135,

Suppose the regression model is applicable: normal error and response levels gy,
Ho, Mg Mg, 15 fOr the five levels of controllable variable. Calculate the analysis-of-variance
table with entries for: mean; linear dependence on x; quadratic dependence on z; other
dependence on z; residual. Test the hypothesis that the dependence is at most quadratic.

14. Use the orthogonal basis to show that
T ‘ 71
Iy = X B2 =y — > bV, [2 + BAD(y) W, )
1 1
15. Use the orthogonal basis to show that

z b(’“’(yl)vu, Yo — Z b('+1’(y2)v )

/’(rﬁ“(y1)b£:3n(yz)('."r+v Wyi1)-

T T
= D By, ¥e — B (v,) = (v, —
1 1

Derive the distribution of error posmon (a) using an orthogonal basis wy, . .
(b) using the given basis vy, . .
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16. Show that
r
¥, — Z by (¥)Vy, ¥ —
1

2 bV, = (1, ¥2) — 3 by, ¥2)
1 u

= (yl, ¥o) — z bu(Y2)(Vu, yl),

v = 3 bW = 1512 = 3 b,5)(¥, 9.

17. Consider the regression model but with known error scaling:

SEYE =TT fep T] de,
1

1

Y = 6E,
where
v{" v;‘] 1 0 0
Y = . E = ) , 6 = ’ ) )
v, v, 0 10
’ ’
y e By - B, 1
the simple regression model. Assume that vy, ..., v, are linearly independent and 6 is an
element of the regression group i
1 00
G = —w < b, <
0 10
by b 1

(i) Determine a transformation variable and a reference point (Notation of Section 3;

pattern of Section 3 in Chapter One). Check that the model is a structural model.

(ii) Derive the invariant differentials and the, modular function.
(iii) Derive the distribution for error posmon and the structural distribution for 6.

18 (Continuation). Consider the simple regression model with normal component error:

1 1e?
de = —== — = =1 de.
fle) de W/choexP{ 203} e
w,, and

, ¥, where

W = PV, V=Pl
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19. Suppose levels 4, . . ., 4, are chosen for a factor 4. Let y;; be the sth response at levell (ii) Justify the elements in the corres
A

i . with normal error).

Problems 173

i

ponding analysis-of-variance table (regression model

Yy Yin, | €3] ‘
Yor  ° Yamg @ . Source Dimension Component Structure of Component
y=| - = (¥s);
Mean 1 Ni? (VNu + oz .
Y Yan, | @ Factor A a—1 Z”fg?-,_ N2 « m o)+ a2,
- . - ) .. — n .(y_ - g)2
the vector is recorded in a convenient array with different rows containing respo§ses for Residual N z 22__ 12; " s
different levels; N = E n;; y € RY, Let v, be the 1-vector: Y2 Zyi-' i 5
1 1 =2 @i — 7,
1 -1 Total N

XA

NOTATION. g = % n;u,/N; 2’s are independent standard normal, y’s are independent
chi-variables with degrees of freedom as subscribed.

i

and let v,—y be an indicator vector for the level A;:-

20. Determinations were made on the yield using three methods of catalyzing a chemical
process:

I 472 49.8 485 48.7

0 -+ 0 [¢)) II 50.1 49.3 51.5 50.9
. IO 49.1 532 512 52.8 52.3.
) 2 i Suppose that the regression model is applicable: normal error and levels y;, u,, pg for
Y i-9 the three methods. .
vp=|1 -1 ® (i) Calculate the analysis-of-variance table by using the enboxed-expressions in Problem
0 G+1 . 19.
(ii) Derive the structural distribution for py — (g, + p)/2; for Hy — .
21. Three chemiéts do three, five, four determinations on the chemical content of a mixture:
Lo - 0J) (a I 26 29 28

II 31 3.0 33 29 33

(i) Tn the table check the following entries: ordering. of subspaces by “contained in” M 29 32 3.0 3.1

(L(vg) < Lvy, ..., ) © RY); dimension of subspace; projection into subspace; squared |
length of projection. Suppose that the regression model is applicable: normat-error and levels Uy, Mg, Mg fOr

Space Dimension  Projection Squared Length ~ the three(chen;xists. Calculate the analysis-of-variance table and test the hypothesis Wy =
#g = pg (the three chemists are consistent in their measurement levels).
: 72 = YN
Mean Lvg : 1 @ Ny 22. Suppose levels 4y, . .., 4, are chosen for a factor 4, and levels By, . . ., B, for a factor
(zy 2 B. Let y;;; be the sth response at level 4, for 4 and level B; for B:
. _ o is)
Factor 4  L{vy, ..., Y, a #:) z ng; = 2 Ns T A
i M Y " Yan Yo "7 Yiom
RY N i y= = (¥159);
NOTATION. § = z YN §;. = z Yuslny
s Yau1 * " Yain Yab1 """ Yavn
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. . ine levels of 4 by rows and levels of B (ii) In. the table check the ff)llO}ving entries: dimension of subspace; projectiqn into
the vector is recorded in a convenient array separating levels y subspace; squared length of projection.

by columns; N = abn. Let vy be the 1-vector:

1o0e1 +-o 101 Space Dimension  Projection Squared Length

Mean Lo 1 6.0 abnt =[Sy |

2
Z(E ?/iis) / bn
i \is

Yoo =

1...1 e 1.1

]

A L(v:all i) a A by .
i

Let v, be an indicator vector for the level 4;:

(O --- e 0.0 (D) ' ] ) .
0---0 | B L(voy:all ) b @) a3 =|Y ( s ym) / o
i i \ids -
i 2
0 0 A X B L(vjalli,j) ab (T3 n z 73 = 2‘ (Z ym) /,,
Vi 1 1 1- 1 @) 29 i \s
0 0 RN abn (yiis) Z y?js
. . NOTATION. §... = X ys;o/N; Jy.o = By 55l G5 = 3, yii4ln.
LO 0 e 0000 @) (i) Justify the elements in the corresponding analysis-of-variance table (regression model
Let vy; be an indicator vector for the level B;: with normal error).
® .(j) ® Structure of
0 0 i 1 0 0 Source Dimension Component Component
Mean 1 . Nﬁa ) (\/N# + a.zo)z
Vo, ==
05 A a—1 bn 2 Fh. — N
0 e 0 ....'1 P 1 .. O e 0 ) ‘
; . Fo — )2
Let v;; be dn indicator vector for the combination A;B; (zeros edverywhere except for co- bn ,z ;.. — 9)
2 N . s . il ion.
ordinates corresponding to A,B;). This is a two-factor factorial.design . 5 b - # —
(i) Check the ordering (L' = L") by “contained-in.”” Check that the extensions <
L) IRy C =an (3., — g
s L i .
/),/ ' Q AXB @—-1DB—-1 n Z 75 — (preceding entries)
e ij
Longr - ) Kow 2 ) - ="z(:l7ij-"37i..——?i.j.+?7)2
( 107 : 2 Yap 2
: & ) Residual ab(n — 1) z Y3, — (preceding entries) “2?(3»("“1)
L(vi;‘:‘all L) =3 Wiy — G0
A abn z 7/?,-3
o

(iv) Derive expressions for the missing entries under “Structure of Component.”
from L(v,,) are in orthogonal directions ( L as indicated): a consequence of the same . 23. A factor A (temperature) is given three levels; a factor B (pressure) is given two levels;
00 . :

number of observations at each combination 4;B; of levels.
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two determinations are made at each combination of levels:
B
18 20

73

75

Suppose the regression model is applicable: normal error and level p;; for the com-

bination 4;8;. ' )
(i) Calculate the analysis-of—variance table by using the enboxed expre

22. o
(ii) Testthe hypothesis that the effects of factors A and Bare additive: y;

. (i.e., no interaction A x B for factors A and B).

NOTATION.

Three

ssions of Problerfx -

j='u.'+§‘-.+6,j<v

Problems

177

(i) Check the ordering — by “contained-in"; check the orthogonality of extensic}ns

(see the accompanying figure).

(i) Inthe table check the following entries: dimension, projection. Derive two expressions

for each squared length.
Space Dimension Projection Squared Length

Mean L({vo00}) 1 (@....)
A L{v;00}) a ;..)
B L{{vgsoh) b (..
(o4 L{{vgoe) c @.x)
AB L({vz50D) ab #z5.)
BC L{{vg;) be i)
AC L{{virD ac Gsx)
ABC L{{vii) abc i)

RN aben Wijis)

(iii) Derive expressions for the entries in the corresponding analysis-of-variance table.

This is a three-factor factorial design.

Oy = Mg — My Py = z #3lbs
7

. u= z wylab.
b=y — 4 Heg = z Hisla, K
R 2 N

; ; A, levels By, . . ., By for a factor B,
*24. Suppose levels A, . . ., 4, are chosen for a factor A, 1s  for r B,
levels CPP . Ce for; factor aC Let ¥,z be the sth response at the combmatlon.AéJ‘B,(i'k,
s =1, 1, , n. Let vy be the 1-vector; let Vi, Vojo» Yoor: Viior Yiqks Voik Vijx b€ indicator

*25. The location and scale subgroups are examined for the regression model
(Section 7) by using full matrix notation and are examined for the progression
model (Section 11) by using the location-scale symbol {-, ] of Problem 27, Chapter One.
Check the details in Section 7 using the location-scale symbol, and the details in Section
11 using the full matrix notation.

*26. For the progression model derive expressions for the structural distributions,

g¥(r:Y)du for w and g&(B: Y)d'G for B (Section 11).

*27. (Continuation). Derive the marginal structural distributions for . and G for the case

vectors for A;, B;, Cy, A;Bj, AiCr B;Cy, ABiCr respectively.
I_-(Vogo)

L({¥0D) L{t¥ooxD

~

L{{v;e0D)

L({v;50D) L({Viok}) L({Vojk})

L({vijk})

RN
Problem 24

of normal error (Section 12).

*28. Derive the general Wishart distribution (Notes and References).

29. Consider the progression group

[ 0
k Cs
b -0 < kii' <
0<¢; <
kg kpp1 €
operating on points
Y Yin
Y =
Y1 Ypn

in Euclidean space R?™ by matrix multiplication.

(i) Check that G is a group and that the group is unitary on RP" provided n > p and

certain trivial points are excluded.




178 Linear Models ) Three

(i) In the pattern of Section 10 define a transformation variable and derive the invariant

differential on RP" and the left and right invariant differentials on G. i
(iii) From properties of the invariant differentials deduce the value of the Jacobian

et
% |
30 (Continuation). Consider the simple progression model for n observaﬁons on p re-
sponses:
f(E)dE,
Y = BE,

where B is an element of the group G. )

(i) Derive the distribution of the error position variable [E] given orbit.

(ii) Derive the structural distribution for G.
31 (Coﬁtinuation). For the case of standard normal errors derive:

(i) The distribution of error position [E] given orbit. ) ) o

(i) The distribution of the error inner product matrix S(E) = EE’ = [EIEY given
orbit.

(iii) The structural distribution for G.

(iv) The structural distribution for & = B¥’.

*#32. Regression progression model. Consider an error variable E:

’
s .. r
Ui V1n 1 Vi
P 4
Upy Urn Ve =
E = = ; E
en €1n &
!
Lest """ CmJ  U&J

with error distribution N :
n
f(E)dE = f(E)dE = Tiftesn - ven) I]:l(deﬁ <o v deyy).
i=1 je

Consider a quantity
1 0 0 e 0 R

0 1 0 .- 0
0 I 0
0=|Bu "~ B ‘w = s €

ﬂg]_ ﬁ21 T %)

Lﬁpl ot Bor To T Tapa o) J
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or, equivalently (general location-scale notation in Problem 27, Chapfcr One), !

0 = [, B].
And consider a response matrix Y:
s oo
vt U ) Af1
’
Y = U'I'). vrn _ V,:. — [ 14 ]
Yu Yin bt r
DY 4
LYn Yon L

The regression-progression model is

[(EYAE,  [(E)dE,
Y = 6E, Y =%V + GE.

(i) Check the equivalence of the two kinds of notation: full matrix; location-scale with

matrix arguments.
(i) Consider the regression-progression group:

G I 07 Bisp X rmatrix
¢ B T) Tis p X p positive-lower-triangular ’

 Check that G is a group. Describe the orbits on R?" using the L+ notation; show that G is

unitary on RP™ if n > r + p and a certain degenerate set of points is deleted,

**33 (Continuation). Define a variable [Y]:

[r]= ! °
B [B(Y) 7(Y)

r I\ e
¥y

and a point D(Y) in R?":

D(Y r 4

./
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Use the regression coefficients of Section 3 and the natural extension of the regression co-
efficients and residual unit vectors in Section 10. Show that [Y] is a transformation variable
and D(Y) s a reference point; check the alternative notation: [B(Y), T(Y)] and D(Y).

*34 (Continuation)). Verify the following invariant differentials:

dY
AmX) = e
dg  dBdT.
du(e e R e
&) = Gl = [T 1T
de  dBAT
g =25 =T
") = e = Ty
A(g)_vlglv_ |Tlv

T igla TTITIAT
*35 (Continuation). Derive the following distributions:

. d
$(E1: D) dIE] = KDYAEID) EI ik

V14 dy;

n .
= k(D) Hf Bl - |+T)| sa—)(ﬂ-l) e s(np—)(rﬂ)) d_BdT.
i1 . .

Vg dyy
‘ Y1 |[Y]ly
*0:Y)db = k(D)f (61 —Y dy(f
§¥0: V)b = kDY 637) e o )
Y1: - ”11"

a S(V (¥) s (e
pEa 1% el B ()

yzn' vr i

By (Y) - sh(¥) 4% d%
S-SR oy ol

*36 (Continuation). Derive the location distribution g (H: D) dH for the error variablet
H = T-1B; derive the structural distribution g}i(ﬂ&:l’)dﬂ& for $. Derive the scale
distribution gg(T': D)dT for the error variable T = T(E). Derive the structural
distribution g£(G: ¥)d'G for 'G. .

+ Note. H is 2 p x r matrix, an analog of the vector t in the regression and progression’

models; the capital 7' has been used already for the positive-lower-triangular scale matrix.
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*37. (Continuation). For the case of normal error
SE)YdE = Qu)y~"?/% exp {(~3} tr EE"} dE,
determine the form of the distributions in Problem 35 and structural distributions in

Problem 36.

*38 (Continuation). Derive the standard Wishart distribution and the general Wishart
distribution for the regression-progression modei. Note the similarity in form tc the distri-
bution for the progression model case—-a change of degrees of freedom.

39. Consider a matrix ¥ of structural vectors and a matrix ¥ of corresponding response

vectors; let
14 14 V
Y= Vo2 T I
Y Y Y

(i) Show that the regression coefficients of ¥ on ¥ are Sy 33! : coefficients for the first
response are in the first row, .. ., coefficients for the last response are in the last row.
(i) Show that the matrix of residual vectors is ¥ — Sy S5 V.
(iii) Show that the inner-product matrix of residuals is Spy — Sa;S77%S75.
(iv) Consider the inner-product matrix for a general residual ¥ — BV:

(Y — BVXY — BVY.

Complete the quadratic form in B; and thereby show that B = S, Sy;" gives a minimum
inner-product matrix of residuals.

40. (i) Determine W to satisfy the (r 4 p)-partitioned-matrix multiplication,

1 0)(4 ¢C 4 c
w 1|le p| |0 p=saic|’ -

A C
=14||D — BA™C|.
B D

and show that

(ii) Show that
|1 — KKyl = |1 - KKy,

where K, is p % #, Ky is r x p, and [ in each case is an appropriate identity matrix.
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CHAPTER FOUR

Conditional Analysis

The structural model describes a certain kind of process or system: the form
of the error distribution is known from theory or from experience with the
same or related systems; the physical quantity is a transformation from a
group, the transformation that carries an error value into a response vaiue.
The presence of the group is important: it permits the ideatification of
characteristics of an error vatue; and with multipls observations the group
allows the form of the error disiribution to be determined; it allows ths
observer to see info the system.

- Not every physical quanuty can be identified as a transformatlon from a
group. This chapter examines a variety of models in which part-of the
physical quantity is a transformation from a group. Chapters Seven and
Eight examine models in which no part of the quantity is a transformation
from a group.

With a structural model a change in the quantity is a change in a trans-
formation that applies to the error value; it produces a corresponding change
in the response. Without this structuring relationship linking the quantity
and the response, there remains only the frequency distribution that describes
possible response values for each value for the quantity—rthe classical model of
statistics. For the models in this chapter. the transformation part of the
quantity can be analyzed in the framework of-a structural model, and the
remaining part can be analyzed by methods appropriate” to the classical
model.

I PROBABILITY AND LIKELIHOOD FUNCTIONS

Consider a model with a respoase vaciable taking possible values in a
space X and with a quantity 0 taking possible values in a space (1. Suppose
there is no structuring relationship b_ which a change in 0 can be related to a
change in »; specifically, suppose there is the minimum for a statistical
model—a frequency distribution f(z: 0} for the response variable x for each

as
&5

e
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value for 0, the classical model of statistics. Suppose also that the space &L
has a countable number of points with f(x:0) as the probability function, or,
alternatively, that the space X is an open subset of a Euclidean space with
f(x:8) as the probability density function relative to Euclidean volume. The
statistical model then has a frequency distribution f(x:0) for x in L with8inQ,
and it has an observed valuet x, for the response variable . '

Consider first the case of a countable space L. Within the modelan observed
%, has its labeling z, and its probability of occurrence f(z,:8) as a function
of the possible values 0 for the quantity. The labeling w, is irrelevant because
of the assumed absence of any structure relating the quantity to the response.
Within the model, then, an observed value has only the function [f(xy:0) of 6
as its essential identification; two points z,, %, with the same function
flay:0) = Sy :0) are not distinguished. See Figure 1. The reduced statistical
model then has a frequency distribution f(x:6) and it has a realized function
S (xy:6) giving probability of occurrence as a function of 6. Some inference

_ ‘methods, particularly for a large number of observations, are examined in
Chapter Seven. A basic principle uses the function f(z,:0) to assess the
various possible values for 6, perhaps choosing as a single preferred value
the value § that maximizes the function f(%y:0).

Now consider the case of an open set & in Euclidean space. Within the
model an observed , has only its labeling %, and its probability of occurrence
[f(w,:0) dr, (in an element drgthat includes z,). Again the labeling is irrelevant
because of the assumed absence of any structure relating the quantity to the
response. Within the model, then, an observed value z, has only the function
[ (wg:0) dzy (with dz, unspecified in magnitude) as its essential,identification.
This can be expressed more compactly by defining the likelihood function
from the observed z,:

L(xy:0) = {kf(z,:0): 0 < k < o). "

~

|
|
1
i
|
|
|
1
[

Figure 1 The probability function for an observed value ;.

¥ In most analyses a single letter can be used to designate both a variable and a correspond-
ing realized value, the distinction being made by the context. It is convenient, however, in.
the present context to make the distinction explicit and use a subscript o to distinguish an
observed or realized value.
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L(xy:8) L*(xp8)

f(xg:0)
L¥(xg8) = ———
(x00) f(xq:8p)
%
[) 6o b

Figure 2 Representative elements k'f(z,: 6) k” . i T
; g 0:0), K'f(zy:0), K"f(xy:9), of the I ,
function L(x,: 6). The likelihood ratio L*(zy: 0) rela‘:ive to Bof- 0:9) e likelihood

The lilfclitfood function, in fact, is a set of functions of 6, all of the same form
and differing only in the positive multiplicative constant k. This definition
accommodates the unspecified element dx,. See Figure 2. A second
more formal expression for the likelihood function is ’

L(xy:0) = R¥(x,) f(%:),

where .I?J'(‘x) is the map that carries any point « in &L to the set Rt = (0, c0)
of positive real numbers. Note that kR*(z,) = R* for any positive numb;r k.
If f(=,:6) 5 O for each O then the unspecified constant can be avoided by

. using a likelihood ratio relative to some reference value 0,:

N S(zy:0)
Lrm0) = Fody

The likelihood function can be expressed alternatively as the log-likelihood
function from the observed x,:

I(zy:0) = {c + In f(z,:0): —c0 < ¢ < 0} = R(wy) + In f(x,:6),

where R(z) is the map that carries any-point x in & to the set R = (— o0, o)
of real numbers. The log-likelihood function, ih_fact,‘ is a set of functions’of 0
all of the same form and differing only in the additive constant c. See Figure 3.
'fl;l;ef \(/ziu;)—- do-must be allowed for In f(z,:0) to correspond to the value 0

Consider further the case of an open set & in Euclidean space. Within the
model' an observed value z, has only the likelihood function L(xy:6) as its
essential identification; the likelihood function gives the relative probability
of occurrence of z, under various possible values for §; two points x'. x, with
the same likelihood function are. not distingnished. The reduced gEatgstical
model then has a frequency function f(x:6) and it has a realized likelihood



188 Conditional Analysis Four

1(x0:6)

j'// \i 8
/ \\\

Figure 3 Rééresentative elements ¢ + Inf(zg: 0), ¢ + In flzy:0), "+ In f(zy: 0),
¢ + In f(xy: 0) for the log-likelihood function (g2 0).

1
|
!
|
:
|
|
|
|
|
|
[

.function Z(zy:0) giving relative probability of occurrence as a function f-)f 0.
Some inference methods, particularly for a large number of.observatzons,
are examined in Chapter Eight. A basic principle uses the function L(x,:0) to
assess, one-with-respect-to-another, the various vahfes. for B,‘ pe_r<haps
choosing as a single preferred value the value § that maximizes the likelihood
function L(w,:0). :

2 A CONDITIONAL MODEL AND MARGINAL LIKELIHOOD

Consider now a model that is partly structural and partly classical. Let E
be an error variable on an open set & in a Euclidean space RY. Let.G be 2
primary quantity, an element of a unitary group G of transformations of
T onto L (with Assumption 3 in Chapter Two). Let X be an.observed
response that is produced by the transformation 6 applied to a realized error
value E. And suppose that the error distribution

f(E:2) dE I
is known except for an additional quantity 2. This gives the

Conditional Structural Model
| J(E:D) dE,
X =10E,

with additional quantity A. The model has an error variable £ w‘ith d‘is‘trib!jltlon
dependent on the quantity 4; and it has a structural equation in which a
realized error value E is transformed by the quantity 0 to give Fhe response &.
If the additional quantity A is known in value, then the conditional structural
model is an ordinary structural model.
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Now suppose there is no outside information concerning 6 and 1. For an
assumed value for the quantity A the structural model produces a reduced
structural model

g.([E]: D(X)) d[E],
[X] = O[E],
where
£.([E]: D) dE] = k(D) f(LE1D: )] y(E) du([ED.
The corresponding structural distribution for § conditional on 4 is
gX(0:X) db = k,(D)f(67X : 1)J y(6-2X) A([X]) dv(6).

For an assumed value for 1 this distribution is the basis for inference
concerning 0.

Now consider inference concerning A. The structural equation gives no
information concerning the error position [£], but it gives the value of the
error orbit GE = GX. The distribution that describes the origin of the error
position .[E] is a distribution that involves 4; it can give no information
concerning A without the realized position [E]. This leaves only the known
orbit GE = GX and the distribution that describes its origin. The distribution
that describes the origin of the orbit GE = GX involves the quantity A;itis a
‘classical model. The likelihood function for the known orbit based on this
classical model is now derived and is called the marginal likelihood function
for A.

The probability element. for E based on Euclidean volume is
f(E:Q) dE.
The conditional probability element for [E] given the orbit D(E) = D is

. JN(E)
kx(D)F((E]D:3) === dIE].
Jr([ED
The marginal probability element for the orbit D = D(E) can be obtained
by dividing the full element by the conditional element

L J(ED dE —

ky(D) Jy(E) d[E]

The marginal element based on differentials at the point X rather than at E
on the orbit D is

1 J (XD dx
ky(D) Jy(X) d[X]
The likelihood function based on D is

1 .

(D) = R*(D)kl(D)
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the omitted factors do not involve A and have been incforpqratc?d into R+(p).
This is the marginal likelihood function for A. This.margmal likelihood function
is the basis for inference concerning the quantity 4. A

3 THE MEASUREMENT MODEL WITH AN ERROR QUANTITY

Consider the measurement model of Chapter One and suppose that the
error distribution

fle:p) de

involves a shape or form quantity f. As examples consider

‘fl(e:,B) = kexp {"% Ielﬂ}’ ﬁ > 0’

o I(“l\’!

'f.z(e:ﬁ) = k(1 + exp {—fe}) " exp {._

For n measurements the model is

ff[f(ei:ﬁ) ]f[ de,,
x = [u, dle.

This is a conditional structural model with additional quantity 8. ‘
For an assumed value for the quantity f the reduced structural model is
d ' o déds,
(@ TLA(E + sodizB)se —5— >
1 4

7, 5,] = [, ol[é, 5.}

The structural distribution for [, o] conditional on g (Section 18, Chapter
One) is

ky(d) I:i_[f(f’-—;—'uﬂ) (__qg)" i\c?ugdo .

a

The probability element for e based on Euclidean volume is

| I’f[f(ei:ﬂ) : II de;.

The conditional probability element for [e, s,] given the orbit d is

T .
ky(@) TLA@ + st ) 2 de ds;
1 e

it is expressed in terms of Euclidean area on the positive affine group. The

vector [é, s,]d is a point on the orbit through d in Euclidean space R™; let
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Tde; /
~Vn? ~ndéds,

Figure 4. Euclidean measure on the orbit: VndeVn — 1 ds,. Euclidean volume measure
cross-sectional to the orbit: Ilde;/V'n® — n dé ds,.

d[é, s,]d designate Euclidean area on this orbit. The ratio of Euclidean area
on the orbit to Euclidean area on the group is
dle, s ld

a1, 5.1 = =1

see the example at the end of Section 3, Chapter Two; also Figure 15,
Chapter One. The conditional probability element for [¢,s,] can then be

K([¢, s,]:d) =

written

K@ TLICE + 5 ) o dle, 5,10

_ Se/n —n
as based on Euclidean area on the orbit; see Figure 4.

The marginal probability element for the orbit d = d(e) is obtained by
division:

1 _\/nz——n_ T1de .
kg(d) s*2 dlg,s,)d’ .

it is expressed in terms of (n — 2)-dimensi0iﬁl‘ Euclidean volume cross-

~ sectional to the orbit. The marginal probability element for the orbit as
““based “on' (n — 2)-dimensional Euclidean volume dv at the observation

vector X is
2 e
——-——1 ~\/——-————nﬂa2 2. dv.
ky(d) 57
The marginal likelihood function for f is
E

L(d:8) = R*(d) @
: B
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4. 6] provides the busis for
~sinil

Tae mructmal {istribution for

concerning {u, o] for an ass umed valuz for £ the mu

function provides the basis for inference concerning ff.

4 A CDMPGSIAE RRESPONSE MODEL

Consider a sequence of p response variables v, . . . , %, and suppose that
the distribution ’ .

=

- 23N
JECIPIN- P o)

of the related error sequence €y, . , has been identified, except for a
quantity f describing form, shape, hnkmg, or other characteristic or combina-
tion of characteristics. Let u; be the general level of the Jjth response and o;
be the error scaling for the jth response. For n observations on the composite
response the following model is obtained:

ﬁr‘f(el'n cee E])'i:ﬁ) H de,ii’

vy, = (i, 0718

V= [ty Onley

The model is a conditional structural model (n > 2) with flddltxonal quanttty

“An example of a bivariate error-distribution with additiorf'al quantity p is

i 1 &} — 2peje, + €3)
fley exip) = —F===Xp\ =~ o _ o |
! 27T\/1 — p° p!\ AL —p )

the bivariate normal error distribution with corr elarzon p.
The quantity [u;, o;] belongs to the positive affine group

—wo < aq; < D
Gj‘;= [aj7 Cj]:
' 0o <

on the Buclidean space R" of the jth response vector. The comp051te quanuty
(lptgs 00ds -+ -5 L ,]) belongs to a group

s ytp

G = {({al: Cl]: st [ﬁm :‘:‘-L': [‘;j! Cj.j € G}'v

g direct product of the groups Goy e th power of the

p(dys 8 TTS (y"‘ Th Ve ) G 5T o dpy doy
. 51 Tp ‘ H '

4
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positive affine group since Gy, .. .

) » G, are equivalent); iplication is
coordinate-by-coordinate:: ’ 1 )i the multlphcat.;.on *

([al,. cl]7 AR | [azn cy;]) ) ([Ala Cl}: IR} [A-p: Cp])
= ([alz cl] [Alr Cl]’ 2 [a:pa C:U][Azn Cp])

The invariant differentials and m i
| odular function can be obtai i
ing those for the component groups. feined by combin-

For an assumed value for the quantity 3 the reduced structural model is
kpldy, .., @) TT (& + s, dys o 8y + s dpit )

) o dé ds,
(g - s[,ﬁ)7 TT—

[gl’ Sy,] = [/‘Ll: Gl}{él’ 5::1:[2;

e 50,0 = [pay5 0,116,, 5,

0

The structural distribution for the composite quantity conditional on £ is

(oy...0)" =7 g;

The marginal probability element for the orbit

(dl’ Tt dﬂ) = (dl(el)’ R ] dp(em)>

can be Obtained by the mﬁthodh iI\ the pICCedl’I\ SeCtiO“ a llCd to each
. E
: tor g Pp :

1 L_(n* =y
feg(@, ..., 8,) (s, . .08

e dv;
Y
the eleme { ii i

nt dv measures (n — 2)p-dimensional Euclidean volume cross-

sectional to the orbit at the
observed composite respo
likelihood function for § is P ponse. The mergine!

L@y, Ay f) = R7(G . ay
My, .., d)

_ .
or an ex >onsid bivari
Cozrelati;n‘.,\a;x}ijie consider the bivariate normal error distribuiion with
B 171 n B
p- 1he normalizing constant for the conditional error distribution
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can be obtained by integration:
kg'(dy, d5)
D S
@m(t — p"
(& + Sexdu)z —2p(&, + 5,,d35) - &+ 5.de)) T (&t sezd2i)2
J P {“ > 21— 5)

-9 7~ ~
" (8,8, " dé; dé, ds,, ds,,

— 1 — fzf___._zf_é_lf_ﬁ_j‘_é;]d e dneé,
"“f(zﬂ),(i—p?)"ﬁ“"{ e b

1 f { ( 1) 8281 - zprsexsez + S:;z}
. expy—n —
H(Z'ﬂ)ﬂ—l(l _ P2)(n—1)/2 P 2(1 . PZ)

- (80,8, " 2 ds,, ds,,

271—-1(1 _ PZ)(n»«l)/‘z

= = H exp {—1} — 1§ -+ 2prit}(hit)" " diy diy
n-. n —_— R~
Q2w (n A

n— 2\ (n—1)/2 o (H N\e ¥ ‘
S ko iy G128 U exp {— £ — B}t dty dty
(277 n—ln(n — 1)11—1 P’ ol .
0

217.—1(1 _ Pz)(n-—l)/z @ (2P")a
@)™ — 1) S ol

515 f f exp {— £ — EHLHIDEL 4 drk
0

_ zn—a(l _ PZ)(n~1)/2 0 (zpr)l I (n — 14+ Cl)
@™ a(n — )" a0 al 2 7
211—3(1 - pZ)(n-—l)/‘z

@m) (e — )™

" “where

Hn—l(Pr)7

15"(:) 5@ (”-‘*—“)

a=0 al 2

The preceding simplification involves a number of steps. In the ﬁrs? step
the error density function is substituted. In the second step the terms in the
exponential are expanded and rearranged,

> d;=0, ngi:n"lw Zdndzz':(";l)ra
i i i .

§4 A Composite Response Model 195

and expressed in terms of the sample correlation coefficient r,

= (n—=17% (1 — ) (s — F2)

Sy, Sy,

_ (n— 173 (er; — &)(ey; — &) = ! 1 2 dydy;,
1 -

between y, and y,, between e, and e,, or between d, and d,; the first part
of the expression, an integral, has value 1. In the third step the substitution

Jn—1s,,
l = —m
\/ 2 \/ 1— p2
is made. In the remaining steps the cross-term in the exponential is expanded
in a series and is integrated term by term.

The conditional error distribution given the orbit then has the form
kﬂ(dlv dz)
@mr(L — )
“exp {__ z(él + Seldli)z — 2p(é, + Seldli) (8, + segd2i) + (& + SegdZi)z
: 2(1 = p?)

SeySey

“(8,,5,,) " dé, dé, ds,, ds,,

: 1 & —2p88 + ), ~. , .
= exp | —n ——— 22— 2t /né d/né,
2m(l — P °| 21— p) oedd
(n _ 1)n-—1
271 — P H,_(pr)

“(8,,8,,)" 2 ds,, ds,,.

exp {—(n —1) o = 2Tt Si"}

2(1 — p?)

And the marginal probability element for the orbit (d,, d,) at the observed
response is - ,

1 ) nz —n cdp = 2@—3(1 — PZ)(n——l)/2Hﬂ_1(Pr) dv‘
eg(dy, dy)  (5,,5,,)" @mHn — 1)"(s,,5,)"°
The marginal likelihood for p is

L(dy, dy:p) = RH(dy, dy)(1 — p3)"DI2H,_,(pr);

This can be expressed as a ratio relative to p = 0:

. =) RH L (er) (L= pA)"VRH, (pr)
L, dzp) = H, ,(0) ((n—12)
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The marginal likelihood function L*(d;,dy:p) depends on the orbit
(d,, d,), but it is seen to depend on the orbit only in terms of the correlation
coefficient r. The probability element for the orbit (d;, d,) for general p can
be related to the element for p = 0:

7@y, dy: p)O(dy, dy) = L*(dy, do: p)h(dy, d,:0)0(dy, do).

The distribution for (d;, d;) has its dependence on p isolated in the factor L*

and this factor depends on the orbit (d,, 4,) only in terms of the correlation r.

An integration to obtain the marginal distribution of r=(n — 17y, dy)

is an integration over variation in d,, d, for fixed r. In this integration I*
is a constant factor; hence, if .
k h(r:Q) dr
is the marginal distribution for with p = 0, then

- 2\(71-—1)/2H
h(r:p) dr = d - 'i 4 ua(P) h(:0) dr
(n — 1)[2) -

is the marginal distribution of r for general correlation p. The general distri-
bution is obtained by likelihood modulation of the special distribution.
For p = 0 the distribution of r has element

M N _w e
tore-om" " ar = ey = T,

‘ —1<r<i;
note that r@p) = 2201 (p)T'(p + DT (P). This distribution can be estab-
lished by using the normal regression theory in Chapter Three to show that

_Jn—2r

;=
\/ 1 — ]
has a t-distribution on n — 2 degrees of freedom conditionally given'e,

hence marginally.
The general distribution for the correlation coefficient r is then

n—3" .
[1(2 . 5 (- P IRH L (pr)(1 — L —1<r<i
ml(n —

5 THE MEASUREMENT MODEL ON THE CIRCLE

Consider a surveyor measuring 2 direction in the horizontal plane, or 2
physicist measuring a directional property on a plane surface, or an oceanog-
rapher measuring the direction of a wave train. These are applications for
the measurement model on the circle.

§5 The Measurement Model on the Circle 37

(x1, %) 9

(e, e2)

0,0 /(1,0)

Figure 5 The error variable (e;, ¢,) describes the
. e . Lo .
ezt an sl . 15 €2 rror angle e; the quantity 6 is a rotation

Let the vectorl(l, 0) be a reference direction on the pléne R?, and let a
point e = (e;, &) on the urit cii cle give the error angle e measured positively
from .the r?fe'rencc direct.on (see Figure 5). Suppose the error distribution has
been identified except perhaps for an additional quantity «:

fle:x) de = f(e;, &3:x) de. -

The vector e = (e, €,)" is restricted to the unit circle, and the differential

- de = de measures length on the unit circle.

The physical quantity is the general direction of i i
ical qua the propert
Let 6 be this direction as designated by the rotation property imvestigated.

6 %y Ty cos o —sSin o

Oy Oy sino  COS a

through an angle « from the reference direction. The ¢ i
L ¢ ion.”The quantity 6 belongs t
the positive orthogonal group of rotations on the plane:q ! ®

cosa —sina

G= .  0<La<x2m ).
sina cosa

F g ( > N
1 2
Or a SlIt (<] ()l)Se vation let X X xr,) ])E the measur ed dll‘eCth[l Ihe

feg, ey: 1) de,
X = fe.
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For multiple observations let

Zyy* " T

X=(X1,...,Xn)= »
Zor" " " Tan

designate n measured directions and let

€11° " " €in

E=(e,...,€)= .
€31°" " g

designate the corresponding realized error or the corresponding error
variable. This gives the

Measurement Model on the Circle

Hf(ei3 1) H de;,
X = OE.

The model has an error distribution describing .the multiPle measurement

process, and it has a structural equation in which a realized error E has

determined the relation between the measurement X .and the ql}antlty 6.

The model is a conditional structural model with additional quantity «.
Consider the effect of a transformation g:

Figure 6 The array X; the location vector a(X); the reference array D.

See Figure 6. A transformation variable can be constructed as the rotation
through the angle a(X):

o | 0 —am cos a(X) —sin a(X)

ay(X) a4 (X) sin a(X)  cos a(X)

_The corresponding reference point is

gX =g(Xy, .\ Xp)-
The transformation g takes the n points Xy, . .. s Xp on the uni‘t circle a'nd
rotates them through an angle a: The relative position of the points remains
the same ; the general placement on the circle is changed by a rotation through

D)= @0, -, a,00) = = | W0 D)
the angle a. To describe the position of the n points lgt (0, .., 4, 4 S
a (X cos a(X)
a(X) = 1( ; = . (X) - al(X)a:n -+ az(X)x21 e a1(X)-"71n + az(X)a;g"
a(X sin a - .
of. N '—az(X)xn + al(X)ZZI N '—az(X)xm +‘a1(X)x2"
be the unit vector in the direction of the sum vector

Note that the sum vector for D(X) is in the reference direction and has

S @y length I(D(X)) = I(X): C

> Ty
Let I(X) be thé' length of the sum vector. Then
F(X )= (Z xu)z + (Z x2i)27

HMS

X; =

1
2 d(X) = [XT 3 x, = [XTHUX)a(X) = [(X) ol

The invariant differentials are the Euclidean differentials for the unit vectors

R involved (i.e., lengths on unit circles).
S x I I’fhe cpnditional distribution of the error position a = a(E) given the
i a(X) = ;(X)z S orbit D is 3
i 7(_;; gla:D)da = k(D) 1;[ fady; — aydy;, axdy; + aydy;:i) da.
i
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The normalizing constunt involves the imaginary Bessel function of ‘zero

For an assumed value for the quantity « the reduced structural model is
yrder,

g.(2: D(X)) da,
a(X) =0+ a

Note that @(X) and a are the angles for the location "directions a(X) and :
a = a(E). See Figure 7. The structural distribution for the an»gle;/. con-

ditional on the quantity « is

Sl

lo(ic) = | KD {K cos e} de.

H
TS0

3]

s

The characteristic « describes precision: With « = ( the distribution is
uniform on the circle; with a large positive « the distribution is concentrated
on the circle near (1, 0):

Slews exii) = k' exp {«(l — 3% + - - )}

k(D) T flonmy; + cale;; —0a¥y; + oyt k) do
l ‘ ~ k" exp {—4xe?.

The marginal probability element for the orbit D = D(E) with differentials
at D = D(X)is .
1 Tldx

k(D) da(X)’

and the marginal likelihood function for « is

The normal error distribution for the circle can be obtained from a symimnetric
normal distribution in the plane by conditioning to the unit circle (relative
to the partition by circles about the origin).

The conditional distribution of the error position a = a(E) given the
orbit D is

3

(n
exp {2 «(ayd,; — a‘lei}l da
: )

gda:Dyda = (D) ———r
@ty

‘ 1
L(D K) = _RJ"(D) m .

o M o g ; Lo ge iy - 3. 1 . i
A normal error distribution for the cir c{e has been proposed: = kD) (2571‘ ()" exp {lxa,} da
. _ 1 o
f(ey, ey:1c) de = ———exp {ke,} de . B
27l,(k _ ) N
o) mZﬂIO(lK exp {lx cos a} da.

S - exp {r cos e} de.

2l (1) . The conditional distribution for the error position is also a normal error
o 0

d%stribution for the circle but with precision Iic = I(X)x = I(D)x; the
distribution depends on the orbital variable D = D(X ) but only in terms of
the real variable | = I(X). For an assumed value for the quantity « the

o) reduced structural model is

1 .
N S -
2ty (i) P U cos e de,

a(X) = o + a.

» &(E)

()]
: The structural distribution for the angle « conditional on the quantity « is

1 ) \
Wexp {Z(X)K cos (a(X) — o)} da.

The marginal likelihood function is

fay

2"’[0('1(1‘)?)}(}

L{D:1) = R™(D) -

Figure 7 The observed positi

on a(X); the unknown realized error position a(E); the :
unknown quantity 0. : .

=R(D)=

{
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the marginal likelihood can be expressed as a ratio relative to x == 0:

LD ) = L(I(D)<) T3(0) _ Io(lfD)K) '
Iy 1(0) 5()
It is of interest that the marginal likelihood function depends on the
orbit only in terms of the real variable
I = (D).

It follows that the marginal distribution for the orbit D involves only /in its
dependence on . And it follows as in the preceding section that, if

h(1:0) dl
is the méfginal distribution of the length / with « = 0, then
h(l: 1) dl = L) .0y ai
R 410

is the marginal distribution of the length / for general «.
The distribution of the length / of the sum vector based on the uniform
distribution on the circle (x = 0) is available from probability theory:

h(1:0)dl = J J(lwJiudu-dl,  0<1< o,
[}
where J,(u) is the Bessel function of zero order, The general distribution for
lis then :
) I(x) , [* n
h(l:x) dl = 2= 1| J(Tu)J5(u)u du dl, 0< 1< o0,
I's(x) Jo

*6 MARGINAL LIKELIHOOD: EXTENSIONS

The conditional structural model can be extended in two directions. In
some contexts it may occur that the response variable X has been inappro-
priately expressed and that a transformation of X,

X, = I(X:D),

dependent on’ some aspect of the additional quantity A is in reality the

natural response variable: A value X, of the natural response is produced by

the transformation 8 applied to a realized error value E. For each A suppose
that X, = [(X:1) is a one-to-one continuously differentiable function from
the range of X onto the space L.

As a second extension suppose that the group G applies to the space &

in a way that depends on 4. Let 0 as a transformation on &-be designated 0, -

and let G as a group of transformations on &L be designated G,.

§6 Marginal Likelihood Extensions 203
These two extensions give a generalized

Conditional Structural Model

FELE,

X, = 0,E,
with additional quantit y}‘ A. The model has an error variable E with distribution
dependept on 4; and it has a structural equation in which a realized error
value E is transformed by the quantity 8, in G, to give the natural response
X, ; the natural responsef X, is related to the observed response X by the

equation'}-&’ » = (X:4). If the additional quantity 1 is known in value, then
the conditional structural model is an ordinary structural model. ’

For analysis, let G, X, be the orbit of X, under the transformation group G,
GX,=1{8:X,: g,€G}

Let [X,], be a transformation variable relative to G 1> and let D, (X)) be the
corresponding reference point: e

X, = [X,],D,(X).
See Figure 8. ' D)

For an assumed value for the quantity 1 the structural model produces a

~—d[X,],Dy

X\
i(xm )

dI"Y((X,\[,D,)

Figure 8 The orbit.G 2%, passes through the natural response X;. The inverse image of
the orbit G;.X relative to the map X = I(X: 1) passes through the observed response X.

T The error distribution, the transformation group, and the form of the response depend

o;xr t!:e quantity . The quantity A may, indeed, have separate coordinates, one for each
effect.
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reduced structural model
ga((EL: Dl(XA)) d[E),,
(X =0,lE],
where ‘ |
gu[Ey: D) dIEL, = ky(D)S((ELD1: I y(IEL:: D) du([EL).
The corresponding structural distribution for 6 conditional(on Ais
gf(é 1X) d = ky(D) f(O7 X DI §(07 [X,1a: D) A([X 1) dv(0).
For an assumed value for A this distribution is the basis for inference
concerning 6. ) )
The probability element for E based on Euclidean volume is
f(E X dE.

The conditional probability element for [E], given the orbit D, is

IsELEDD) gy

(DS AELD2D =7

The marginal probability element for the orbit D, can then be obtained by

dividing the full element by the conditional element

1 JEL) dE
kx(D;) JIn([E];: Dy) dIE],
The marginal element at the point X, on the orbit D, rather than at the poin
E on the orbit D, is -
| (> AN
k(D) I x([X31:: D) XL

The differential dX, can be expressed in terms of differentm Euclidean

volume for the observable variable:

_ 8I(X:/1)ldX
dX’-" X

The differential d[X,], on the group can be expressed in terms of differenti

Euclidean volume in the L dimensions along the orbit:

= ——d[X,1,D,,
diX,;l, KX Dy [X,1.D,
where )
d[EL. D,
K([E];:Dy) =\“m“ :
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The differential d[X,], D, along the orbit D, can then be expressed in terms
- of differential Euclidean volume for X along the inverse image of the orbit D, :

O ([X,1:D,)

ax.1,D, |
(Figure 8). Section 7 presents an example in which a combined effect
of the preceding two differential adjustments can be calculated in a single step.

The marginal probability element for the orbit D, as based on cross-
sectional Euclidean volume dv at the observed response value X is then

|

d[X,1,D, = dI7([X,1,D))

0U(X:4)
L M) KLy | ok |
kD) Tn([X1:: D)) Iarlaxihbo -
XD,
The marginal likelihood for A from the orbit D as observed at X is
X:2)
R¥(D,) Jr([X40) K([X,1,:D)) X

-1 °

ki(D))  JIX,1,:Dy) ' 31 ([X,1,D,)
) 31X,1,D,

The marginal likelihood for A is the basis for inference concerning the
quantity .

7 THE TRANSFORMED REGRESSION MODEL

Consider again the regression model of Chapter Three. In some potential
applications, familiarity with related systems may indicate a regression
model with structural Vectors vy, ..., v, and error distribution f(e) de, but
the familiarity may leave doubt about the appropriate manner of expression
for the response variable; for example, a response variable may be expressed,
on first approach, as a variable y, yet detailed investigation may show that
some transformed variable such as In ¥, 4", or ¥~ may be the appropriate
variable for the regression model. A transformation having parameter A
that includes these three transformed variables is

y(l) — yJ., 1 = 0,

= Iny A=0
(the transformation applies to a positive variable ¥).

Consider the response variable expressed as v, and suppose that familiarity

with related systems indicates that the regression model can be applied to the
transformed variable

Yy =1y, 1)
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for some value of the additional quantity 1. Suppose that I(y, 1) is a one-to-one

continuously differentiable function and let

v oyt Ui
YI - =
v;_ Uy °° : Urn
!
[£3 TR 8]
§o ! '

The transformed regression model with additional quantity A can then be .|

expresse\c? as F(E) dE,

Y, = 6E.

linearly independent. For
that » > r + 1 and that v, ..., v, are . it.
zi‘igr’xozetheamod—e-l is a structural model. The model then is a conditional

. . ity A
1 model with additional quantity. N '
St?;t:rcaonditional distribution of the error position [E] given 1 and the

orbit D(E) = D(Y,) = D, is -
g([E): D) d[E] = K(D)S(EID) =5 dIE]

— k(D)) ﬁf(z buvu: + sdﬁ“) 1T db, ds;
1 u
and for the case of normal error i§ ‘ .
i _Anr e ~ 3.
WV v dp e A exp{ }
(277)7/2 exp { %b |44 b} (277)(11—1)/2 ) 2 '
For an assumed value for 4 the reduced structural model is
g([E]: D(Y))) dIE]; ~.
[Y,] = O[EL.
For an assumed value for A the structural distribution for 6 is

k(D) II f(y,ﬁj’ - GZ ﬁuvm) (s(y:’))"s.,(ym). I dfu do .

and for the case of normal error 18

e oy 2 (8 —no)) d
é—iﬁl)_fﬁexp{—%(ﬂ b(y*)Y o (B =Bl

2¢% g 0

___A:':_r_.(S()’“’))"‘"1 oxp [_ M} 4 do

’ @m)2\ g
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For an assumed value for ] this provides the basis for inference concern- T
ingf.

The marginal element for D, based on differentials at the point E is ! ‘

JEYAE 1 ge) gE
8([E]: D) d[E] ~ k(D)) s*(e) dIE]’
- and based on differentials at the point Y, is

1 Sr+l(y(l)) le
k(D) s*(y?) d[y,]’

The differential dY; can be expressed in terms of the differential J¥:

@y, .. dy®) = (dy,, ..., dy,)(y:0),
where
dy;” 0
dy,
J(y:2) =
(1) .
0 4y -

dy,

is the Jacobian matrix of the transformation, hence
dy, = |[J(y: b)| dY.

The differential d[¥,] can be expressed in terms of differential volume at
Y along the inverse image of the orbit D;. For this the differential vector on

the group can be related to the corresponding differential vector for the
natural response, - ‘

(dyil), ] dy;./u) = (dbla L) dbra ds)DJl’

and a differential vector for the natural response can be related to the
corresponding differential vector at the observed response:

(dyl’ trt dyn) = (dyib: e

The composite transformation is

LAY (y: 2).

(dyl? MR | dy'n) = (dbly R ] dbﬂ dS)DAJ“I(y:Z')'
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Hencef L
dITN([Y;) D) = | D, (y: A DA™ dIY],

d[Y;] = 1D, (y: ) D™ AP (Y10,

The marginal element for D; can now be expressed in terms of cross-’

sectional Euclidean volume dv at the observed response ¥

17 1 |J(y: A _ dv:
k(D) s ) | Dy DT

and for the case of normal error is

1 i 1 l{(}’:fl)i —

Ay | Do DY ) DT DA
(note that |V'V’| = | D,Dj)). The marginal likelihood function for D, is
R*(D;) {J(y: ) _
k( Dl')sn—r—l(y(/'.)) l D;'j—-‘.’,(y:/‘l)Dll—/:

and for normal error is

RD) WGl
G (DDA

The marginal likelihood function is the basis for inference concerning the
quantity 2.
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. P I Pl
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PROBLEMS
1. Consider the simple measurement model with additional shape qti'antity B:

TT/Crp T der

=1 =1

x = [0, 1le.

(i) Derive an qxpres‘sion for the structural distribution for 6 given B.
(ii) Derive an“'expression for the marginal likelihood function for .
(iii) For the case of normal error with scaling 8 = o,

) 1 e?

e:0) = —7=—€xp{— b

f Vino P\7 2

obtain the marginal likelihood explicitly. Show that the value ¢ = s, for the additional
quantity maximizes the marginal likelihood function. (L. M. Steinberg.)

(iv) (Continuation). Assume that s, has the distribution of y(n — 1)‘% onn — 1 degrees
of freedom for ¢ = 1. Use the likelihood-modulation method at the end of Sectioms 4

s TS Y i - 3_" e .
e S S R
v : I L
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and 5 to show that the general distributi i i
of freedom. e istribution of s, is that of oy(n — 1)~} on n — 1 degrees

2. Consider the simple measurement model (Problem 1) with error distribution
. 1 e e
fleio)de = S xp {;_ - exp L—T} de

and additional quantity ¢ (Problem 16 in Ch
t apter One examined the measur :
based on a standardized form of the preceding error distribution.) Z;ﬂ :;thirg;?(e;

(i) Derive the structural distribution for 6.

(ii) Derive the marginal likelihood functi i
nal on for 0. Determine the equati ini
thi“\f?hll)e o_f o ttli:a’t 1rr\axu'mzes the marginal likelihood function for zrq ‘on for obtaining
iif) Derive the classical model f(z:0, o) for the res| iable i
ica f(@:6, ponse variable z. Obta uati

for(t\ge éﬂ, o) that maximizes the likelihood function based on the classical m;‘:j:}quatwm
G ompare the ec_;uatton for the appropriate ¢ value in (ii) and the equatio . fi
inappropriate ¢ value in (iii). d nfor the

3. Consider the multiplicative measu
ditonal quantiy B p rement model (Problem 19, Chapter One) with

n n
TI rte:o) 1T des,
i=1 i=1
x = [0, Gle. (H. Levenbach).

(,f) Der!ve an expression for the structural distribution for 8 given &
(u) Derive an expression for the marginal likelihood function for §
(iii) For the case of normal error with coefficient of variation &

1
f(e:5)=v exp {—¥(e — 6%

27
obta|f1 ttllelr]r(nalrginal likelihood function ex;;licitly. Find the value for ¢ that maximizes the
marginal likelthood function. Use s(x) = HIH = Vnz 5
Vidl(l — nd?)%. (0 = (Zah)¥; let 100 = Vnal(F(e; — Y =
*(iv) Use the method of likelihood m i i

i f il odulation (Sections 4, 5, and Notes and R
to obtain the general distribution of the essential variable #(x) based on the orbietferenceS)
4. Consider a composite measurement model with additional quantity B:

SEYAE =TT flews - ., 5::P) f[ (degs - ~c}epi),
1 1

X = 6E,
where
Y 1 1 0 - 0
xI -y
1 € I 0
X = , E = , 6 =
s
4 '
Xp €y Uy O ¢
FY
=

v'.'

g%
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and 6 is an element of the location-scale group

10 --- 0
a, ¢ 0 -0 < gy < ©
G =
0<e< @
a, 0 c

(i) Check that the transformations form a group.

(i) In the pattern of Section 4 in Chapter Three and Problems 1, 2 in Chapter Three
definie a transformation variable and determine the reference point. Show that the model is
a conditional structural model with additional quantity B.

(iii) Derive the invariant differentials-and-the modular function. :

(iv) Derive the distribution for error position; derive the conditional structural distribu-
tion for 6 given f. ‘

(v) Derive the marginal likelihood function for B.

5 (Coniinuation). Consider the preceding composite measurement model.and suppose the
error distribution is standard normal:

1
f(el,,..,em)zmexp{—é;zef}

(no additional quantity).

(i) Derive the distribution for error position [E]; use

I £ 41
s(X) = [z > (= -7')2]
i
as a convenient scale variable. -
* (i) Derive the structural distribution for (ay, .. . , g, 0).

6. Fo_r the composite response model with normal error (p = 2).in Section 4 derive the
Equatlon that must be solved to obtain the value of p that maximizes the marginal likelihood
unction. i

7. For the normal distribution o

1 1

in the plane detérmine the conditional distribution given that et + e = 1; relate the « of

the normal distribution oa the circle to the (1, o) of the preceding distribution in the plane -
(further grounds for the name “normal distribution on the circle™).

8. Consider a simple composite-measurement model (known errot scaling) with additional ..

quantity f3:
R n
f(E)dE = H flegs - s epiiP) H (deygs « - » depi)s
1 1

X = 6E,
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where
1 1 10 0
X € sy 1 0
X = \ E = N 6= ) )
x; e; up 0 1

and @ is an element of the location group

1 0 --- 0
a; 1 0

G = : ) p —0 < g; < ®
a, 0 1

(i) Check that the transformations form a group.
(i) In the location pattern of Problem 4 define a transformation variable and determine
the reference point. Show that the model is a conditional structural model with additional

quantity f.
(iii) Derive the invariant differentials and the modular function.
(iv) Derive the digtribution for the error position; derive the conditional structural

distribution for 8 given B.
(v) Derive the marginal likelihood function for 8.

9. (Continuation). Consider the preceding measurement model and suppose the compﬁfent
error distribution is an uncorretated normal:

1 e
w9 = gz, V2 )

(i) Derive the distribution of the error position [E]1. Derive the structural distribution for

Wy e e ) given (o, .. -, Gy
(ii) Derive the marginal tikelihood function for (o3, - - - » Gp)

10. Consider the simple measurement model with additional quantity’l,

TIfee 11 e,

i=1 =1

l(zy:A) = [0, 1le;

Uay: B = 16, len,

where I(z:4) is a continuously differentiable monotone function mapping the range of =
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onto R (z is the available response, I(z: 1) is the natural response as based on the correct

value for A; see Section 6 or 7.) )
(i) Derive an expression for the structural dist}'ibution for‘ﬂ g;venll.
(ii) Derive an expression for the marginal likelihood function for A.
(ili) For the case of normal error,

and y» = [(y:2) is a one-to-one continuously differentiable map carrying y to y(!i“ (cf.
Problem 17 in Chapter Three). :

(i) Derive an expression for the structural distribution for § given 4.
(i) Derive an expression for the marginal likelihood function for 1.

13 (Continuation). Consider the simple regression model with normal component error

fle =

fe)de =
(cf. Problem 18, Chapter Three).

1 e2‘>
- €X i O ]
Voo p{ 202},

Describe the value of 2 that maximizes the

1 o2 P

——exp {— -5/ de
\/27r Ty P 20‘%
obtain the marginal likelihood explicitly.

- (i) Derive the structural distribution for 6.
marginal likelihood. (ii) Derive the marginal likelihood function for 4.
11. Consider the measurement model with additional quantity A:

*14. Consider the simple regression model

n n
(D) de;, O L
1:If ¢ ];I K *—(2")"/2‘761 exp { — EEU_% Hd‘fi
Hzq: 2y = [, 0ley o
: where
Q) vi(h) | o o
(w2 2) = [u, olen, :
. Y = . , E = . , 6'{ = . )
i i i function mapping the range of = ’
where [(z:4) is a continuously differentiable rnm?otone uncti pping V;(A) ‘o 0 o
onto R! (see Section 6 or 7). . . g oo
(i) Derive an expression for the structural distribution for [z, o] given A X P 1)

(ii) Derive an expression for the marginal likelihood function for .

o A L ve to (/1)
("l) For the case of normal error, q ; note that 8, relocateselativ Vi

(i) Determine the structural distribution for B given A.

) (ii) Determine the marginal likelihood for A; describe the A value that maximizes the
marginal likelihood.

1 e

*15. Consider the regression model

1
WCXP {“% Z ef} Hdei,

obtain the marginal likelinood explicitly. Describe the value of A that maximizes the

marginal likelihood.

12. Consider the simple regression model with additional&uantity A

) ) Y =6,E,
where . '
(EydE =T fle) T1 s ) L
f IlI 3 vi(h) i 1 0 0
¥, = OE, . . .
where , N v, 1 | 0 0 Y = ,. N E = R ) 611 = . -,
i b . V() V(4 0 10
5 § = , y ¢ B 0 B oo
Y, = v N ‘:, ’ 0 10 and 1 is an additional quantity; note that 8, relocates relative to V(4).
A/ T
(:)’ e By - B 1 (i) Determine the structural distribution for B, o given A.
y : (ii) Determine the marginal likelihood for A; describe the A value that maximizes the
o = I(s: 1), marginal likelihood.
T
T ' . = P H
. L E K - . . .
* K] + % ;
o 7 ‘ * : T 3
o - # ‘

Y



CHAPTER FIVE

Marginal Analysis

In some applications a structural model
f(E) dE,
X =0E

may have an error distribution that has symmetries with respect to its
transformation group G. Let H be the set of transformations that do not alter
the error distribution: :

H={g: fgE)dg™E=/(E)dE, §€C}
={g: fgPE)=S(E), g€T};
The set H consists of the transformations g for which the variable gE has
the same distribution as the variable E. Clearly, if g, and g» are in H, then
g.£, and g7t are in H. Tt follows that His a subgroup. of G, the stabilizer
subgroup for the error distribution f(E) dE. .

Consider a transformation 7 in G and a transformation @ in the stabilizer
subgroup H. The composite transformation ¢ applied to a value E from the
error variable would give the same response value 7@E as the transforma-
tion T applied to the value @E of an equivalent error variable. It
follows that the transformations 7¢ for various ¢ in H are equivalent trans-
formations in the group G. These equivalent transformations form a left
coset H of the stabilizet subgroup H (see Figure 1).

In a typical application the left cosets 7H of a subgroup H can be indexed
by the elements of a complementing subgroup H, in G. This was mentioned
briefly at the beginning of Section 7 in Chapter Two. : ~

Now consider inference for 2 structural model with a stabilizer subgroup
H. The general inference concerning the quantity 8 can be expressed in terms. .

of the structural distribution:

»

: .
Y

g*(0:X) d = K([XT7X) H(6X) Ty(072X) A([X]j dv(6).

oy
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G
o1
Tz T ()
L TH
o (9} .
i H;

T

Figure 1 The stabilizer subgroup H fi istributi
omenting Subgroup H group H for the error distribution; the left coset +H; a com-

f;llp ::l:zi ;fg;ef ina }ef: coset;H, however, are equivalent. It is natural then
ence in terms of the essential quantity = in th i

subgroup Hy,—to obtain the margi  oution o the sesentin
: ginal structural distribution for the i

quantity 7. The general formulation f i utions

ity . ' » or marginal structural distributi
! : ions
was given in Section 8, Chapter Two. In this chapter some structural models

with stabilizer subgrou i
: ps are examined. The marginal structural distributi
for the essential quantities are derived directly. ’ dstrbutions

1 A COMPOSITE MEASUREMENT MODEL WITH KNOWN SCALING

Consider a measurement i
. process on the Euclidean plane R?

be the error variable with known distribution P et
. Sley, e) de, de,

O . T )

d:s;c : tEl.xcl::xdean p!ane. Let (x, z;) designate a-measurement; let (u;, u,)
gnate the quantity being measured and ¢ designate an unknown an,glez

the angle through which an e i
rror value (e,, e,) is rotated to gi i
between the measurement and the quantilt’y.z) give the difference

The model for a single measurement can be expressed as
Sfley, &) de, de,,

1 1 0 0 f 1
T | = py cos(p) —sin () 21
T Uy sin (@) cos () ey
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The transformation
1 0 0

0 =| u cos(p) —sin(e)
pe sin(g)  cos ()
is an element of the translation-rotation group:
1 0 0
G = a, cos (k) —sin (h)
a, sin (h) cos (h)

—w < a; < ®

o<h<2n|

The model for n measurements is

]_—[f(em e5;) 1] dey; dey;,

X = 0E,
where _
i e 1 1 .- 1
X=\|zy “° T, |, E=1e; " €
Toy 77 Ton € ' €2

The matrix X can be viewed as a point in R** or.as (111 nu}x(nbered 1‘);3;1; ;3
i i i rXasnn
R2. Toward defining a transformation variable, conside

points in R?: if the points for X can be carried point-for-point into the points.

for ¥ by translation and rotation, then X and & are on the same orbit. As a
transformation variable consider :

1 0 0
[X]=| & cos(h(X)) —sin _{h(X)) ,
7, sin(h(X))  cos (A(X))
where B .
(cos (A0, s (1) = (22, 22 m),
J rix ) = (myy — B)? + (T — T)® -
Applying the transformation [X]™ to the point X gives
1 1 - 1
XX =) r(X) du = i | = D(X), |
0 dy ' dan

§1 A Composite Measureméent Model with Known Scaling 219
X2 ‘
Ce1a.%20) © (11, %21)
/jh X
(%14, x24)® e
X1 © (x19,%22)
Xt
° (dy3,d.
(d14,dzg) o (.09
X1
(di2.dpo) @ (r1,0)
Figure 2 The general point X; the reference point D(X).
where
dy; cos (h(X))(z,; — %) + sin (]Z(X))(xu — )
dy; —sin (h(X))@y; — %) + cos (h(X)) (s, — 7)) |

The transformation [X] translates the n points so that the center of gravity
is at the origin and then rotates the points so that the vector from the center of
gravity to the point {x;,, #,,) is in the direction of the first axis (see Figure 2).
The model is a structural model for 7 > 2 (delete points X having z,, =

By, Tgy = Ty).

Translation and rotation do not change Euclidean volume. Accordingly,
the invariant differential on R2™ is the Euclidean differential itself, and
similarly the invariant differential on the group is the Euclidean differential
da, da, dh.

The distribution of the error position [E] given the orbit D(E)= D(X) =
Dis
k(D) T1f (& + cos (k) dy; — sin (k) dy, :
1 —
) & + sin (h) dy; + cos (h) dy;) dé, dé, dh.

The structural distribution for 6 is

k(D) fIf(cos (@)@ — ) + sin () (s — 1),
—sin (‘P)(zli ~ ) + cos (@) (s — #z)) d,“l dus de.

Suppose now that the error distribution is rotationally symmetric about the
origin:

S(cos (h)e, + sin (h)e,, —sin (K)e, + cos (B) e5) = fley, e3)
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for 0 < h < 2m. The stabilizer subgroup for the error distribution is the
rotation group
1 0 0

H=1!10 cos(h) =—sin (B |: 0<h<2n

0 sin(h) cos (h)
A complementing subgroup in G is the translation group
1 00

H=la 1 0] —0<g<®

a, 0 1 o . )
The méirginal structural distribution for the location quantity (g1, g2 '
is obtained by integration:

k(D )JZ” ﬁf (Cos () — p) + sin (¢)(@a; — ), ’
t —sin (@)N®y — .’-"1) + cos (@) (2 — .’"2)) de du, dps
= 2mk(D) ﬁf(xu — My Toi T o) Ay dpte.

figure 3 The error variable e = (e, ey, ¢3)’. The measurement X = (v, @, x,). The
quantity 6, a rotation on the sphere.

The quaritity 6 is an element of the rotation group on R3:
2 THE MEASUREMENT MODEL ON A SPHERE

- irecti ization i s of

Consider a geologist measuring the direction of cryst.alhza;loré }1; :;rcx)lflz A

a certain rock structure, or a geophysicist measuring t ;in:;) g radio

magnetic field, or an astronomer measuring tpe dlrec'tton.o InCOmILE ™

waves. The quantity being measured is a direction. A directionca o
as'a unit vector in R, as a point on the unit sphere. The measurem

ta. )

on the sphere can be used to analyze the da ) . ] R

Let ep= (e1, €2, €)' be the error variable, a point on the 1:;1& stIi)::ra i oo

And suppose that e records error in relation to a referen.ce . bzref has, b;en |

in R® (see Figure 3). Also suppose that the' error distribution pec), .

identified except perhaps for an additional quantity «:

1011 013 Oy3,
0'0=1
lol=1}. ~

0

G = | 021 O Oy

It

031 03 Ogy
= (04, 6y, 03)

For a single measurement let x = (2, z,, #;)’ be the measured direction.
The model is ‘

f(eh ey, e;:x) de,
= fe.
For multiple measurements let X designate » measured directions R

Ty " xml-
. fle, €2, €315) de; R el s .

. L . 3 1 easures . - 21 2n |2
the vector e is.restricted to the unit sphere,and the differential de m: ; o
area on the unit sphere. o I 31 3 )

The physical qgantity is the general direction of the property being

and let E designate the corresponding realized

: ; . Let 0 be the ’
vestigated and the angle of rotation applied to an error value. Le error variable,

error or the corresponding
quantity describing the general direction and the error rotation:

ell PR eln
Wy Wi @is E=|ey e,

=) wy @p @m )= (3, 02 a)- - ey v ey,
Wy W3z Wz
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The model is

Measurement Model on the Sphere v
k3 n
f(E:¢) dE = T1 flews e €5 K) I;[ de;,
1

The model has an error distribution describing the multil?le measurement
process, and it has a structural equation in which a realized error E has
determined the relation between the measurement X and tt}e quantity 0.
For n > 2 the model is a conditional structural model with additional
quantity «. )

Consider the effect of a transformation g:

gX =gy 0 X))

The transformation g rotates the n points on the surface of the. spherg but
maintains their relative positions. Toward defining a transformation variable
let 0,(X) be a unit vector in the direction of the sum vector pIR o

ou(Xﬂ %
0,(X) = Ozl(X)b = %‘(‘% s
o) &

where

BX) = (z )" + (2 Ty.) + (2 ;)%

Let 0,(X) be the unit residual vector for x, after regression on X X,. And let -

0,(X) be the unique unit vector that then compl?:tes a.right triad of three
" orthonormal vectors. As a transformation variable consider

[X1= (01(X), 0,(X), oa(X)) = O(X).

The applicatioﬁ of the transformation [X]™ to the point X gives

XX = (&(X), - - - » 4,(X))
dy(X) dp(X) - dialX)
= | du(X) dna(X) dou(X) | = D)3
0 dp(X) - de(X)

"
B
i
i
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the sum vector for D(X) is

?«L(X) = z [X]x, = [XTH(X)0,(X)

1
=1(X)| 0
0

The transtormation [X] carries the original sum vector into a vector along
the reference vector (1, 0, 0) and carries the first vector x, into the plane of the
first two axes. The point D(X) is a reference point, and the transformation [X]
gives the position of X relative to the reference point. -

The Euclidean area elements on the surface of the sphere are invariant
under the rotations. For a Euclidean volume element dO on the group
let do, be Euclidean area on the unit sphere in R® for o,; and let do, be
Euclidean length on the unit circle in R? for o, (a unit vector orthogonal to
0,). The differential do, de, is invariant under left and right matrix multipli-
cation by positive orthogonal matrices.

The conditional distribution of the error position [E] = O(E) given the
orbit D is

£(0:D) d0 = k(D) [T £(0d;:x) do, do.

. For an assumed value for the quantity « the reduced structural model is

£.0:D)do,
O(X) = 60.
The structural distribution for the rotation 8 conditional on the quantity
K is
k(D) TT fwix;, 05%;, 03%;: k) dewy dods,
: N !
where for example )X, is (y, X.), the inner p;bduct of w,. and x,.
The marginal probability element for D is
IT ax;
1 i .
k(D) doy(X) doy(X) ’
and the marginal likelihood for « is

1
kD)

R*(D)
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3 THE MEASUREMENT MODEL ON THE SPHERE: NORMAL ERROR
A normal error distribution for the sphere has been proposed:
K
e,, €5, €3:K) de = —————— exp {ke} de.
fey, €2, €5:) 4 sinh (<) p {xes}

The normalizing constant is easily checked:
fexp {re,} de =f exp {x cos (€)}2 sin (e) de
0

+1
=f exp {«t}2w dt
-

= gﬂ (exp {«} — exp {—«}) = 4m sinh () ;

the variable e is used to de31gnate the angle between e and (1,0, 0). The
quantity « describes precision: with « = 0, the distribution is uniform on the
sphere; with « large the distribution is concentrated near (1, 0, 0) (compare
with the normal example in Section 5, Chapter Four).

The conditional distribution of the error position O(E), given the orbit
D, is

£(0: D) dO = k(D)

K‘Il . 3
—_——— X «(041, 012, 015)d;} do; do
(4 sinh (K))" p {; 11> 012, O13) z} 1 2
«l(X)
41r sinh (KI(X))
The conditional error distribution’ has two components: The distribution
of o, is a normal distribution on the sphere with precision «/(X); the distri-
bution of o, is uniform on the unit circle orthogonal to ;.
The structural distribution for the rotation 6 conditional on the quantity
K i§ S .

(X
I;;{'[il“((";)mc P {'CI(X)(‘UnOu(X) + wy05(X) + w31031(X))} dw, -
wl(X)

4z $inh (<I(X))
The structural distribution for w, is the normal distribution with precision
«I(X) as relocated in the direction o,(X) of the sum vector X7 x;; and the

structural distribution for w, is uniform on the unit circle orthogonal to w1
The marginal likelihood function for « is

47 sinh (<I(X))2m K" — R¥D) sinh (xI1(X)) o
wl(X) (47 sinh ()" sinh™ (x) ’

exp {kl(X)oy} do, do,
2m

exp {«l(X)wjo,(X)} dw, - dw2

R¥(D)

d(:u2 :
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The marginal likelihood function depends on the orbit D = D(E) = D(X )
but only in terms of the length ! = I(E) = I(X). Correspondingly, the dis-
tribution for the orbit D = D(E) as it depends on « involves only the
length I/ = I(E). It follows then that the general distribution for /,

h(l:x) dl,
can be obtained from a special distribution such as

h(1:0) al
by likelihood-modulation:
(sinh («I)/sinh™ (x))«™*

h(l:x) dl = l

h(1:0) dl.

(Compare with Section 4 in Chapter Four.) The distribution of X(E) for
a uniform distribution on the sphere is available from probability theory:

2
h(1:0) dl = f sin” (1) sin (11 (zsj“(“) dt - dl = llqon(l)dl
T Jg

as the distribution of the length of the sum of r random unit vectors in R?;
the function @, (/) is :

(D) = 6_2?2;’( )( ¥ —1—29)77% -

where
O =1, if .t>0,
=0, if 1<0.
The general distribution of /is then
h(l:k) dl = SR GD 0 2 f sin *(1) sin (1) 4, . gy
sinh *(x) mJo t" g

_ sinh () 1 1
smh"(x) ont

n(l) dl.

4 THE MULTIVARIATE MODEL}

Considf:r a system with p response variablesy;, . . . ,y,. Suppose theinternal
error, as it affects the responses, has been identified and can be described by

T The. an?.lysis of the multivariate model (Sections 4, 5, 6, 7) depends on definitions and
notation in Sections 10 and 11 of Chapter Three. The multivariate model may be omitted
on a first reading; the model, however, has a central place in mathematical statistics.
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p error variables ey, . . . , e, with a known distribution on R?. Let g, . .., Uy
be the general levels for the p response variables. And suppose that the error
variables affect the response levels by linear distortion: for the jth response
let y;; be the coefficient applied to the j’th error. A realized error vector and
the corresponding response vector are then connected by the equations:

Y1 = 1+ ynes + 0+ Vs

Yp = Mo + VY€1 + -+ Vo205

or by the matrix equation

1 1 0 - 0 1
Y1 M1 Y1 Y1 €
Yp Hp Vor "7 Voo €p

Now consider »n performances of the system and let y; = (%11, - -+ » Y10)
be the observations for the first response, . .., and y; = (y,,l,\ e Ypn) bE
the observations for the pth response. The system and the » performances

can then be described by the

Affine Multivariate Model

]_;If(em cee s ) I;[ dey; -+ .d\ep-i, :

1 1 0 - 0 iy
Y1 M1 Y T Y e
Yo My Vo1 T Vo e,
The model has an error distribution with ej, . .., e; as variables; and it has

a structural equation in which realized errors ei, ce e; have determined the’

relation between the observations and the quantities.

§4 The Multivariate Model

For matrix notation let

1’ 1 [ 1 1
¥i Y Yin
Y= = ’ =7
L Y5 . y—m Yon
rl’\ r 1 . 1 R 1/
el en €in
E = = ) P E
Les)  Lew o ey
(110 0 (110
M1 i Vi Yip
0 = =|pil
Lty & Y Yop L

The affine multivariate model can now be written:

J(E) dE,
Y =6E.

The transformation 6 is an element of the positive affine group on R®:

L R |C| >0

227
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where
1 o)f1 o 1 0
a C||a* C*] [a+Car CC*

10 1 0] 1 0
lo 117 a C —Cla C

The matrix Y can be viewed as a point in R”" or, .mor'e conveniently hf:re,
as p points ¥y, . . . , ¥, in R™ A transformation g carries 1 fmd Yis - -+ » Ypinto
1 and p vectors in L(L, Y1, - - - » Yo)- Thfa p new ve.ctors in L(1, Yas - .t,ly,,,)
are generated by a matrix with positive dete.rmlna}nt; accordingly the p
new vectors with the 1-vector have the same orientation as do the p original
vectors with the I-vector. o ) )

Now suppose that n > p + 1 and that trivial observations Y with 1,
Y1, - - - » ¥, linearly dependent are excluded. Let Lt(1; y'l, e y?,) be'the
(p + 1)-dimensional subspace L, ¥y, - - -+ ¥y) together with an orlentgtlon,
the orientation of the p + 1 vectors 1, ¥i, ..., ¥p A transf_ormam(in £
carries the vectors y, - - ., Yo 0f & nontrivial ¥ into new vecf:ors Yoo s ¥,in
the same subspace L*(1; ¥y, - . . » y,) and with the same orientation relative

-vector. . ‘
to"lt_“iz aevft:n;tion of ‘a transformation variable can be facilitated by notation

from Section 10, Chapter Three:

r 1 ; .0 . 0 7
my(Y) | sw(Y) ’ 0
{1 | }_ mo(¥) | (V) s
mY) | T J | - . .
Lmy® | (D) oY) S(D)
v t e 1 v
e | |am - am
DY) = | . =1 . D*(Y)

a1 B A
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(an asterisk is added to the D-matrix of Chapter Three to distinguish it from

" a reference point defined in this section). The second matrix D*(Y) contains
vectors dj(Y), ..., df(Y) obtained by successively orthogonalizing and
normalizing the vectors y,, ..., Y, in the sequence 1,y,,...,¥,; the first
matrix contains the coordinates for the row vectors in Y using as a basis the
row vectors in D*(Y).

Consider some additional notation. Let y3, ...,y be the projections of
1,0,...,0),...,4(,...,0,1,0,...)into the subspace L(1, ¥y, ..., ¥,),
the sign of the last vector being chosen so that y}, ..., y? have the same
orientationf as y;, ..., y,in L*(1; y4, . . . , ¥,); let YO be the corresponding

matrix
1’
v
Yﬂ - . .
Yy
and let

D(Y) = D*(Y").

The matrix D(Y)contains p orthonormal vectors with appended 1-vector. The
matrix D(Y) depends only on the oriented subspace L+(1;y,,...,¥,),
‘and not otherwise on the observation Y.

Now take D(Y) as the reference point on the orbit described by L+(1;

Y1 --..Y,); and let [Y] be the positive affine transformation that carries

the row vectors of D(Y) into the row vectors of Y

1 0 <o 0
my(Y) §en(Y)y - {311:(Y)
Y=[¥YID()=| o -D(Y)
mm(y) cpl( Yy - cr'p( Y)

Y ] D(Y).
m(Y) | C(Y)

T Exclude for convenience of definition further trivial ¥ with 1, v, .

.., ¥ linearly
dependent. )
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‘ The Multivariate Model: Distributions
The affine multivariate model can now be written:
f(E) dE,
Y = [Y]D(Y), D(Y) = D(E).
For n > p + 1 the affine multivariate modelf is a structural model.

The transformation [Y] can be expressed in terms of triangular and :
orthogonal components. Let [Y] be the transformation variable defined
r :

which has Jacobian |C|. Hence

| Ton(8:Y) = |CI" = [g]",
JoY) = |C(N" = |[Y]I",
dm(Y) = Ildy: _ _ax

i iy

Now consider the invariant differentials on the group;

CoLane)

The left transformation o
r perates column-by-column. F i
the Jacobian is |C|; hence ¢ or any ghven column

for Section 10 in Chapter Three,

1 0
[Yl1= { };
T m(Y) T()

Y = [Y]D*(Y).
T

then

And let [Y] be the positive orthogonal matrix that generates the row vectors

of D*(Y) from the row vectors of D(Y): . o J=|Ccp,
] 10 oy J(g) = lgI”*,

[Y]= 5 E d
o |0 o) du(g) = —£.

then o lgl

Y = [Y]DX(Y), D*(Y) = [Y1D(Y), Theright transformation operates row-by-row. For any given row the Jacobian
T .0

is |C*|; hence

Y= [Y][Y})D(Y) = [Y]D(Y). Tt = |CF? -
T 2
It follows that the transformation Variable can be factored, . J*(g) = |g|?,
[Y] = [Y)[Y]; N
’ m 0 dv(g) = dg
or equivalently lgl”

m(Y)=m(Y), C(¥)=T(Y)O(Y).
Note: The factorization C(¥) = T(Y)O(Y)isthe positive lower triangular-
orthogonal factorization described in Section 6, Chapter Three. .

The modular function is

Ag) =18 _ L
ST

o rSO: . Gix'xeral Disfributions. The conditional ﬁbbe{bility element for the
Consider the invariant differential on the response space. A transformation . position [E] given the orbit D(E) = D is
g applies column-by-column on the matrix Y. Its effect on the ith column is .

g(IE): D) d[E] = k(D)f([E]D) |[E]|" ~LEL

Y Y |[E]7H*
[a,Cl| - |=a+C| - |, dy;
' ' =kD)IIff m+c| | e dmadc.
Ypi Yy !
+ Excluding trivial points ¥ with linear dependence among the rows. s

231
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The structural probability element for 6 given Yis

40:7) db = k(D) fe-ry DA L an(®)

16" 1
Y — ]
: [c*” dp dl'
= ¢ F—l s
KL ENNTE
Yoi = Hp
The error distribution provides the basis for tests of significarice; the struc-
tural distribution provides the basis for general inference.

52 The Semidirect Decomposition. The structural equation for the
affine model, : .

m(¥) = + I'm(E),
c(vy=  TCE),

can be separated into a part concerning the general level p and a part con-
cerning the error scaling I':

CHY)m(Y) — ) = CHEm(E) = t(£),
T-1C(Y) = C(E).
The general level . relates to the location subgfoup
L ={[a,I]: a€R%, ‘
and the error scaling T relates to the positive linear subgroup
5 = {[0, Cl: |CI>0}.

These definitions use the general location-scale notation of Problem 27 in

Chapter One. The general group element can.be expressed uniquely as a

product, location-times-scale:

la, C] = [a, T][0, C] = [a, Cl[a, C],
L 5

or uniquely as a product, scale-times-location:

la, C] = [0, Cl[C"a, 1] = [Sa, Clia, c1i
(See Problem 19 in Chapter Two.)

5.3 The Locatim% Oigtributions. Consider the quantity @ in relation to

the positive affine group. Specification of p restricts the general quantity .6
to the left coset of the subgroup S: :

{lw, T1: 171 > 0} = {{w, 7110, T} |0 >0} = [w. /IS
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Tests of significance and the marginal structural distribution are then based
- on right cosets on the error space G*. For example, the information p = p,
leads to the value of the error characteristic t(E),

t(E) = CHE)m(E) =.CHY)m(Y) — pa);

and this value of the error characteristic t(E) = t restricts [m(E), C(E)] to
a right coset:

{lm, C]: C'm =t} = {[0, C][C-'m, I]: C'm =t}
= S[t, 1.

See Section 6 in Chapter Two for the univariate case p = 1.
The full error probability distribution,

k(D)f([E1D) |C["*~** dm dC,
can be reexpressed by the substitution m = Ct,
k(D)/([E]D) |C|"~** |C] dt dC,
and the marginal distribution for t obtained by integration:

t + dy

gr(t: D) dt = k(D)f 117§ C |C™ dC - dt.
C 1
tw + dm‘

The structural distribution for p can then be obtained by substﬂﬁting
t=CH(Y)(n(Y) — p.);

. Y1 — 1

* . IC( ( )) A —1
p:Y)dw = KD
gr(p:Y) Tees f lIIf CC(Y)

[C|"?dC - dp.
Yp: — _p'»
5.4 The Scale Distributions. Consider the Quantity I" in relation to the

positive affine group. Specification of I' restricts the general quantity 6 to a
left coset of the subgroup L:

{lw, T]: wpeR} = {0, [J[['p,1]: peR]
= [0, T"]L.

Tests of significance and the marginal structural distribution are then
based on right cosets on the error space G*. For example, the information
I’ = T'; leads to the value of the error characteristic C(E),

C(E) = T5'C(Y);
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and the value of the error characteristic C(E) = C restricts [m(E), C(E)]
toa rightf coset: )¢y = {m, 1110, C1: C}
= L]0, C].
The marginal distribution of C can be obtained by integration:

dli

g5(C: D) dC = k(D)J‘ f:If m+C dm - |C|** dC.

d

pi

The structural distribution for I' can be obtained by the change of v_ariable
C = I™IC(Y) in the preceding distribution. The_J'flcoblan e_vahfatlon for.
this can be avoided by using the evaluation implicit in the derivation of' the-
full structural distribution. The marginal distribution of I' can be qbtaxned
then by integrating out the quantity g in the full structural distribution:

Y — M
- _kODICON T (17 el 7| dw - dT.
gS(P Y) dP = ——-———w“f‘-l—;;;——“fﬂ-[;[f . e
’ Ypi — M

%6 THE MULTIVARIATE MODEL: ROTATIONAL SYMMETRY

Suppose now that the error distribution is rotationally symmetric with
respect to the rotation group,

1i0 0
0oy O1p ~
. (1 0] 00 =1
Go= |h= 0 0 0] =1
0‘ 0p1 " Oy
e &
RTE » =f . ) h € Go.
e,, er

T For the location subgroup left cosets are right cosets and right cosets are left cosets:
the location subgroup is a normal subgroup.
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The rotation group is the stabilizer subgroupf for the error distribution.’

A complementing subgroup is the location-progression group examined in
Section 9 of Chapter Three:

1 0 0

a; G 0
ay ke Cy —o<a; <o
Gp=\{k=| - —0 < ke < 0
0<ec; <

ay ky - kypy Cp

The analysis at the end of Section 4 shows that an element g of the positive '
affine group can be represented uniquely as a product:

k=1[pg]EGT’
g=kh=[zg][gg _ I1=[gg€G0v

The invariant differentials for the progression group (Section 11, Chapter
Three) are

dk dk
d k) = — 5 d k) =— B
p( 1kl vo(k) lklv ~
lklv
A (k) = 2
T ks

The invariant differentials} for the rotation group are

duo(h) = dh = dO,  dvo(h) = dh = dO,

Ap(h) = 1.
The composite differential

dup (k) dvo(h)

for the variable k/ is invariant under left multiplication by elements of G
and right multiplication by elements of Gy,. The adjusted differential

du(kh)
A(h)

§ The integrability of the density can be used to show that no further symmetries are
possible within the positive affine group. :
{ The differentials for an orthogonal matrix are composed of differentials on the surfaces of
spheres; these differentials are invariant under orthogonal transformations; cf. Section 2.
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also has these invariance properties. At the identity the componentw
differentials dup(k) and dvo(h) both measure Euclidean volume, one orthog
onal to the other. Hence

du(kh) = Ach) d#T(k) dvo(h),'
dg _ d(kh) _
g [khP IklA

The quantity 6 can now be separated into an essential quanuty [6] and a:
redundant quantity [0}

dh.

[0l€ Gy
0 = [0](6): ~
T o [6] € GO’
0
where _ ~
1 0 0 PP 0
#1l 0wy - 0 .
B A [
r | ’ ’ L& | T
LMo | Tm Tpo1 Tln)
(1] 0 0 ;
0 Wy _wlﬂ 1 ; 0 .
[0(])= R ) l Ql’ .
L_O Wy T Wopyp

~,

note that I' = BQ. And the structural distribution for 6 can then be ‘ex-
pressed in terms of the component quantities:

k(s T

o dM(G)

e 4 a0
o Il

d[@]

= k(D(Y))f([ﬂr‘[erlY)

e P
e o, s
T T

= k(D) OTY)
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~ The redundant quantity can then be integrated out:

n—1 d[e]
#(16]: Y) d[8] = k(D(Y))f(6TY) €O 2 40
£2(01:Y) di6] = k(D(T)S (] TN il

- d[f)]
—19n [T
= [14; k(D(Y oY
H (X ))f([] o I[G]I"'1 I[B]IA

the integration is performed in the pattern in Section 3: the first-column

vector in ) ranges over a unit sphere in R?; the second conditionally over a
unit sphere in R”-*, ... ; the last unit vector conditionally is determined
(4; is the area of the unit sphere in RY).

The essential quantity [6] can be expressed in terms of the location and
scale components: T

r =
1 0 0
M Oy 0 '
‘ Ha | Ta1 Oy 1 0
1= . ) =[ “““ - J
T ®ni® -
LMo | Tor """ Tpper O(p)

The structural distribution can be expressed. in terms of these components:

Yii —

YT du ds

4, k(N TT 7] & :
I;I 5 k(D( ))I;If 8" 8] [Bla

Ypi — Mp

*7 THE MULTIVARIATE MODEL: NORMAL ERROR

Consider the affine multivariate model with standard normal error vari-
ables:

F(E)dE = 2m) ™ exp {—3 > b} T deys,
[Y]= 6[E], D(Y) = D(E).
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The sum of squares in the exponential can be expressed in terms of erro
position (compare with Section 12 in Chapter Three):

Se=trEE —n=tr [EIDD'[E] ~ n
n 0

= tr [E] '_ [EY —n
0 | 1
=tr [E][E] — n,

Foo

t ‘ Jn 0
: T | JamE) C®

where

[E] = [E]
0 i
Jn 0o -+ 0
\/ n & cu(E) '_ o e(E)
\/;l e, Cpl(E) e Cam(E‘).‘»

The adjusted position matrix [ E] presents the row vectors in E ;.it present:
them relative to an orthonormal set, the row vectors of D(E) with the firs

. row vector adjusted to unit length. . .
The adjusted position matrix can be factored into triangular and orthog

onal components as in' the preceding section:
(E] = [E]E],
T 0

Jn 0
=l mm@® 18)

where
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is the adjusted position variable of the location-progression group (comp}gre
‘with Section 12 in Chapter Three). The sum-of-squares can then be expressed
in terms of the triangular components:

Se=tr[EXEl —n=tr [EXEY ~ n
7 7

If

n tr m(E)ym'(E) + tr T(E)T'(E)
(X&) + (T 65:E) + (3 stn(E).

7.1 General Distribution: Error. The distribution of the error position
[E] given the orbit is

I

¢((E]: D) d[E] = k(D)(2m) ™2 exp {—}(tr [E]LEY — m)} |[E]" ~2LEL

(B
The differential can be factored by the formula in the preceding section:

d[E] =_‘f£ﬂ diE] = @ ATE) o
[EN™* I;E:”A o |T(E) |T(E)|a

The distribution of [E] can then be expressed in terms of the components
m(E), T(E), O(E): -

 &((E): D) d[E] = k(D)(2m)™'* exp {—}(tr [EJ[EY — n)}

[T(E)["
IT(E)| | T(E)|a

A_.,.An_ o
e L)

dm(E) dT(E) dO(E)

n— n—: P : d0
s sgyr  TL dyn &, TT dtyy T dsiy .

D

This distribution describes a collection of independent variables: standard

normal variables, chi-variables, and uniform-on-a-sphere variables. It

should be noted that the triangular variable [E] with components m(E),
T

T(E) does not describe the usual right cosets on the error space G*; it de-
scribes left cosets of the orthogonal group. The distribution for m(E) and
T(E) agrees with that obtained in Section 12 of Chapter Three.
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7.2 General Distribution: Structural. The structural distri'bution can be
obtained from the general formula in Section 5.1 t.oge.ther with the factf)r- |
ization of the differential (Section 6) and the normalization constant (Section -

7.1):

g*(6:Y) df = k(D(Y))f(67Y) %1"1_1; du(6)

%j‘j exp {—}(tr @YY —n)}
w

Wt |T(T)I" dy. 48 d2

" w1 Tl
ﬁA,- 18] {B| {Tla

2

The sum of squares in the exponents can be re-expressed:
Zef“}i———-trEE’—~n=ntrmm'+trCC' o

= ntr I (m(Y) — w)(m(Y) — pyIV 4 tr roy)c(mr
= n(m(Y) — g)’(l"I")““(m(Y) —p)+tr (I C(Y)C(Y)
= n(m(Y) — w)=(m(Y) — p) + tr27S(Y),

where two inner-product matrices are defined by

S =IT =8QQ'C =TT,
S(¥) = C(Y)C'(Y) = T(NON0'(NT(¥) = T(Y)T'(Y)

Y — Yin — W1 yu—h Yin —
Ypr — gr Ypn — gm Yp1 — gp N Ypn — ?711
The structural distribution is
g*(8:Y) db ~ o
- , - -1 .
= ﬁi—"“j‘él‘ﬂﬂexp {—=3(m(Y) — p)nZ 1(m(Y) —p)—$trZ S(Y)}.

(27_‘_)"11/2
n?? |S(Y)[" 2 dped dQ
"ot (BBl

/2 - L
= % exp {—E(m(Y) — w)nEH(m(Y) — )} dp
™
Apr " Ansy S| 4B | 42

> | .
. ——EE;—)-(-;-:I—)‘;’E—* exp {’“% trx S(Y)} ‘«G‘n-l rGlA _fIAj
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The conditional distribution of . given B is normal with mean m(Y) and
covariance matrix 71X = #n*GG’; the marginal distribution of G is given by
the middle expression; and the distribution of Q is uniform on the positive
rotation group, and is independent of w, G.

7.3 Location Distribution: Exror. The distribution of the error component

m,(E) éy
m(E) =| . = .
m.(E) z,

can be obtained from the error distribution (Section 7.1):

(21.})11/2 €Xp {_%Znéf} II d\/; éj.

It should be noted that the error component m(E) does not describe the usual

right cosets on the error space G*; it describes left cosets of the positive
linear group S.

The distribution of the usual error location characteristic
t = t(E) = CYE)m(E)
can be obtained from the formula in Section 5.3 together with the integra-
tion properties for the distribution of [E] in the normal case.

7.4 Location Distribution: Structural. The marginal structural distri-
bution for the location quantity @ can be obtained from the final expression
in Section (7.2) by integration:

n?? A, A,

(27,.)11/2 (271_)(11-—1)1:/2

-f_sexp {~%tr E'l(S(Y) + n(m(Y) — p)(m(Y) — p.)’)}
) ls(Y)‘(n«l)/z fl_?i " } »
[Bl*  |Bla o
nzv/ZAn_1 Ve A']‘_p |S(Y)|(-n—’1)/2 dp_
Ans Ay pen IS(Y) + n(m(Y) — p)(m(Y) — w)|™*

gr(p:¥) dp =

I

An Anpiy —1 ls*'ﬂﬂ‘d"g'
P R R G R Ly i L
L; 2m)yrei2 .exP{ her ) IG|* 1Bla
A'n—r v/ - t|—n,
== ‘Sz‘y)'wluns (Y)Y (m(Y) — p)(m(¥) — )|~ dp.
A,:p nv/z

n — wYS} { - —n/2 .
A, IS(Y)I% (1+ (m(Y) w)'s (Y)(m(Y) p.)) dp;
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the integration property associated with the marginal .distribution of §
(Section 7.2) shows that the integral in the middle expression has value one;
also check in Chapter Three (Section 8.4 and Problem 40). The marginal
distribution.of p. is a multivariate t-distribution but relocated and rescaled

7.5 Scale Distribution: Error. The distribution of the error component .
C(E) or the equivalent components T(E) and O(E) can be obtained from thg
error distribution in Section 7.1: .

oA, . .
A""‘gl )(,,‘_""_1,,,,2 exp {—3 X1y — 12 St
T

o : do
SSn st L dtyy Tl dsen - .
. I;IAi -

This is a distribution describing right cosets on the error space G*. '.l"he
marginal distribution for T(E), however, does not describe the usual right

cosets; it describes left cosets of the rotation group.

7.6 Scale Distribution: Structural. The marginal structural distrik?utign
for the scale quantity I' is directly available from the last expression in
Section 7.2:

IS(N)|'" > 4B, dQ

IB™ |Bla f[Aj -

A S o
gZ(I‘:Y) ar = Wexp {—%_;trZ 1S(Y)}
v

A related quantity of interest is the covariance matrix\ pH --——'73'13'. le.ne,
Jacobian to obtain the distribution of % is available from Section 12.3 in

Chapter Three:
‘ @\ = 27 |Gl|v.
dG

The structural distribution of X is S
. S(Y (n—1)/2 az
An—-l An-—D CXP {__% tr Z—IS(Y)} l ( )l

(2,”_)(1:-1)»/2 lZl(n——l)lz 29‘=6|A VGIV

Reo s
IZ‘(M-w)Iz

P A . _
= Wp exp {'—-% tr> 1S(Y)}
.

NOTES AND REFERENCES

'Marginal and conditional structural distributions were examined in

Section 8, Chapter Two. The marginal analysis in this chapter has evolved -~

from an analysis of these distributions for essential and redundant quantities.
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The normal error distribution on the sphere was proposed by Fisher
(1933) in an analysis of measurement on the sphere. As part of his analysis
he derived the marginal distribution of the length / = I(E). The conditional
distribution of the length I = J(E) given the orbit is independent of the orbit

~ (Section 3), hence is equal to the Fisher marginal distribution. Watson and

Williams (1956) used the likelihood-modulation method to simplify Fisher’s
derivation: The special distribution of / = I(E) for « = 0 had been obtained in
another context (Lord Rayleigh, 1919); the likelihood function adjusts the
special distribution to give the general distribution. A survey of results for
the normal distribution on the sphere is given in Stephens (1962).

The multivariate regression model has been analyzed by Fraser and M. S.
Hagq. .

Fisher, R. A. (1953), Dispersion on a sphere, Proc. Roy. Soc. (London), A217, 295-305.

Lord Rayleigh (1919), On the problem of random vibrations and random flights in one,
two, and three dimensions, Phil. Mag., (6) 37, 321-347.

Stephens, M. A. (1962), The statistics of directions, the Fisher and von Mises distributions,
Ph.D. thesis, University of Toronto.

Watson, G. S. and Williams, E. J. (1956), On the construction of significance tests on the
circle and the sphere, Biometrika, 43, 344-352.

PROBLEMS

1. Consider the composite measurement model with known scaling (Section 1), and
suppose that the component error distribution is standard normal:

| 1
fley, e9) = 3o P {— o (e? + e}
(i) Derive the distribution of error position [E]; for simplicity in the final expression
let
n n
P(X) = z (zy; — #)? + z (wy; — Zp.
1 1

(i) Derive the structural distribution for (x, /iz, ¢); derive the marginal distribution of

(1“1, o).

2. Consider the measurement model on the plane with unknown scaling and unknown error
rotation:

TIferir €2 TT (deysdens),
1 1

1 0 0
X=| p, ocos(p) —osin(p) [E,

Uy osin(g) ocos(p)
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where _
1 .. 1 1 P 1
X=| 2, " % |> E= e13 """ Cm |»
Tgp " Tam ey T

and n > 2. Analyze the model following the pattern and notation in Section 1.

(i) Check that the transformations form a group.

(i) Define a transformation variable, and determine the reference point. Show that the .

model is a structural model. As a scale variable s(X) consider /(X) from Problem 1.
i i i i i function.
iii) Derive the invariant differentials and the modular o
((iv; Derive the distribution for error position and the structural distribution for 6.

(v) For a rotationally symmetric error distribution determine the marginal structural -

distribution for (¢, #, 0)- . :
3 (Continuation). Consider the preceding measurement model and suppose that the.
component error distribution is standard normal:

fley, e = ~21; exp {(—3(e} + e}

(i) Derive the distribution of the error position [E]; for simplicity in the final expression
use

(X)) = i (s — B + 2, @i — )",
T 1

(ii) Derive the structural distribution for (1, #g, 05 ¢); derive the marginal distribution
of (4, #9)- ) o
4. Extend the model in Section 1 to cover measurements (24, ..+ » Tp) ON quantltxgs

(PP N & . .
F(E)dE = T1 flexs - -+ » 200 11 ey - - degd,
1 1

X = OE,
" where y y . 0 0
x; e{ ,u}
= =| - 0= i ;
X= y E , % a
x; e; Py |

the quantity Q is an element of the rotation group on R7, and n > p. The group of

rotations on R is
o0 T Ow
o'o=1,
fol=1
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An element O can be described as follows: the vector o, is an arbitrary unit vector in R?
and j doy = A,; the vector o, is an arbitrary unit vector in the (p — 1)-dimensional space
orthogonal to o; and | do, = A4,,_, conditionally; ... ; 0,_, is an arbitrary unit vector in
the 2-dimensional space orthogonal to 0y, . .., 0,_sand | do,_; = 4, = 2= conditionally;
o, is the unique unit vector orthogonal to o4, ..., 0,_; such that oy, ..., e, have the same
orientation as the coordinate axes in RP.

(i) Check that the transformations form a group, the location-rotation group.
(ii) Define a transformation variable and deétermine the reference point. Show that the
model is a structural model.
(iii) Derive the invariant differentials and the modular function: Represent dO as
do, - - - do, subject to the constraints in the description of an element O in G.
(iv) Derive the distribution for error position and the structural distribution for 6.

(v) For a rotationally symmetric error distribution determine the marginal structural

distribution for (g4, . . . , #,). (Compare with Problem 8 in Chapter Four.)
(vi) Suppose that the error distribution involves an additional quantity B. Obtain an
expression for the marginal likelihood function.

5 (Continuation). Consider the preceding measurement model and suppose that the error
distribution is symmetrical normal:

1 1
f(eli"'sep)=mexp{—%—éze’?}.

(i) Derive the distribution of the error position [E]; for simplicity in the final expression
let

PO =33 (@ — &)
e

Derive the marginal likelihood function for o.
(ii) Derive the structural distribution for gy, . . . , uy, Q; derive the marginal distribution
of (t44, . . . , k) (compare with Problem 9 in Chapter Four).

6. Extend the model in Problem 2 to cover measurements (24, ..., %, on quantities

(7
FEVIE =TT flezer. .. repd 1 (dey; - - - degy),
1 1

X = 0E,
where
1 1
’ 7 H
X € Myt
X= . N E = . ) 6 = . E :
: : 19
' ,
*p ) Hy |

the quantity Q is an element of the rotation group on R?, and n > p.

(i) Check that the transformations form a group.
(ii) Define a transformation variable and determine the reference point. Show that the
model is a structural model. As a scale variable s(X) consider /(X) from Problem 5.
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i i i i i the modular function.
iif) Derive the invariant differentials and. t o
((ivg Derive the distribution for error position and the structural distribution for 0.

distribution for (i, . .« 5 #gp» o).

sion for the marginal likelihood function.

distribution is standard normai: . .
2
flegs o sep) = Wexp {—% z e},

() Derive the distribution of the error position [E]; for simplicity in the final expression
use

B2 =Y Y @ )R

(i) Derive the structural distribution for (s« -+ s Hps T Q); derive the marginal

distribution of (@4, .. - o)

e s o3
8. For the following symmetrical normal distribution in R%,

1 ! I 2 nl
f(zy, @g, T3 4, O} = me@ {“ 2'03((”1 uP + ozt xs)}

. . _ . . inkin -
determine the conditional distribution given that Y % = L. Give expi;ssmrilselrl;\kx g H,
of the normal distribution in R® with « of the normal distribution on the sp. .

9. Consider the positive linear group

i1 T Cuw

Cp1 " Cap
operating on points

Ypy " Yom

in Buclidean space & = RP" by matrix multiplication.:

f=gx

. . . d
(i) Check that G is a group and that the group is unitary on X provided 7 > p an

in trivial points are excluded. 5 ) B .
Cel’t(’tilil)ﬂ I:xl‘tllllae [?attem of Section 4 define a transforma.tlon ‘./anab'lc [Y] = C( Y)Gand deriv
the invariant differential on & and the left and right invariant dlﬁ'erentlalsh or; 2 vian

(iii) From properties of the invariant differentials deduce the value of the Jaco

Bg‘l
%

]

(v) For a rotationally symmetric error distribution determine the marginal structural ’

(vi) Suppose the error distribution involves an additional quantity B. Obtain an expres- ‘

7 (Continuation). Consider the preceding measurement model and suppose that the error 4

Derive
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the Jacobian for the progression group is different (compare with Problem 29 in Cha]:;ter
Three). E
10 (Continuation). Consider the linear multivariate model for n observations on p responses:
f(E) dE,
Y =TE,
where T is an element of the positive linear group.

(i) Derive the distribution of the error position variable [E].
(ii) Derive the structural distribution for I'.

11 (Continuation). Suppose the error distribution is rotationally symmetric:

fO7E) = f(B)

for all rotations in the group

o1 ttr 0y

. . ,
Gop={0=|. . L oo=I
0] =1
9p1 """ Opp )
A complementing subgroup is the progression subgroup of positive lower-triangular
matrices
c1 0
a1 Cpp 0< e < oo -
Gp={T= Csi

- <t <

tpy vt ip ot CMJJ
T = [T = 8Q,
i o]

(i) Derive the marginal structural distribution of G.
(ii) Express the preceding distribution in terms of the equivalent quantity

¥ =gg =TT,

12:(Continuation). Consider the case of. standard normal component error, and let

[E] = C(E) = [E}{E] = T(E) O(E).
T [o]

(i) the distribution of [E] given the orbit in terms of T(E), O(E);
(i) the distribution of T'(E) given the orbit (not a right coset distribution);
(iii) the distribution of the error inner-product matrix S(E) = EE' = T(E)T'(E) given

the orbit (not a right coset distribution);

(iv) the structural distribution of I';
(v) the marginal structural distribution of G;
(vi) the marginal structural distribution of X.
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13. Consider the affine multivariate model with rotational symmetry. For tests of signif--

icance the decomposition of error position is needed in the order:

[E] = [E][E]
4] T

(cf. Sections 6, 7 in Chapter Two). Derive the marginal distribution of the error position
[£] which indexes right cosets on the error space G*. » ‘

T . . .. N e
14 (Continuation). For the case of normal error derive the.dl‘stnbutlon of.thg error
characteristic t = t(E) given the orbit; see Section 7.3. This is an error distribution
that corresponds to right cosets. ) o
15 (Continuation). For the case of normal error derive the marginal distribution of the

inner-product matrix for residuals
P S(E) = T(E)T'(E)

(Compare ‘V\;ith Section 12.3 in Chapter Three). This is not a right coset distribution.
*16. Regression-linear model. Consider an error variable E

(o1 **° Vi h s viﬁ
Upy Upn v, _ [V]
E= = =
en €1n € E
, .
Lép1 """ €pn J \. € J
with error distribution ) . .
t . .
fEYAE = fEYd_=T] flexss - - - » €59 ]_I (deys, - - - , deg).
i=1 i=
Consider a quantity
1 o o0 - 0 7Y
o1 1 0 -0 [1 OJ
0= ? “lar
Bin 0 B Yu 7 Vi
Lﬁyl T ﬂgzr Vo1 "7 7’1’0}

. i ion i 7, Chapter One),
or, equivalently (general location-scale notation In Problem 27, p

9 = [, T1.
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And consider a response matrix ¥:

(o 0 ) ()
’
U1 " Upp Yr V]
Y= = = -
Yn o T Y v Y
’
UYp1 " Ypn J Yy
The regression-linear model is ‘
SEYLE, .. f(E)dE
or
Y = 6E, Y=3V+TE

(i) Check the equivalence of the two kinds of notation.
(if) Consider the regression-positive linear group:

G-—{ _[f 07}  Bisap xrmatrix
B CJ Cisap x p matrix with [C| > 0] °
Check that G is a group. Describe the orbits on RP" by using L* notation from Section 2

in Chapter 3 and Section 4 in this chapter; show that G is unitary on RP* ifn > p + rand
a certain degenerate set of points is deleted. i

*17 (Continuation). Define a variable [Y]:

m—[l OJ—IY][Y]— SR | OJ
lsm oen]) T o [B(Y) Tm][o omJ’

and a point D(Y)in R?":

’ R

DY) Y v
Ty —(Q(Y)]'

’

. 7

Note: Intermediate D¥*(Y)and ¥°can be defined here from Problem 33 in Chapter Three
in the same way as corresponding matrices in Section 4 were defined from Section 10 in
Chapter Three. Show that [Y]is a transformation variable and D(Y)is a reference point.
Check the alternative notation: [B(Y), C(Y)] and Y= B(Y)V + C(Y) D(Y).
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*18 (Continuation). Verify the following invariant differentials:
. S ¢
dm(¥) = [y = [enr
dg _ dBdC
duig) = g7 JCpPE
d dg dBdC
v(g) = 1g!p lclp s
A v 1
&=~ e
*19 (Continuation). Derive the following distributions:
! . dIE]
g([E1: D) dIE] = k(D) f(IEID) [LEN TE
3 . Uii dy;
ko TIrl 8| - |+c |C|r—?=" dB dC, :
1 . .
Vri dp;
i
S5 L
*(6: = p-1y)y i ——— dv(6)
g B:Y)do = k(D) f( ) R ”YW
B Yii Uyg '
v n " e dsdr
g =k TIATH | % o TP
3 .
l‘ yg;i Urg
#20 (Continuation). (i) Derive the right-coset location flistributign gL(H: D) dh,rqs for the
_error variable H = C-1B; derive the structural distributiofi-for gL(.‘B: Y) L'”:;forc . .
(i) Derive the right-coset scale distribution g g(C: D) dC for the error variable C = C(2);

derive the structural distribution g&(I': ) 4T for T (cf. Problem 36, Chapter Three).

*21 (Continuation). Suppose the error distribution is rotationally symmetric:

FUE) = f(E)

'for all rotations in the group’

oY
i GO:{h_ 0 o)

A complementing subgroup is the regression-progress

Three,
1 0
=k = :
Cr { B T

0'0= 1}
lol =1}
ion group in Problem 32'in Chapter

Bisap x r matrix

Tisap Xp p’ositive—lower-triangular} ) ]
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The invariant differentials for G, are given in Section 6; the invariant differentials for G,

. are given in Problem 34, Chapter Three. Let

o= 1 O[T O
‘5,1”3”[35 73][0 Q)

(i) Derive the marginal structural distribution of (%, B).
(i) Express the preceding structural distribution in terms of the equivalent quantity
(B, X, where
2 =TT ="6%.

*22 (Continuation). Consider the case of standard normal component error. Let

E=mE= L ° ][1 0 J
7o WBE TEJ0 o®)’
where C(E) = T(E) O(E). Note that Eg_' = (BV + C_D)(BV -+ CDY

(i) Derive the distribution of [E], given orbit in terms of B(E), T(E), O(E). Record the
marginal distribution of B(E), T(E), given orbit (not a right coset distribution).
(ii) Derive the distribution of the error inner-product matrix for residuals

S(E) = C(E)C'(E)= T(E)T'(E)

(not a right coset distribution). Compare with the distribution in Section 12.3 in Chapter
Three and in Problem 15 in this chapter.

(iii) Derive the structural distribution for B, G, Q.

(iv) Determine the marginal structural distribution of % and the marginal structural
distribution of B.

(v) Determine the marginal structural distribution of & = I'T" = 68", __.

" *23 (Continuation: case of normal error). Derive the distribution of the error characteristic

H = H(E) = CYE) B(E),

an analog of the ¢-variable in Section 7.3 and Problem 14. This is a right-coset distribution
of the “general location” subgroup, the regression subgroup; it is the distribution appro-

priate to tests of significance concerning location and to general inference concerning the
quantity 3.
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CHAPTER SIX

Local Analysis

x x4 dx’ x x+dx *
The structural models in preceding chapters are designed to describe systems
in which the primary quantity 6 is a transformation in a group, a transforma-
tion that carries an error value from within the system into a response value
on the chosen measurement scales. A change in the quantity 6 is a change in
the transformation, and a change in the transformation produces a change in
the response value. |

In some systems a weaker condition exists. A change in the quantity 0 ' dl _ _ Fu(z:0y). dz = db

Figure 1 A change d6 at 6;; the i i i
z s> the corresponding change in the res i
points z (at various values for F). d £ ’ porise variable at various

Suppose that this differential dz is not equal to d6 at some or all values of F.
Then.letT l(:fo, 6,) be a linearized variable, an increasing function of = that
has differential dl uniformly equal to df at §,:

is a change in a transformation carrying internal error into a response value, Fo(:6,)
and a change in the transformation produces a change in the response value. s F(1:0
v The pattern of change in the response values, however, may be different near Uz, 0p) = | —=— 0 dt
i : one 6 value than near another § value; in other words, the transformations Fy(t:0,) B

- may not produce a group of transformations on the possible response values.
In this chapter the weaker condition is examined for a real.variable and a
real quantity. An increase in the quantity 6 is assumed to cause an increase
in the response variable «. But the pattern of increase may be different near -
different 6 values. : o H(1:6) = F(2(, 6,):0),

where 2(/, ;) is the inverse function obtained by solving
I(z,0,) =1

- (See Figure 1.) The }inearized variable is determined except for an additive
constant corresponding to the absent lower limit of integration.
Let H(I:6) be the distribution function for the new variable I(z, 6,):

1 THE STOCHASTICALLY MONOTONE MODEL

Consider a real-valued quantity 8 and a real-valued response z. Suppbse -
that an increase in § produces an increase in z, and let the classical model for
x be given by the distribution function ¥ (x:0). :

Suppose f(%:0) = OF (2:0)/0z is continuously differentiable with respect

for z.

For the new variable / the differential d/ that corresponds to the differential
do at 8, is

to = and 6. The total differential for F at 6, is dl = — Hy(l:0,) df = — —— =07 Fo(z:6,) 40 = db
X . Hy(1:6y) Fo(z:6,) dx(l, 6) ’
aF = 2 F(z:09 ds + {5@ F(x:f))] 46 = F(5:6,) dx + Foz:0) db. BT
x 8=8¢ .

This checks that the new variable /(z, 6,) has th i
(x, 6, e required property. Note that
H(l:65) = —H,(l:8,) for all L. 1 propery

1 ‘With the probability level Fheld constant the differential d= that corresponds
to the differential df at 8 is

dz = — Fo(:00) ds. ’ e ];Thg linearized variable /(z, 6) here should not be confused with the log-likelihood
F (z:0,) : unction /(z:6) in Chapter Four.

252
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The model for the new variable can be expressed as
H(— (- 60):6,)
to a first derivative approximation for 6 near 6,:

H(I = (6 —80):05) = H(1:69),
. )
= —_ J— . == — ) = 9 :60 .
[aOH(l 6 60).60)]‘9:90 H(1:0,) = Hy(l:00)

The model, to a first derivative approximation at 0,, can then be viewed as the
classical model based on the following simple measurement model

H(e:eo),
L= [(6 — 0p), 1]e.

The assumptions at the beginning of the chapter present a change in 0 as a
change in a transformation applied to internal error. The preceding simple
measurement model is then the appropriate model for inference near Bo.

Now consider a sequence (%, . - - » %) of response values. The model for
the response sequence is

TI Fa::6);

or, in terms of the transformed response sequence, (oo 1) = (I(xy, 0),
.., I(z,, 6)), the model is ' '

T1 H(1,:6).

The related simple measurement model uses a position variable r(I) and an
orbital variable

) = (b —r@®, ..., L, —r®)":
A simple choice is r(I) = /; and -
a@)y = 0,1, — I, ..., I, — h).

The marginal probability element for d is

J TL H(t + d.:0) dt - ddy - - - dd.
—w 1

A first derivative change in 0 at 6, should shift the distribution of 1 along

the orbits; accordingly the marginal distribution of d should have a derivative
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equal to zero at f,:
I

% ﬁH(f-!-di:f’)dt‘ =F TH((t 4 d:6) S et + ditBo)
80 — 1 L 90, ~w];[ l( 2 O)EHl(t—*—di:@O) dt

_ © n ] » H (t+ d:@)
=—| TIH({+d:6p) Y 2ty
f—m i O Ht + 40

= —f EHHl(t + d;:0,) dt
—0 OF 1

- _[fj Ht + di:Bo):' ~o.

0
—

The reduction uses H,(/:6,) = —Hy,(I:6,), a consequence of Hy(I:0,) =
— Hy(1:6,).

The conditional distribution for the location variable /, is

I Hh + d;:6)
g(h:d,8)dl; = L

: f TIH(t + d,:0) dt
-0 1

dl,.

The conditional distribution should have the same linearized property at

- B, as has the distribution of a single /; this is easily checked by showing that

2 . 9
1 :d, 7] = e — .
[aﬁ gl ):]e=on a, g(1,:4, 6,)

(see Problem 1).
The conditional model can be expressed as

g(h — (0 = 06):d, 00)

to a first derivative approximation for # near 6,. The model can then be

viewed as the classical model derived from the following reduced simple
measurement model

» g(el:d(l): 6())
Li=(@0—0)+ e

The assymptions at the beginning of the chapter then imply that the reduced
model is the appropriate model for inference near 6.
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The structural probability element for 6 at B, is

ﬁ Hl, + d;:6) ;
g(l,:dQ), 8,) db = — - do
TIHG + d;:0,) dt

1
H Fo(;:0,)
1

f ® T Fole(t + diy 60):6,) dt
—wo 1

0

de.

This element of probability at f, uses the linearized variable I(z, 6;) for

that 6 value. . _ B
Now consider the marginal likelihood function based on the orbital

variable. The marginal element for d is
Jm TT Ht + dy:00) di - ddy - - dd.,
- 1 © ﬂ ) dl
=f (=" TT Folz(t + ds, 80):6,) dt T
a0 1 1

[ TL Rt + 1 00 — U 00,0010 &6 s,

I Fy#::0) dl
F a:(xiteﬂ) '
The differential dl, for the position variable on the orbi.t can be related to
differential length ds along the inverse image of the orbit—on the space of
the 2’s: s a o
< % (dall + ds 2
S e e
T 1 dly
S0 :
=3 (F—-—-——"(x"%)) WLy
T \F (z;:0,)
i i i d in terms
The marginal element for the orbital variable can now be. expressed 10
- of ‘Euclic%;an yolume, on the space of the s, cross-sectxofxal to the inverse
image of the orbit. This gives the marginal likelihood function for 6:

. %
dt - E@‘%ﬂ_
Fm(‘”ﬁe)

J ° f[ Fo(=(t + U(z,, 0) — I(1,0), 6):6)

The marginal likelihood function gives secondary information concerning 6, ’

information derived from the orbit at the observed response vector.
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2 THE LINEARIZED POISSON

The Poisson model is used to describe the frequency of an event that can
occur randomly in an interval of space or time. The quantity 6 is the mean
frequency for the interval of space or time. An increase in 6 corresponds to
a compression of the process and a consequent stochastic increase in
the frequency. These are the necessary ingredients for the application of the
methods in the preceding section, except for the discreteness of the
distribution.

If the quantity 6 is large, however, the distribution for the Poisson variable
spreads over a broad range of integers and is closely approximated by a
continuous distribution. This section applies the methods in the preceding
section to the approximating continuous distribution.

The Poisson distribution function

@ Hﬂ:
z-—' exp {—6}
& !

can be viewed as giving the cumulative probability to the point = + % for
the approximating continuous distribution F(z:6):

F(z + 4:0) = oi—ii:exp {—0}.

An alternative expression for F can be obtained by differentiating with

_respect to 6 and then integrating back:

9@-—1
(= — 1)t

—a-F(z+12~:6)=2——Q—exp{-—9} + 2 exp {—0}
26 T gl T
= —Lexp (-0}

x!

© hz @ 0=
F(z+4:0) =| —exp{—6}df=| ————exp{—0}db.
(= + 4:0) J; m!exp{ t J; [‘(z;{—l)e}(p{ 1

In this alternative form the distribution function extends smoothly and

continuously for all values of « greater than z = —3}:
f >V exp {—t} dt
F(z:0) = £
I'(z + )

@
f " ¥ exp {—t} dt
]

= i
ft"%exp{—t}dt
[}
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Area =§ exp (-0}
. 0= -
/wght: % exp (-0

..%0123

i i ili jon is given by the vertical bars. The
Figure 2. The ordinary Poisson probability function is given v 1 ¢
coi.:inuous probability function is designated f(z : 6). The continuous Poisson density does
not pass precisely through the tips of the bars; rather a bar gives the average height of
f(z: 6) on the unit interval centered at the base point of the bar.

" This distribution on the range (—3%, o) will be called the continuous Poisson
distribution. The probability for the continuous Poisson between z — % and
 + } for « an integer is equal to the probability at = for the ordinary
Poisson distribution (see Figure 2 and Problem 5). . .
Now consider the linearized variable l(_x, 0o) for' the continuous Pmsspn
distribution. The derivative with respect to 6 is available from the preceding
analysis:
6= %

P(z + %)

The derivative with respect to x seems unavailable explicitly. A series expan-
sion can be calculated with considerable difficulty; a ﬁrs.t-f)rder approxima-
tion relative to (1/6) is, however, available almost trwxa}ly: the den.s%ty
function f(z:0) = F,(%:6) is closely appro?cimgted by the Poisson probability
bars (see Figure 2). This gives the approximation., <

Fo(x:0) = — exp {—0}.

_ e
'z +1)

| The integrand for the linearizing transformation is

F(z:0) ~ exp {—0}.

65
— 0 xp (0
Fo:8) L@+ 1T (=00}
— AN o
Fy(2:6p) __7@3___ exp {— 00}
'z + %
o ulE+3)
T T+ 1)
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Stirling’s formula,

F($+1)=\/§;x”+%exp‘{—x+—l~— 1 +]

122 3602°
can be used to simplify the ratio of gamma functions:

_Fue0) iz = Diexp =zt )
Fy(x:0,) ’ =" exp {—=x}

- <93)/ (1 — 3= exp {3}

x
By\"*
~ (‘;) .
The approximation applies for = and 0, large. The linearized variable is

I(z, 6)) = f (%9) T dt = 26,

The form of the 1ineariged variable suggests linearization with respect to
the modified quantity \/ 6:

1

F(z:0,) (60)/5 1 1
Fyy(z:6) [d0/d/Olp—s, 247
The linearized variable relative to the quantity Vo at+/ 5; is
— c q —
Iz, \/6y) = | —=dt = ./=x.
=B E =
This linearized variable does not depend on 6,; it is a linearized variable

that applies generally, provided, of course, that the quantity 6 is large. It
follows then that the distribution of the error variable

AN

does not depend on 6, provided the quantity 0 is large. The transformation
/z can be referred to as a distribution-stabilizing transformation.

x

In SumMARY: The Poisson model in a frequency application can be
approximated for large values of 6 by the simple measurement model

e,
\/ _:; = \/ 6 + e.
The model has an error variable e with an approximate distribution (the

limiting form is examined in the next section); and the model has a measure-
ment \/;, and a location quantity \/ 6.
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3 DISTRIBUTION OF THE LINEARIZED POISSON

For a Poisson variable z consider the distribution of the error variable
e=z—8

for large 6. This can be examined most easily by treating = as a continuous

Poisson variable and using the ordinary Poisson probablllty function as the

approximating densxty function:
f(z:6) =— exp {——6} dw
exp IYNETNE:
1"( =

=\/%r(%)wexp {w —6— 1-2—x+ - } dJE.

. Let g(e:6) de be the probability element for the error variable e Then

1ng(e:6)=ln\/;—r+(x—-6——12x+ ) 22(In /= n./0)
1 z (\/@+e)2—0———1-(1+—€:)~2+---)
N 126\ /6 ,
2 2 5 __1,1_2_5_+_=§£2_...}
=1n\/;7+e +2e\>/. 126{ \/5 210
4
e

P e
— 2e + /B In (1 + ?/—5)

3 e &, & & }
’2(e2+2e\/0+6){76“29+3e%-. S+

e3 e4 PR
25+
4 ¢t
2, 5 ¢ T8
— 4e 7|—2\/§ 30
- 2 1
2_2€ 4,18
B AN Y

2 26 1 — 2¢*
—n (2225 +
"ln\[w 256 2

Hence :
2i 1—2¢ :!:"'}.
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The limiting form of the distribution of the error variable e is normal with
mean O and standard deviation }. The final factor can be expressed in terms
of power series in (e/\/ 6); it describes the departure from the limiting form
of the stabilized distribution.

The series involved in the preceding analysis are power series that converge
for |e] < /6. It follows that the log-density converges uniformly in any
finite range for e as 6 — co. The Poisson and normal densities decrease
monotonely about their maximum points; hence the distribution of the
error variable of the stabilized Poisson approaches the mormal density
uniformly as 6 — co.

The Poisson distribution is usually approximated by using the variable
z—0

J
as a standard normal variable. The limiting form of the distribution of z can

now be examined. The Poisson probability function treated as a density func-
tion (Section 2) is

2 =

6° 1 0° 1 _
—exp{—b}dr = ——5—5 —f—— +---ld/Bz
x!eXp{ d= (2" szeXP[x Ty } J

Let h(z:6) be the corresponding density function for z; then

lnh(z:9)=ln\/g;—r+ (z~0—1—§;+---) — (2 + }(In z — 1n 6)

I i 2
=ln‘/___+z*/9_1_23(1+\/e) —(+2/0 +Pln (1 +ﬁ)
=ln \/217+ \/6‘—{;&4—

2
0 + 20 A )
— (0 + 20 +%)(\/e 2e+3eff 7+

1 -
—ln: 4aff— L 4
"Van T 126+
3

ARV A"
3 4

a2 =

‘ +2Je Yh

1z 2

2./6 40

T 2% Zs“3~ 2% -1 — 2t

= In _— = +
w2 6./6 RETY:
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Hence

2 3 2 4
1 z 2 — 3z 32'"1—?1:&:"‘}-
he:0) =72 exP{— 2} eXp{ 6.0 LY,
The variable z has a limiting normal form with mean 0 and standard

deviation 1. -
The variable e has limiting error form,

e =z — /6,
as § — oo} the variable 2,

R

does not. -. . o . )

Both variables, e and z, have a 1imi'tmg<norma1 distribution. It is I).erl-lZ}pS
of interest to compare the approach of these distributions to the .111?lltlng
normal form. The first variable can be given the same standard deviation as

* the second variable z by introducing a factor 2:

ot = 2e = 24z = 24/0.
Now both variables, e* and z, have limiting standard normal distributions;
their densities are

e* 1 e*? & 11— e*/8 L. }
%g(?o) = o exp{"— 7} exP{ 126 120

1 2 2 46 1=3 } .
h(z:0) = e exp {-— 5} exp {-— 12\/5 126“
The first-order correction term for ¢* is considerably smalley t'han that for 2
excépt for a small range between 1} and 2 standard deviations from the
center of the distribution. The second-order correction for e* seems more
modest than that for z. Both the linearization with respect to thfa quantity and
the rate of approach to limiting normality favor the error variable
e = \/ x — '\/ ]

with an approximating normal distribution with mean 0 and standard
deviation $. o o

Considezr an ‘example illustrating the approximating measu}'eme‘nt model.
With observation z = 121 from a Poisson process the approximating model

is 5
\/: exp {—2¢°} de,
ki

11=——ﬁ+e.

A 959, probability interval for e is (—0.98, 4+0.98); a 95% structural

probability interval for /B is 11 &= 0.98, and for 6 it is (100.4, 143.5).
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PROBLEMS

1. Show that the conditional distribution of /; given the orbit d(l) has the property of
uniform shift under first derivative (f) change at f; that is, show that

a i 2
—g(l :d,6):| = — —g(ly:d, 0,).
[aeg 1 2=, allg 1 0

(For details see Section 1.)
2. Let F(x:0) be the Pareto distribution
z>1,.
F(z:0) =1 — 29, —
6> 0.
Derive the linearized: variable (z:6;). Can the local linearization (at 6,) be extended to a
global linearization (all 6)? Extend if possible. (D.R. Brillinger, 1963.)
3. Let F(x:6) be the Weibull distribution with density

N z\Po z>0
f(x'e)mmmlexp{‘ 5) ©8>o.

Derive the linearized variable /(z:6y). Can the local linearization be extended to a global
linearization ? Extend if possible. (J. Whitney.)



264 Local Analysis Six

4. Let F(:0) be the chi-model with density

p 1 21 22

@0 = 575 g1 P {" 5'0"2} ’

Derive the linearized variable I(z:6p). Can the local linearization be extended to global
linearization? Extend if possible.

5. Let (%) be the nearest integer to .

PART III

(i) If = has the continuots Poisson distribution F (m_:@} with quantity 6, check that (=)
has the ordinary Poisson distribution with quantity 6. (Y.S.Lee) ’
(ii) Check that

9:\:
F(z + %:0) — F(z — 1:6) =mexp {—6}

for all = >0.

Extensions




CHAPTER SEVEN

Inference from Frequencies

The preceding chapters indicate the broad range of applications for the
structural model. They also indicate some areas and directions that cannot be
covered, or covered completely, by the structural model. For example, the
additional quantity in Chapter Four cannot be described directly by the
quantity of a structural model; the stochastically increasing model and
the Poisson model in Chapter Six are not exact structural models.

Without any structuring relationship between the quantity and the
response, there remains, in the discrete case, only the probability function to
identify a response value and, in the continuous case, only the likelihood
function to identify a response value (Section 1, Chapter Four). __

The case of a discrete response variable is examined in this chapter. With
multiple observations the composite response can be recorded alternatively
by giving the frequency for each of the possible probability functions. For a
large number of observations these frequencies acquire a position relation-
ship to their probabilities in the same manner as with the Poisson model in
Chapter Six. This provides the basis for large-sample structural inference.

The continuous response variable, with inference based on likelihood, is
examined in Chapter Eight.

1 FREQUENCY MODELS AND THE POISSON BASIS

The Poisson model is perhaps the simplest statistical model with a
frequency variable:

f(x:@):g—’exp{-—e}, z2=0,1,2,....
a!

A slightly more complex model is the binomial model, which describes the

frequencies x;, x, of the occurrence, nonoccurrence of an event in n per-
formances of a process:

S mippy = (, ", ) reos ’
1

T, z; + xy = n,

267
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where p; + p» = 1 (p; > 0) and

n nt _(ny _ ("
(x T,)  xla,! T, T
1 T z,! z,!

is the combinatorial function. . . 4
A generalization is the multinomial model, which describes the frequencies

XLy, o un s X Oi occurrence o events E o E mn Pe[fo[lﬂa’lces Of a PI 0oces

19 » Ly urre f 1s 9 Log €8S,

the events E . ) Er for a pcIfOI mance belng mutuaﬂy eXCluSlVC an
TRER d

exhaustive: 50

n T) .. . pBr )
fxp) = (xl_,_xr)Pl Py S e =n,
where ¥ p; = 1 (p; > 0) and :

n _ n!
Tyt Ty z, 1zt

is the generalized combinatorial function. The quan.tity p may be gestrmted
and may depend on an essential, but simpler., quantity 6: p= p(®). )
Several multinomial models can be combined to form a single composite

multinomial model:

k ' : w5 2> 0,
m Tii . . . prit i
f(xl,---axlc:pl""ﬁpk)zﬂ(xli...mr‘_i)ph Drii’s Eixﬁ:ni“

i=1

where 3; pj;; = 1 (p;; > 0) for each i Again the quantities py, . . . , P M2Y
z) 2 i & )

depend on a simpler quantity 6.

Now consider a finite population of N elements with m, elements of kind

E., ..., m, clements of kind E(3 m; = N). The hypergeometric 1rr;f)d§{
d::;cribes ar succession of k random samples that exhaust the .popl; atio t,
on the ith sample let @y, . - . , T (= x,) designate the frequencies of events

E,,...,E,; the ith sample size is n, and S = N:
Ty 2 O’
Il n T >
FEpy oo X)) = NITT 2! Y m =y,

Zz- Ty = My,
n; m; )
Ii-'[(xu"'“’ri)__l;l(xn'”xjk ]

() G

. . ut “
The my, ..., m, may be quantities and may depend on an essential b

impler quantity 6. ] :
Su?l“lile P%isson )Ilnodel provides a basis for analyzing the other models.
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Consider r independent Poisson variables Zy, - . . , %, with means @p,,
- @p. (3 p; = 1). The composite model for the ’s is

HI’(I(pj j:)z“i exp {—o};
J!

*

the conditional model given that ¥ =, = n is

9" exp {—q}/n! r

The conditional model given ¥ #; = n is the multinomial model in a
preceding paragraph (see Figure 1). The multinomial model is obtained
regardless of the value of ¢. The choice, ¢ = n,is a simple and convenient

" choice: the vector of Poisson variables then has mean (npy, ..., np,); the
linear constraint ¥ x; = n passes through the vector mean; and the vector
mean of the Poisson variables is also the vector mean of the multinomial
variable. )

The composite multinomial is a combination of independent multi-
nomials. The ith component multinomial can be obtained from Poisson
variables with means n,p,,, . . . , n.p,; by imposing the condition ¥, #;; = n,.
The composite multinomial can then be obtained from k batches of Poisson

variables (( = 1,..., k) by imposing the indicated constraint on each batch.

Zy

1T (9p)™ exp {—}/TT mj!;( n xr)pf,... o

Now-consider the k batches of Poisson variables but with P=cc=p=r
xg
41— ° ° T e - o
A °
o . o
e e
1 ‘ .
4 5

Figure 1 The possible values for two Poisson variables (=1, @5). The possible values for a

binomial variable (z;, =) with n = 3. The Poisson variables conditional on Tz =3
give a binomial variable, '
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and with p, = - -+ = pp = p. The composite multinomial ObtaiI:lEfd by the -
conditions in the preceding paragraph can be further conditioned by

T2y =y %, z,, = m,. The resulting conditional model is the .
i1 T yer s A

hypergeometric model described in a preceding paragraph. T}]e hyper- .
geometric does not depend on the vector p; the vector p 1n the P01§sons and
multinomials can then be chosen so that the Poisson vector mean is also the
i Dy = L Inp, =)
mean of the hypergeometric (L n,py = My, - - - 5 & Pr 7= 707 _
The hypergey(?metric model can also be obtained from 1ndepeqdent Poisson
variables and an intermediate single multinomial. Let z; (j=1,...,71,

i=1,...,k) be independent Poisson variables with means Np;;, where .

Py = mn N> A single multinomial is obtained from the condition X x;;= N.
It 7 .. —

The hypergeometric is obtained from the stronger conditions % z;, = 1, i
T xy = Mgy D Xy = My e e e s 2 By = My

2 FREQUENCY MODELS: LARGE SAMPLES

The common frequency models can be obtained by. conditioning indel?end-
ent Poisson variables. 1n Chapter Six the anal'ysw of the stocha.snc.al]y
increasing model showed that the Poisson model, in a frequency agpl;lcattx?;x,
was approximated by a simple mea§urement.model, prov1de‘ tha let
location quantity was large. This section describes how the I(Djo]xsson re?sc*.lud
extends in a simple manner to cover th;e common frequency models, provide

in that the location quantities are large. v
agaégntsider t Poisson v%riables Xy, oo By with means Npy, ..., Nps and

consider s linearly independent constraints with integer coefﬁcients,
2 ligwy = (M)

z 13,;93,; = Cs(N): s

where the constants ¢;(N) are such that the mean vector ’(]\fpl, ..., Np)
satisfies the constraints. The conditional distribution of the x’sis a frequecxl)cly
model which for appropriate choice of constraints can-be any of the models

described in Section 1. This section shows that the cfonditional distribution oit' =
the s, in a frequency application, can be approximated by a measuremen

model:

The error variables e; = Ja, = \/Npl, e, 8= \/a:t — «/Np, have a

distribution that approaches (as N — o) the distribution of a sample of t

. . . ey the E .
from the normal with mean 0 and standard deviation % but conditioned by
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constraints as expressed in terms of the €’s; the constraints approach linear form
- in any bounded range (as N — oo). ‘

A realized sequence ey, . . . , e, from the error distribution provides the link

between the measurements \/xl, e, \/:ct and the location quantities \/N_pl,

A v
\1/11 = \/NP], + e

VoA

Let ey, ..., e, be the error variable for the Poisson variables z,, ..., z,
(Section 2, Chapter Six):

e = Vo = Npns - .. €2 = 7y — N Npy;

and suppose p; > 0, ..., p, > 0. By Section 3 in Chapter Six, the limiting
distribution of the e’s (as N — c0) is that of a sample of ¢ from the normal
with mean O and standard deviation 4. As part of the derivation it was shown
that the probability function for an error e (with a scale factor accommodat-
ing the average spacing between e values) approaches uniformly the density
function for the normal with mean 0 and standard deviation }. From this it
follows that the probability function for the error vector e = (e,...,e,)
(with a scale factor to accommodate the average spacing between e values)
approaches uniformly the density for a sample of ¢ from the normal with
mean 0 and standard deviation }. It follows that, if attention is restricted
to points e that satisfy the constraints, then the probability function for these
points (with the same scale factor) approaches uniformly the density for the
sample of ¢ from the normal at these points. It then follows that the condi-

tional distribution of the e’s is as described by the measurement model—
provided the following are established:

The constraints in terms of the e’s become linear-in-any bounded range about

0,...,0) (as N — o) (see Figure 2). :

The spacing of the e points that satisfy the constraints becomes uniform in

any bounded range, and the spacing between adjacent points goes to zero (as
N — o).

The next paragraph proves the first of these statements: The proof is simple
and the results are needed to summarize this section. The next section is

devoted to proving the second statement: The proof is somewhat long and is
not of general statistical interest.
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in the neighborhood of the point (Np,, . . . , Np,) which satisfies the constraints.
= The error variables, ;
- er=a, —VNp,... e, = o, — /Np,,
B can be used to reexpress the constraints:
- 3 LNp + e)? = (W)
a1+xp=15 :
: x1+xp=10 (20p1, 20 p2) Z lsi(\/-l_v;; + €)% = c,(N).
» Ra1+x2=5 2 +xa=20 These can be simplified (the point (Np,, ..., Np,) satisfies the constraints):
~ ‘(5p1,l51:2)l NN - o > lm/p,. €=y llie§/2\/N
5 10 15 20 i
v .
Z Isi\/.pz' ey = ‘“z IsiG?/Z\/N-
For any finite range for e these approach the linear constraints —-
> lle\/;i ;=0
_(~/20p1, ~/20p2) ) '
ey .
~/Pier + ~/Pre2=0 2 lsi\/Pt e; =0
. VEL
+/5 V10 VI5 V20 -

as N — oo (see Figure 2).

Consider briefly the quantity p, and suppose that it depends in a contin-
uously differentiable way on a simpler quantity 8 =-(0,,...,6,). Let 6°
be a reference value for 8 and consider the model for 6 near 8°, The square
root of p,(8) ean be expanded by Taylor’s theorem:

i i i i babilities py, pq, and n = 5, 10, 15, .
e 2 The binomial variable (z,, T5) w1t.h pro n: -

?t?: l'apl:n'oximating error variable (g;, ;) with means 0, standard deviations %, and con-
straint Vpie, + v Pata = 0.

Consider the form of the constraints,

> L = ()

s a0y < 0 __]'__WQE_‘LG.?_)
Vod® =@ + 3.0, - ) T o, *

Hence » L
VNp.(8), ...,/ Np,(8)

= (VNP .. NP LED) + (8, — B, 4+ + (0, — OO, + - - -

z lsixi = Cs(N)s
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heret o —y,
v 2/ N7 QJ.N.PL"_))
Vi = T ’ 06,
0 Np®) M_p_@)
Kl S 26,

If the location quantity
Npi(®), - - -+ VNP (®)

is within two or three standard deviations of the reference value

(VNP (8%, - - . - Np(87),

then the corresponding quantity 8 differs from Oo.by an amount'aoti C:de\rf
1% Tt follows that a first derivative apprqmmatlon is appropri A
beco;nes large. It follows also that the deviation of the location quantity

WV ®), - - NP ®)

from the reference value

(NP8, . ..,/ Np(8%)

is approximately linear in terms of structural vectors vy, ...,V with
i 6, — 69). i
coefficients (8; — 69, ..., (6, o _ o be
The results in tﬁis section can now be summarized. Let z, , &,

frequency variables that satisfy the linearly inqipendent con;trm‘nts

S b, = ()

z 1,2, = c,(N)

with integer coefficients. And suppose the model fo;l the tge?utegxczow]/la;z:i)lll:_

i i t satisfy the »
i i dent Poisson variables @y, . . . , ¢, tha . 1
lSnttfll ai:;/fe“xlt‘xi:f;: 25;1(0), ..., Np,(®) that satisfy the constraints (p; > 0 :élgl
; continuously differentiable near 9). Then, for N large, Fhe frequency mo -

: int: = dB]g—g0-
*+ Notation for the derivative at a particular point: df(6%1d6 [4f (©)/dBlpp°
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with 8 near 8° can be approximated by the following measurement model, the
'simple regression model (Problem 17, Chapter Three):

€1, €y

\/.35—1 - '\/Npl(eo) = Z(eu - ez)vul + 5
u=1

Vo, — VNp @) =3 (0, — 6)ou, + e

u=1

The model has an error vector (ey, ... ,e,) which has the distribution of a
sample from the normal with mean O and standard deviation } but conditioned
to satisfy the constraints

lei\/;;(—eT) ce;=0

zlsz\/m T e = O>

and the model has a structural equation in which a realized error vector provides
the link between the measurement deviation from the reference locatior and the

quantity deviations 0, — 63, ...,0, — 6° (as coefficients of the structural
vectors vy, . .., v,).

This form of measurement model can be analyzed in a straightforward
manner by the methods of Chapter Three as applied in Problems 17, 18 in
that chapter. Examples are given in Sections 4, 5, 6.

The measurement model is an approximate model, a limiting model as

" N— co. In an application, with a given N, the curvature of the constraints

and the curvature of the mean vector p(6) as a function of 8 may not be
negligible. Analysis in the neighborhood of a reference value 6° may indicate

~ the quantity 8 to be near a value 8 beyond the range of reasonable linearity.
i The value 8% can then be used as a new reference value. Analysis in the

neighborhood of 8%) may then indicate the quantity 8 to be near 8. The
procedure can be repeated, forming steps of an iteration. After several steps,

- in the typical application, the approximating model will describe probabilities

for 8 in the linear neighborhood of the final reference point.
*3 THE UNIFORMITY PROOF

This section completes the proof in the preceding section by establishing

- the uniformity of points that satisfy certain linear constraints. The proof is
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not of central statistical interest and may be omitted without affecting the
i ions. o
ba"cfiger(;:rrxlgefg; :E:C;:?sl:fnssztrlizble x = (x,% .., %) ;s the set of positive
integer ot lattice points in R’ _
S+ ={x: ;> 0, = integer, = 1,...,th . .

For the earlier parts of the proof it is more conver}ient to work with the seﬁ

of all lattice points ;

S ={x: =z =integer,i=1,... .t}
The points of the lattice can be represented in terms of an Abelian group of
integer translations. Let

’ . FE

g1x=(m1+1,x2,...,xt)

gx = (24, o z, %+ 1)
o gy gix = (@ + Yrse o5 %t Yy
(each y is an integer). It follows that the set
G={gn- g y,=integer(i=1,..., 0}
1

is an Abelian group. The group can be used to provide coordinates on S:
Let 0 = (0,...,0) be the reference point; let

[x]:g;l.... 2t |
then the point x has position [x} relative to the reference point 0,
x = [x]0.

The lattice points of § are uniformly spaced in.R". The transformations .-

i e itself

of (¢ express this uniformity: A transformation gi* .gf* maps S onto itself .
by a translation of y; units in the direction oft th:: ﬁrts’: aéx:; ,e .S.e'.: g ulpent
i ates tha :

irection of the rth axis. The group demonstrates set S b :
?;:n at all points: The set S is homogeneous relative to the transtation group G.
The linearly iidependent constraints

2 b= ()

i Zsizi = Cs(N)

= t can “IC eV we(las
N 1 b 1€
Can be 6Xami.ned fOI various Vahles Di the cs a.nd hey

, ¥, unitsin the -*~
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providing the first 5 of an alternative set of coordinates for R¢:
wy=lyzy + -+ Lz,

Wy = lgz, + - + [,

We = lnmy + o0+ Lz

the remaining ¢ — 5 coordinates can be based on a completing set of t — s
linearly independent constraints with integer coefficients. A lattice point x
(an x vector in S) can be represented in alternative coordinates as a w vector
(the corresponding w vector has integer coefficients). For an arbitrary x
vector in R’ there is a corresponding w vector. An arbitrary x vector has a
neighboring lattice point; and correspondingly an arbitrary w vector has a
neighboring lattice point (see Figure 3).

Now consider the lattice points that satisfy the s constraints with right sides
set equal to zero:

i

‘SC:{X: zliii"i:(), j=1,...,s}.

x2
Vv
\3""// //\ //Q
AN
wy=3
° ° o
“= ? » ° °
o'\\
wy=1 O
2 .
wy=0 &
° °
x1
° °
Sc=0Gc0.0) (Gc 1,0 \Gc @20

Figure 3 New coordinates wy = 2, + z,, w, = %y — ;. A point in old coordinates

(1, 2); the point in new coordinates (3, 1). The set Sy based on the condition %) + zy = 01
S¢ is the orbit of a subgroup Gp = {g¥e3¥ 1y = integer}.
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In terms of the group coordinates this is the set

GC':'{g'Il/.l.”gg‘: zliiyi=0: j—":ly','-’S]-

But the set G, is closed under the formation of products and inverses; itis a
subgroup. A gubgroup in an Abelian group is a gormal subgroup.Th "
Tghe sﬁl.:)group G partitions the set S into orbits Ggx (x in S). The orbit -

through the origin 0 is

G0 = {x: Slw, =0, xe8, j= 1,...,3}; :
the orbit through a point x° is
ng":{x; S Ly =3 Lat, x€S, = ls}

ion in G, i bit into itself: The orbit is homogeneous
translation in G carries an or ‘
ﬁ:ger the group G; the orbit has the same form at all points. Tge grén%p Go
generates points spread uniformly in the (t — s)-dimensional subspace:

s’g:{x; Sl =0, xeR, j=1,...,s};

and by translation the group G¢ generates points spread uniformly in the .

(t — s)-dimensional subset:

toj=1,...5
{x: ZI,ix,»-:;lﬁx?, xeR:, j=1, }

~

passing through a point x° of .S. o

Now consider how the uniformity of lattice points X in a §ubsct sz'ttltsf)&ni
the constraints carries over to uniformity of the corresponding e points

- bounded neighbourhood of 0. The volume change from a point e to an  ’~

original point x i8

] 26/Np; + e) = 2N TT pe + VM)

i=1

= 2N (e),

where hy(e) approaches H\/E uniformly in any bounded range as N — ..

. . o . din
Thus the uniformity of the constrained lattice points in a region surrounding
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(Npy, - - ., Np,) becomes uniformity for the points e about 0; and the spacing.
between e points goes to zero as N —» oo,

This establishes the uniformity property required in the preceding section.
4 THE MULTINOMIAL MODEL

Consider an example involving a multinomial model. The theory in
Section 2 relates the multinomial model to a measurement model with normal
errors and with structural vectors; the methods of Chapter Three can then

~ be applied.

Consider two factors affecting the breeding of maize: a first factor,
Starchy S or sugary s; a second factor, Green G or white g- The data record
the classification of n = 3839 progeny of self-fertilized heterozygotes:

G g Total

S 1997 906 2903

s 904 32 936
Total 2901 938 3839.

The accepted theory for the example prescribes marginal probabilities in
the ratio 3:1 for S to s and in the ratio 3:1 for G to g; but it allows for a

genetic factor linkage involving a quantity 8 so that cell probabilities-can
differ from the independence pattern,

G g
s % % %
11,
and have the form .
G g o

S 12+06) (1—06) 3
) 10 1
$ 1t 1

The linkage quantity 6 can have any value in the interval (0, 1); the value

- 0 = } corresponds to independence (no linkage). This suggests analyzing the
- model with the linkage quantity, but allowing for the possibility of withdrawal

to the simpler model corresponding to independence.
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The data can be transformed to measurements and location quantities: -

E— d
Observed v Observed +/ Mean ' v Mean

X y ©(6) v(6)
SG 1997 44.687,806 Va2 +0 v 3/4:; 2+6
Sg 906 30.099,834 Vriv1l—6 —«/;1/4V1 -6
sG 904 30.066,593 Vniv1l—0 —Vn4aV1—96
sz 32 5.656,854 Vv Vnf4V'6

3839 61.959,664 .

For a reference value 6° = 0.1 the measurement vector and the structural "

tor are SR
vector , Y1) L
44.687,806 10.689,058 ‘

30.099,834 —16.327,805

30.066,593 —16.327,805

5.656,854 48.983,416.

The structural equation for the measurement model at g°=0.11is
y — ©(0.1) = (6 — 0.)v(0.1) + e.
The appropriate regression coefficient is

(3 = 0.0, %0.D) _ (3, vO.D)

1 —
b= (¥(0.1), %(0.1)) (¥(0.1), ¥(0.1))
= _‘:_2_2_7._6.2.}.’.1_1 = —0.074,708
3046.825,3 ~

(the simplification from the measurement deviation y — ©(0.1) to measure-

ment y is based on the orthogonality property:
| 270 =n,
320 0 =0
(=(®), v(®)) = 0

the same kind of simplification will occur throughout the .exa'mples). The
corresponding 0 value based on linearity at the reference poxq.t is then

Hn = 0.1 4+ pM = 0.025,292.
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‘T*he value 61 = 0.025,292 can be used as a new reference value. The
measurement vector y and the structural vector v(62) are

y v
44.687,806 10.884,419
30.099,834 —15.689,595
30.066,593 —15.689,595

5.656,854 97.400,229;

the corresponding regression coefficient and value of the quantity are

b — ¥, v) _ 93.392,834 — 0.009,249,
(v,v) 10,097.601
0 = 0.034,541.

The nonlinearity is prominent in the fourth coordinate with mean é\/ /0
and with 0 near zero. Three further iterations effectively overcome this
nonlinearity:

i b o)

0 _ 0.100,000

1 —0.074,708 0.025,292

2 0.009,249 0.034,541 i
3 0.001,094 0.035,635

4 0.000,042 0.035,677

5 0.000,001 0.035,678.

The variance of the regression coefficient for error can be obtained in part
from the inverse “matrix” for the last iteration:

A\ y ‘
v 7348777,2 | 0009168 | 1 »
¥ 1 0.000,001 | 0.000,136,077.

The basic error variance is }; the error variables satisfy one linear constraint;
the normal error distribution is rotationally symmetric; the error variance is
therefore } for three orthonormal variables in the subspace satisfying the
constraint. It follows that the variance of the regression coefficient for the
error variable is

$(0.000,136) = 0.000,034,

and its standard deviation is 0.005,83.
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The model with no linkage (§ = ) has no quantity; the location values are -
obtained by substituting 6 = { in the expression for T(6). :
The observed and fitted vectors (and the relevant difference vectors)-
can be exhibited in a table: '

Fitted Location Fitted Location

(Allowing Linkage (No Linkage
Measurement with 8 = 0.035,678) 6 = 0.25)
y T T
44,687,806 0.486,652 44.201,154 —2.268,5%4 46.469,748
30.099,834 —0.322,330 30.422,164 3.592,843 26.829,321
30.066,593 —0.355,571 30.422,164 3,592,843 26.829,321
5,656,854 - —0.194,809 5.851,663 —9.638,253 15.489,916
12 = 0.505,108 12 = 123.859,481

“The table records the squared lengths of the difference vectors.
The results can be summarized in an analysis-of—variance table:

Source Dimension Component %2
Linkage 1 123.859,481 495.438
Deviations 2 0.505,108 2.020
Error (o3 = 1)

Total 3

The error variance is o2 = 1. The components can accordinglﬁi' be adjusted

to give chi-square values:

C t
72 = _—____omionen = 4 Component.

4

The observed chi-square value 2.020 falls between the 409, point (1.83) -
and the 30%, point (2.41) fora chi-square variable on two degrees of freedom.”

The observed value 2.020 is thus a reasonable value for such a variable, and it
indicates that the data are in accord with the linkage model.

The chi-square value 495.438 is an extreme value: For a chi-square variable

on one degree of freedom the 1% point is 6.635 and the 0.1 %, point is 10.827.

Thus within the linkage model there is strong evidence that 0 is different from :

the no-linkage value .

The structural distribution for the quantity 6 is normial with mean

0.035,678 and standard deviation 0.005,83.

Consider briefly the special multinomial model, the binomial model. For -

the binomial model the frequency variables are z, and n — % = %3 and the
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probabilities are p and 1 — p = g. The correspondi i "
‘ ; . ing measu
and location quantities are g ® rement varisbles

?/1=\/«:b‘:,
yz’—"\[i‘l-——ﬁb‘:——:\/;;,

The approximating measurement model is

T1 =\/;1—;,

Tz=\/n~np=\/%.

ela 62,
Y1 =7 + €15
Yo = To + €35

the error variables e;, ¢, a i ith s
; 1, €, are normal with mean 0, with standard deviation %
and subject to the constraint ’ vition ®

\/’?631+\/1—p0€2=0

in the neighborhood of p% 1 — p° (see Figure 4).
An alternative approximating model can be formed by having a single

0, vR)

ez

(y1.y2)
(11, 72)

e
(73,79

VpOer + g0ep =0

(V1,0)

Fi/ggrve :}“The reference point (v3, +9) = (V. ;1_’;’, \/;z_q°); the location quantity (ry, 79) =
(Vnp, Vng); and the measurement (y,, ;) = (\/z_l, Vn— @,). ,




i Seven
Inference from Frequencies
284 ¢

.
TOr var lable and no COnS[Ialﬂt. Ihe posltlon Oi pOlntS on the quatte] C1r Cle
er

be described by distance along the arc commencing at O, Jny:
can

— . 1 E}
measurement = /1 sin s

. -
“location quantity = /n sin™* ./p.

et e be a IlO[mal €rror Va[lablC Wlth mean 0 a-nd Standard deVlatlon ‘1'2. Ihe
L

alternative model is )

Jn sin‘l\/% = /nsin™ \/p+e

The structural equation can conveniently be used in the fo
e

=, — e
int |2 = sin™ p+—.
sin \/ - \/ 7
) t i i f statistical
i in~ i d in most collections o
tion sin™* \/ t is recorde
The transforma ; !
tables. A . ] )
5 THE COMPOSITE - MULTINOMIAL MODE

Seve] al Ildepell ent o] i f
: 1 i IS can b COmblned to ot
i d T multlnomlal m de | e ) orm a
com US. 1< !nlultl.ﬂoﬂljal Illodel. The Inethods Of analySIS f01 the []lultlno!nlal
P

()del mn the PIecedlng sectron lndlcate the pattCIn fOI the COIIIPOSlte
m

' | eople
Fltl exz:zlli)le consider some data on blood tyPeS.~A sample of 353 peop
or 3

T y i y y 'O A,B,AB;anda
f om a COHHnunit C are ClaSSlﬁed b blOOd phenot Pe. ) 7. ’ :

]C Of 364 People from a SeC()nd COmmun\ity D are Slmllaf}y Class;lﬁed
Samp ; /

C D Total

O 121 118 239

A 120 95 215

B 79 121 200
AB 33 30 63
Total 353 364 717

latent geno- ‘
ds to an unobservable or

servable phenotype correspon e
The O[E;eg C;;enepis recessive to an A gene and to a B _i_ger_n: I;)et \};I,i:]h L
2;‘12 probabilities corresponding to A, B, O(p+gq D.

§5

The Composite Multinomial Model

Genotype
(6]0] r2
AA  p2
AO 2pr
BB q?
BO  2gr
AB 2pq

1

The model contains effectively

The phenotype model can be
ities for the two communities
then be made to the more speci
ities in the two communities. A
model with specified values for

Consider first the phenotype

two quantities p,
analyzed by allo

mating the genotype and phenotype probabilities are

Phenotype

r2

P+ 2r)

B q(qg + 2r)

AB 2pq

1

model for community C:

q(r=1—-p—g.
wing different gene probabil-

(in effect, four quantities). Withdrawal can
alized model havj

285

— 2 2
Observed v Observed V' Mean il =
%p _9q
X y T \A1 va
: — 353 353
o 121 11.000,000 Var —r = —r =
70 TO
: —_— 353 353
A 120 0.95 v — —p=
| 1 4,451 np(p + 2r) r - -p -
_— 353 353
B 79 8.888,194 Vnglg + 20 —q— r—
TB B
— 353 353
AB 33 5.744,563 Vn2pq q— —
o - - TAB TAB
353 18.788,294 .

The derivatives are straightforward:

|
r
|
|

dp

As a reference point consider % 9 = (&, 3
. corresponding regression coefficients
!

or?

— = 2p(—1 ,

5y = (=1
ap*+2pr) @

=5, P+ 201 —p— )] =2r.
p

); the structural vectors and
for a first calculation, based on this



Inference from Frequencies

286
reference point, are:
y Vi Vo
11.000,000 —18.788,294 —18.788,294
10.954,451 10.847,427 —10.847,427
8.888,194 —10.847,427 10.847,427.
5.744,563 13.285,330 ' 13.285,330

e (v, Vb + O V)b = (V1, ¥)
(va, v)by + (Ve Va)by = (¥a, ¥)s
bV = —0.075,469, by = —0.170,711.
The corresponding values for p, g based on linearity at p° = %, ¢° = 1 are
p® = 0.333,333 gW = 0.333,333
—0.075,469 —0.170,711
- = 0.257,864 - =0.162,622

The point (p*, q1) can be used as a reference point for a second calculation.
Successive iterations provide a check for nonlinearity. The following table
records successive reference points (differences in parentheses):

i . P(i) q(i)
0 0.333,333 0.333,333
(—0.075,469) (—0.170,711)
1 0.257,864 0.162,622
(—0.011,691) (0.010,465)
2 0.246,173 0.173,087,
(0.000,264) (—0.000,004)
3 0.246,437 0.173,083 .
(0.000,000) (0.000,003)
4 0.246,437 0.173,086.

nce of the error regression coefficients are equal

The variances and covaria
to the approptiate elements of the inverse matrix multiplied by 1. The inverse

matrix at the last iteration is )
(v, V) (Vo Vo) - 865.709,17 230.305,04 -
(ve, V) (Ve Vo) 1 230.305,04 1,181.253 27|

0,001,218 —0.000,238
= | _0000238 0000893 |

§5 i
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Th . . ;
e variances for the error regression coefficients for p, g are 0.000,304

0.000,223; the standard deviati
—0.23. eviations are 0.0174, 0.0149; and the correlation is

The analysis for community D proceeds similarly:

Observed VObserved VMean i‘E o

. , P aq

T v vy
o 118 10.862,780 Vi 6 364
N s ; o 70 ! T0
746,794 Vplp + 29 e
B 121 11.000 ng(q + 2r) 2 o
000,000 Vnglq + 2r) PR
AB 30 5.47 n2pg o #
> 477,226 \/zz?,pq q ~3—6i P 36—4
364 19.078,784 e e

As an initial reference poi i
point consider = i
by the final rgference point for commun(if}i qC)7: (0:2:02), & point suggested

y vy Vo
10.862,780 —19.078,784 —19.078,784 -
9.746,794 21.633,308 —17.211,103
11.000,000 —7.211,103 21.633,308
5.477,226 13.490,738 13.490,738
bl = —0.009,223 bV = 0.034,224

P = 0.190,777 gt = 0.234,224

Su . . .
ccessive iterations provide a check for nonlinearity:

i i g
0 0.200,000 0.200,000
(—0.009,223)  (0.034,224)
1 0.190,777 0.234,224
(—0.000,565)  (0.001,453)
2 0.190,212 0.235,677
(—0.000,017)  (0.000,011)
3 0.190,195 0.235,688
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The variances and covariance for the error regression coefficients are equal
to the appropriate elements of the inverse matrlx multiptied by . The inverse
matrix at the last iteration is

1122.751,62 238.859,21 ! 0.000,942 —0.000,242
238.859,21 930.472,18 —0.000,242 0.001,137

The variances for the error regression coefficients for p, g are 0.000,236,
0.000,284; the standard deviations are 0.0154, 0.0169; and the correlation is
—0.23.

Now consider the model based on having the same gene prc?bablhtles for.
the two communities. Points having the same probability function should be

combined; accordingly the data for the two communities are combined:

ot ' ot

Observed Vv Observed v Mean % -a—q—
X y T Vi Vo
e 717 717
2 — et P
0 239 15.459,625 Vor | e o
R 717 717
A 215 14.662,878 Vap(p + 2r) e P
L —— 717 717
B 200 14.142,136 Vng(g + 2r) e r—
Vo 717 717
AB 63 7.937,254 n2pq y o P
717 26.776,856

As an initial reference point consider (p,q) = (0.22,0.20); from the
reference value p =0.22, ¢ = 0.20, r = 0.58, successive iterations give

i ' po. q®

0 0.220,000 0.200,000
(—0.002,379) (0.004,327)

1 0.217,621 0.204,327
(--0.000,007) (0.000,025)

2 0.217,614 0.204,352
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The observed and fitted values can be compared by means of vectors in R“;

Measurement

Fitted Location Fitted Location
y T T
' , = 0.246,437 =0.217,614
Cn= P , P 8
Community C'(n = 352) g = 0.173,086 g = 0.204,352
O 11.0000 0.0938 10.9062 0.0459 10.8603
A 109545  —0.1104 11.0649 0.7925 10.2724
B 8.8882  —0.1400 9.0282 —0.8781 9.9063
AB 57446 0.2570 5.4876 —0.1156 5.6032
. _ p = 0.190,195 p =0217,614
Community D (n = 364) g = 0.235,688 g = 0.204,352
O 108628  —0.0907 10.9535 —0.0747 11.0282
A 9.7468 0.1208 9.6260 —0.8053 10.4313
B 11.0000 0.1038 10.8962 0.8367 10.0595
AB 54772 —0.2354 5.7126 0.0228 5.6898
I2 = 0.1066
(4 2
£ Z 00850 13, = 27693

The fitted vector for the combined communities uses #n = 352 for the first
four coordinates (community C) and n = 364 for the last four coordinates

(community D). The difference vectors are recorded together with sqared
lengths. The analysis-of-variance table is

Source Dimension’ Component %
" Between 2 2.7693 11.077
-communities
Deviations for 1 0.1066 0.426
community C
Deviations for 1 0.0890 0.356

community D
Error (62 =)
Total 4

The chi-square values 0.426 and 0.356 are close to the 50% value (0.455)
for a chi-square variable on one degree of freedom. These values are
reasonable values; they indicate for each community that the data are in
accord with the model.

The chi-square value 11.077 is beyond the 1% value (9.21) for a chi-
square variable on two degrees of freedom. This is moderately strong
evidence that the gene frequencies are different in the two communities.
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The structural distribution for p and ¢ in community C is normal:

Standard ]
Mean Deviation Correlation
P 0.2464 0.0174 —0.23
q 0.1731 0.0149

The structural distribution for p and ¢ in community D is normal:

Standard )
Mean Deviation Correlation
-p 0.1902 0.0154 o3
q 0.2357 0.0169
The composite multinomial model can arise without the specialized
structure involving a simpler quantity 6. For i = }, ok let (2, ., fvri)
be multinomial with total frequency n, and quantity (py;, - . . , pro)- Consider

a test of significance for the equality of the multinomial probability vectors:

(Pu: LR 7Prl) == (Plkv' .. 7Prlc)'

First consider the general model that allows different probability vectprs
in the different component multinomials. In each component the locgtlon
quantity can be fitted exactly to the measurement vector; the (ji)th coordinate
for the fitted location vector is v/ T o

Now consider the restricted model having the same probabll‘lt'y vector for
each component multinomial. Points with the same p.robal.:nhty function
should be combined; accordingly the component multinamials §hould be
combined into a single multinomial. Let m; = X, ;;; .let Ps des_lgnate the
corresponding probability; and let n = = n,. The location quantity for the

single combined multinomial can be fitted exactly to the measurement vector;:

the jth coordinate for the fitted location vector is +/ m;. In ordc_zr to compare
this fitted location vector with the vector for the general model it is necessary
to reexpress it in R™: The (ji)th coordinate for the location vector 1s then

: 14
P Z Ty
mi 7 g
\/ni (—-) i
n n

The squared length of the difference vector is
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the corresponding dimension is

r—Dk—(r—1)=(@—1)k—1).

The chi-square value
2
ii n

can be compared with the chi-square distribution on (r — 1)(k — 1) degrees
of freedom and the hypothesis of equal probability vectors assessed
accordingly.

If the component multinomials are in fact binomials, then the angular
transformation mentioned at the end of the preceding section can simplify
the analysis.

6 THE HYPERGEOMETRIC MODEL

Consider a single multinomial model with rk outcome events arranged in
r rows and k columns. The hypergeometric model arises in a test of the
independence of the row and column categories.

Let z;; be the observed frequency for the cell in the jth row and ith column.
The measurement vector has (ji)th coordinate

Y = \/x—j;

For the general model allowing unrestricted probabilities for the cells the
location quantity can be fitted exactly to the measurement vector. The fitted
location vector has (ji)th coordinate -

Yie = N Zj;.

For the restricted model with independence the probability for the (ji)th
cell is p;; = p{*'p{® where p{* is the probability for the event of the jth row
and p'? is the probability for the event of the ith column. With independence
the row totals provide frequencies for the row probabilities, and the column
totals provide frequencies for the column probabilities. The fitted quantity
corresponding to rows is

lz Ty

i)
n

1)
for p(j .

The fitted quantity corresponding to columns is

Z T4
i (2)

for p;”.

S|
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The difference vector corresponding to the withdrawal from general model
to the restricted model has (ji)th coordinate

— mp
- 2

The corresponding chi-square value is

mn,
- (\/x" J n )
This value can be compared with the chi-square distribution on
rk=1= (=) —=(k=1)=(—-DE=-1)

degrees of freedom, and the hypothesis of mdependence can be assessed
accordingly.

NOTES AND REFERENCES

The traditional analysis of frequency data is based on a chi-square measure
proposed by Karl Pearson (1900):

.y (observed frequency — fitted mean)? ‘
- fitted mean

Some detailed discussion concerning the fitted mean and the appropriate .

degrees of freedom may be found in Fisher (1958, 1959) and Rao (1965).

The approximate measurement model in this chapter leads to. a chi-square B

measure having the form

=43 (\/ observed — +/fitted mean)?.

These measures can be related to the Poisson distribution with variable z
and quantity 0. The Karl Pearson measure derives from the approximate
normality of

_z—0

=7

The measure in this chapter derives from the approximate normality of
e* = 2z — \/0)-

The variables e* and z were compared in detail in Chapter Six. The variable

¢* presents the frequency in a location relationship to the quantlty, thisis

E‘ubcﬂtlﬁl in frequency applications in which an increase in the quantity

produces an increase in the frequency. In addition, the variable e* approaches e

nocmality more rapidly over most of its range.
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The chi-square measure in this chapter has additional advantages for morée
complex models: The various chi-square values can be exhibited in an
analysis-of-variance table, and the calculations can be based on the methods
for the simple regression model. The values of the Karl Pearson measure at
various fitted values cannot be compared directly; and the fitted vectors

cannot be compared simultaneously as vectors in a Euclidean space.

The location and normal properties of the square root transformation
were derived for « and 0 large. The typical application involves moderate or
large values, and the normal approximation is, in fact, quite accurate. In
certain applications, however, there may be « arrays that contain one or
more extreme values 2 = 0; for example, the tests of independence in Section
6. The normal approx1mat10n can remain reasonably accurate by using
z + % and 6 + } in place of = and §; for example,

mgn; 1)2
X —42(\/:5” \/ 1 +2 .
The data in Section 4 were given by Carver (1927) and analyzed in the
traditional chi-square manner by Fisher (1958, 1959). The data in Section 5
were given by Rao (1961}, and analyzed in the traditional chi-square manner
by Rao (1965).
The examples in this chapter were analyzed by L. M. Steinberg.

Carver, W. A. (1927), A genetic study of certain chlorophyll deficiencies in maize, Genetics,
12, 415-440.

Fisher, R. A. (1958), Statistical Methods for Research Workers, Oliver and Boyd, Edinburgh.

Fisher, R. A. (1959), Statistical Methods and Scientific Inference, Oliver and Boyd,
Edinburgh.

Pearson, K. (1900), On the criterion that a glven system of deviations from the probable
in the case of a correlated system of variables is such that it can be reasonably supposed
to have arisen from random sampling, Phil. Mag., 1, 157-175.

Rao, C. R. (1961), A study of large sample test criteria through properties of efficient
estimates, Sankhya, A23, 25-40.

Rao, C. R. (1965), Linear Statistical Inference and Its Applications, Wiley, New York.

PROBLEMS

1. Show that the composite multinomial model is obtained if batches of Poisson variables
are conditioned (details in Section 1).

2. Show that the additional conditions applied to the special composite multinomial
produce the hypergeometric model (details in Section 1).

3. A die was tossed 1600 times:
Event 1 2 3 4 5 6
Frequency 301 308 340 214 196 241,
Make a test of significance for the hypothesis that the die is true (symmetrical).
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4. The progeny of a mating were classified by attribute into three groups:
Event E, Ey Ey
Frequency 10 53 46.

According to a model the corresponding probabilities should be:

Event E; Ey Eq

o N o
Probability  p* 2p(1 —p) 1 - py. v
where 0 < p < 1. Test whether the data are in accord with the model. If appropriate,
determine the structural distribution for p. Start: p = 0.1. (Mood and Graybill.)

5. One hundred plants were classified according to two attributes: large L or smalll; white
W or colored w. The frequencies are

W w Totals |
L 40 20 ' 60
! 15 25 A0
Totals 55 ‘ 43 100

Analyze the data with the succession of models:

(i) Independence between the attributes (use marginal probability p; for L and p,
for W; start: p; = 0.1, p, = 0.1).
(i) Equal probabilities (%) for the four cells.

Calculate the analysis-of-variance table; make appropriate tests of significance. (Lindlsy.)

CHAPTER EIGHT

Inference

from Likelihood

Without any structuring relationship between the quantity and the response
there remains, in the case of a continuous response, only the likelihood
function to identify a response value. This chapter considers multiple
observations from such a continuous response. Subject to some regularity
conditions, it is shown that, as the number of observations approaches
infinity, the likelihood function approaches a limiting form that has a single
variable in location relationship to the quantity.

*1 LIKELIHOOD FUNCTION: FAR FROM THE QUANTITY

Consider a continuous response variable z and a quantity 6. Suppose there
is no structuring relationship between the quantity and the response, only a
probability density function f(:6) for the response variable for each value of
the quantity: the classical model of statistics. The probability density function
is with respect to a differential for ; this is made explicit as needed.

The likelihood function from an observed response value was defined in

Section 1, Chapter Four. The alternative form as a log-likelihood function is
convenient for analysis here:

U(zy:0) = R(z) + In f(z,:0).

This chapter is concerned with the shape of the likelihood function, and it
investigates the shape by examining differences for different 8 values:

U(2y:0") — U(zy:0") = In f(,:0") — In f(,:0").

(See Figure 1.) For this it is convenient, in this chapter, to let /(z:0) designate
the logarithm of the density function,

[(z:0) = Inf(x:0),
295
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/ AR \\
Figure 1 The log-likelihood difference from 6’ to 6"

and to be aware that only differences,
I(2:6") — (2:0"), -
represent characteristics of the-proper log-likelihood function for a response

value . . .
In this chapter the likelihood function is examined as a variable, as a

function of the response variable z. For this it is convenient notationally to let |

6° designate the actual value of the quantity, the value thgt determ?nes Fhe
distribution of the variable =, and to let 6 be a free var}able dgs;gnatmg
possible values for the quantity. The likelihood function is examined as a
variable by analyzing differences, such as
d(z:0) = I(z:0) — I(x:0% -~
= Inf(z:0) — Inf(2:6°,
as variables, based on the response variable =. o
Consider multiple observations on the response: 2y, . . . , @,. The likelihood
difference for the-vector response is
d(x:0) = I(x:0) — I(x:6°
= In f(x:0) — In f(x:6°

= 3 (i(w::6) — U(=::67)

d(x;:0).

st
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d(x:6) = I(x:6) — I(x:6°)

sup  d(x:6)

l6=89= 5
/|

90~5 @O\ 6%+ 4

Figure 2 The log-likelihood difference from 6° to 8:d(x : 6). The supremum of the log-
likelihood difference for 6 outside the § neighborhood of 9.

In this section this difference is examined for 8 values outside a small neighbor-
hood of the actual 6°. It is shown under mild conditions that the maximum
value outside a.given small neighborhood goes to' — oo with probability 1 as
n— o0 (see Figure 2). This main result is presented as a theorem in this
section; its proof is based on a succession of lemmas. -

Lemma 1. 1f the distribution f(2:0) is different from the distribution
f(2:6% and if the mean _
E{i(x:0%:06%
is finite, then
E{l(z:0):6°) < E{l(z:6°%:09)
or
E{d(z:0):0°} < 0.

Proof. A real-valued function c(f) of a real variable ¢ is strictly convex if
clat’ + (1 — a)t"y < ac(t’) + (I — a)e(t’)

forallt’,1"and0 <a < 1. A strictly convex function ¢(¢) has a line of support
{(t) at any point ¢": :
() < c(D), ts#t,
Ity = c(t"),
where I(¢) is linear in 1. (See Figure 3.) If ¢ is a variable having a distribution
with mean E{t} = v, then
c(E{r}) < E{c(n)}
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c(t)

it

¥
¢

Figure 3 A strictly convex function c(t). A line of support at 1.

unless ¢ has all probability at » (that is, unless ¢ is a constant). This follows
by letting I(¢) be the line of support at »:
c(E{r)) = I(E{t)) = E{I()} < E{c()}.
Now consider the mean value of the likelihood difference d(z:0) =
[(z:0) — K(z:0%:
E{d(x:0):0°} = E{l(2:0):6°} — E{l(2:0°):6°}
= E{In f(%:6):6°} — E{ln f(=:6") :6°
f(=:0) . po f(=:0) .
- =i e ' < E{f( »7)
<Inl=0.

The succession of steps uses the strict convexity of —In ¢ and the fact that
the integral of f(z:§) over points having f(x: 69 > 0 is less than or equal to
1. This establishes the lemma.

Lemma 2. If the distribution f(x:0) is different from  the distribution -

f(z:6°), and if the mean
E{l(x:0%:6°

is finite, then for a sequence of response observations, %y, %y, . . - ,

Pr{lim> d(z,:0) = —00260} =1

n—ro 1

Proof. The lemma is concerned with the likelihood difference
‘ kd n
I(x:0) — I(x:0°) = 3 (I(z;:0) — U(z,:0) = ; d(z;:0);
1 .

the lemma asserts that with probability 1 the limit is — oo as n — 0.
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By Lemma 1 the mean value of d(xz:0) satisfies
E{d(z:0):0°} = ¢ < 0.
Then, by the strong law of large numbers,

> d(=;:6)
Prilim? =e:0") = 1.

n

Hence
Pr {umz d(w;:6) = —00:60} -
n—rw 1
and the lemma is established.

Corollary. If E{d(z):6° < O for some d(z), then

Pr{limi d(z;) = ——00:00} = 1.

n—+o 1

Now consider several f values, 62, . . . , 6" and suppose that the distribution
of x for each of these values is’ dlfferent from the distribution f(z: 6%). The
following lemma asserts that the maximum likelihood difference to these
values goes to — oo with probability 1 as n — co. -

Lemma 3. 1If the distributions S0, ..., f(x:6") are different from
the distribution f(z:6°), and if the mean
E{l(z:6°:6%
is finite, then for a sequence of response observations zy, #, . . .

Pr hmmaxzd(x 6%) = —oo: 9° _1

n—*roo a=1 1

Proof. Consider a sequence s,(c) of real numbers for each o = 1,...,A
If

lims,(«) = —0
n—+w
for each «, then
h
lim max s,(e) = —o0;
n—row a=1

and conversely.
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Consider events 4, . . . , 4, and suppose Pr {4,} = 1 for each «. Then the
probability that all the events 4, occur is equal to 1:

Pr{o Aa} =1 Pr{L‘zJ A‘a}

3 _ 3
>1-3Pr{d}=1-230

a=1
= 1,

where 4, designates the nonoccurrence of 4,.
Let A, be the event:

lim id(xizf}“) = —o00.

n-ra 1
The results in the preceding paragraphs then establish the lemma.
‘ Corollary. If E{d(z):6 < O for d*(), ... . , d"(z), then

h n
Pr{ lim max 3 d%(w,) = ._oo;eﬂ} =1

n—om a=1 1

The main theorem is concerned with the maximum likelihood difference
to 6 values outside a neighborhood of 6°. This needs continuity so that what

" happens at a % value controls what happens for 6 values near 6. It also needs 3
some sort of uniformity so that a finite number of 6 values controls what **

happens for all the values outside a neighborhood of 60..

Now suppose that the range for the quantity 6 is Euclidean space Rk'. Th'e
assumptions needed for the main theorem can be expressgd more eaijly if
the point-at-infinity co is added to RF. Let d(¢', 6") designate Euclidean
distance in R*, let .

B,(6) ={6: d6,0) <p} "

designate the ball of radius p about ¢, and let
‘ B,(w) = {6: d(9,0)> 1/p}

designate a ball about o (fhe region outside the sphere of radius 1/p). The "

balls B,(8) are neighborhoods for the points in R* U {co}.

Assumption 1. f(x:0) is a continuous functionf of 6 in REU {0}

For each 6 5 6°, the distribution f(=:6) is different from the distribution

T The function f(z:c0) is taken to be the limiting function lim f(z:0) -as implied by
continuity. 0
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f(x:0%. Forf each 6" in R* U {0} there is a neighborhood B,(6") such that

sup [(x:0) < M(z:0);
0in B,(6")

the mean values
' E{M(z:6%):6%, E{l(x:6:6:
are finite.

Lemma 4. 1f f (x:0) satisfies Assumption 1, then

lim E{ sup l(x:@):@"} = E{l(z:0"):6°}.

p=0  8inB,(6e)
Proof. By the continuity part of Assumption 1, it follows that

lim sup [(z:0) = I(x:0").

0 ﬂinBP(G')
The function
sup I(z:0)

9inB,@")

is monotone decreasing as p — 0: For p small enough it is bounded above by
the function M(z:6"), which has finite mean value. It follows, by the mono-
tone convergence theorem for integrals, that the limit operation with respect
to p can be carried outside the integral sign:

E{lim sup l(w:ﬂ):B“}élim E{ sup l(x:0):00} R

p—0 9in B,(6') p—0 l6inB,6)
This establishes the lemma.

Theorem 5. 1f the classical model f (z:0) satisfies Assumption 1, then
Pr{lim sup > d(z;:0) = —00:66} = 1.
n—w a6,0"=5 1
Proof. For each value 6’ different from 0° there is, by Lemumas 4 and 1, a
neighborhood B,(6") such that
E{ sup l(m:G):G“} < E{l(z:6%:6°}.
81in B,(6"

T This part of Assumption 1 can be replaced by the simpler but stronger condition that
|2l(z:6)/90] < M (=) (all 6) with E{M (x):6° finite. .

i R
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Consider the region of 6 values in R* U {co} having d(6, 6°) > &: each ¢’

value in this region has a neighborhood B,(6") for which the preceding - . |
inequality holds. By the Heine-Borel theorem a finite number of these =~ . -

neighborhoods can be found that cover the region. Let the corresponding 6

values be 6, ...,6" (one of these is 6 = c0). Then by the corollary of

Lemma 3, with
d(z) = sup K=:0) — 1(z:6°),
0in B, (6%
it follows that

Pr {lim m};xi ( sup l(w,-:AB) - l(:ci:6°)) = »—00:6"} =1.

An=w e=1 i=1 6in B,i6%)

The theorem is then established by noting that

maxi ( sup I(z;:0) — l(xi:BO)) 2d(‘sup i (i(z:0) — 1(z;:0%).

« i=1 \0in B,le") 0,6°)>6 i=1

Under the mild conditions of Assumption 1, the theorem asserts that for a
sequence of response observations z,, , . . . the maximum likelihood (as a
difference relative to 6°) outside a neighborhood of the actual 6° goes to — oo
with probability 1. '

2 LIKELIHOOD FUNCTION: NEAR THE QUANTITY

Now consider the form of the likelihood function near the (j'uantity, ina
small neighborhood of the actual 6°. With multiple observations @y, . .. , ¥,
on the response, the likelihood difference from 6° to a general value 6 is

d(x:0) = l(x:ﬁ)b — I{x:6%
= In f(x:6) — In f(x:6°)

- i (I(::6) — 1z,:0%) =§ d(z::0).

This likelihood difference is examined in this section for 6 in a small
neighborhood of §°; and it is examined as a variable, based on the multiple
response variable x. It is shown that as n — <o the limiting form is quadratic,
with a single variable in location relationship to the quantity. The analysis is
given in Section 2.1 for the notationally easy case of a real quantity 6; the
analogous results for a vector quantity are summarized at the end of
Section 2.2.

§2 Likelihood Function: Near the Quantity 303

2.1 A Real-Valued Quantity 6. Consider first the slope of the Iikelihod'd
function at the actual value 6°. Let

19(z:0) = 535 I(z:0) = 537; In f(2:6), i

2 2 7,
l(ll)(x:ﬂ) - %" l(x@) = 586—-2]1—1""(1;0)7 13

W) = O fp
FH(x:0) aef(%-e),

(11) z:0) = _8_2_ 2
FO0@:0) = 2 f(a:6).

The following assumptions are convenient.
Assumption 2. In a neighborhood of 6°,
| fo(@:0)] < M, (2)
and M,(x) and ) (x:6°) are integrable.

Assumption 3. The likelihood derivatives I‘V(z:8), IV(x:6 ist 1
neighborhood of §° and 0 0 mnEE

E{]0D(z:0%:6%
is finite-valued.
Lemma 6 establishes mean value properties of the likelihood derivatives:

thLemma 6. If the classical model f(z:0) satisfies Assumptions 2 and 3, '
en

E{I0(2:6%:0% = 0, ,
E{—100(=:60): 69 = j(6%) = var {I")(z:09): 60

.Proof. The density function f(x:60) can be expanded in a Taylor series ‘ e
with respect to § at 6°: |

f(z:0) = f(%:0° + (8 — 6°)f M (2:6% + 6= ;'60)2f(m(z:6*), oy

w?ere |6* — 6°] < |6 — 6°]. By Assumption 2 it follows that f(x:0) and
fe )A(:c: )] are bO}mded by integrable functions for f in a neighborhood of 8°.
This permits differentiation with respect to 0 to be carried through the
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integral sign:

Jf(x:@) dz =1,
ff‘”(x:@) dz =0,

f FU0(z:0) do = 0

(t_hc‘diﬁ"erential dz can be a Euclidean differential, or it can be a general
differential). By Assumption 3 the integrands can be rearranged:.

ffm(x:@) iz =f1(1’(x:9)f(x:6) dz =0,

j FU(:6) dr = f (1 (2:6)f(2:6) + 1(2:0) fV(a:0)) dz = 0.

At 6° this gives '
E{I"(z:6%:6°% = 0,

E{— 100 (2 69): 00} = E{(IV(:09)2:6°%,

which establishes the lemma. The mean-vame characteristic of the likelihood -

slope at 6°, .
E{(I(%:0%)?:6° = var {10z 6%:0% = j(69),

is called the Fisher information at 8°. ' .
For a sequence of response observations zy, g, ... , the second lemma in

this section (Lemma 7) establishes some distribution properties of the likeli- -

hood derivative at 89, For the vector X = (%, . . . , ,,)’ the logarithm of the
density function is ’

Ix:0) = X l(=:0),
1
and derivatives are

1V(x:0) = 3 1(x;:0),
B 1

1 (x:0) = 3 119(z:6).
1
At % the properties of mean and variance of independent variables give.
E{I0(x:09):0% = nE{IM)(x:6°:0,
var {/((x:6%):0% = n var {I*(x:6%):6%.
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Lemma 7. If E{I'(%:69:6°}, var {I")(z:6%:60) exist and if
‘ E{IM(z:6°:6°) = 0,
then the distribution of
19(x: 6% 3 196
Jno o n

approaches the normal distribution with mean 0 and variance j(6°) as n —co.
If j(6°) > 0, then the distribution of

n

l(l)(XZGO) ; 1(1)(xi:00)
NN G)

approaches the normal distribution with mean 0 and variance 1 /j(G").

Proof. A direct application of the central limit theorem.

Now consider the form of the likelihood function near 8° as the number n
of response observations becomes large. Suppose the model f(x:6) satisfies

Assumptions 2 and 4 (Assumption 4 is a needed stronger version of
Assumption 3);

Assumption 4. In a neighborhood of 6°, -

(199 (z:60)| < My(),
and

E{I(:6%: 6%, (0 (: 0% : 6% |
E(I(:600):60 5 0,  E{M,():6° = —q(6°)

are finite-valued.

The likelihood difference near 6° can be expanded in a Taylor series
(Assumption 4): o '

I(x:6) — I(x:6%

02 013
= (0 — )V (x:6) + (9—“—;-'@- 1 (x:60) + (-0:3-'91 RM,(x),
where . ’

My(x) = z My(z)

and |R| < 1; the expansion replaces a continuum of functions of x indexed
by § (on the left side) by effectively three functions of x (on the right side).
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With Lemma 6 the strong law of large numbers gives

Pr {Hmw - —j(e°):e°} —1,

n— w0 n

Pr{lim My(x) _ ——q(@o):Bo} =1
n—co N
The convérgencc theorem for orthogonal variables gives

. po
l(l)(lx.e ) — 0160} =1
nte

Pr { lim
for any e > 0. These probability limits suggest a rearrangement of the
expression for the likelihood difference near 6°. Let

0 o—6° .

V(x:0) = — (I“”(x:@ ) + RMg(x)) ;

. then ) Vo)
L V(x:

1(x:0) — 1x:0°) = (6 — 6)1V(xc:8%) — (6 — 0% ===

l(l)(x:eﬂ))Z N -1- (l(l)(x:eﬂ))2

_%V(xtﬁ)(e“e - V(x:0) 2 V(x:60)

( ' Dy 00/ /2

!

2 n V(x:0)/n
RGN '
2 V(x:0)/n
Consider the likelihood difference about 6° in units of leagth n—*%:
6= 6%+ %

The likelihood difference is
I(x:6° + 7n%) — 1(x:6%) .
Lyeee) (i) )) i) - ( 1),
=_5. n 3(7 W(V(X:B)/n + 2 v Vix:0)/n
where
_1Px:6°
MNCTON

Preceding results derived from the strong law of large numbers give

r{limw =j(6°):6°} —1,
n—c n
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and hence

Pr{lim Yo On 1:6"} =1
n-roo 1(6)

By Lemma 7, the variable w has a limiting normal distribution with mean 0
“and variance 1/j(6%). It follows then that with probability 1 the limiting form
of the likelihood difference for bounded = is

lim (I(x:0° + 7n™) — I(x:6%) = — ]‘(““2) (w—)° + J(“’.Z) v

The limiting form involves a single variable w having a limiting normal
distribution with mean 0 and variance 1/7(69).

Now consider. the likelihood difference elsewhere in the neighborhood
(6° — 4, 6° 4 8) of 6° For this choose & small enough that Assumption 4
will hold in the interval (§° — §, 0 -+ 6) and small enough that

J(8%) — ﬁ 19(6%)] > ,

where V' is a pOSitiVC number. Let
—Lg+
0 = 90+ TH ™ 7* 6,

where 7| < d and 0 < e < 4. The likelihood difference is -

I(x:6° + Tn—-‘/z'+s) _ I(XZGO) — Tn—‘/é-i-el(l)(x:eo) — Pyl V(x:0)

2
2€(72 Vix:6) T l‘”(x:a"))
T T T e )
2 n n pMite

With probability 1 the expression in parentheses is greater than +2¥/2 for all
¢ in the range 0 < ¢; < € < 1. Then with probability 1 the maximum likeli-
hood difference for e in the range 0 < ¢, <€ < % has limit — co. This holds
for all €,(0 < ¢, < 3). .

The maximum likelihood difference outside a neighborhood (6° — ¢,
6° + 6), by. Assumption 1 and Theorem 5 (preceding section), goes to — oo
with probability 1.

Hence; the limiting form of the likelihood difference relative to the actual 6° is

_ i)
2

in terms of = given by 6 = 0° + wn=*, and is — co otherwise, the variable w
has a limiting normal distribution with mean 0 and variance 1 [7(6°) (see Figure 4).

(w—7)? -1~j(—zo—)w2
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8%, o 69 o
(e
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2 w
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Y T

r
90 \Y 80 + =%

Figure 4. The limiting form of the likelihood difference relative to the actual 0,

The likelihood function has a maximum at 7 = w. If the likelihood differ-

. ence is taken with respect to the maximum likelihood, the limiting form of the
likelihood function becomes

1G i(6°) e F{CI WS (G I D (C1) Y
—L(z_)(W“T)“rj_z“W —{— 7 O W} ;=

(see Figure 5). : . o . ' '
The limiting form of the likelihood function involves a single variable w;

the variable w has a limiting normal distribution with variance 1/j(6°); the

d

£ =N
)

(g0
_J(;)(T__w)z

Figure5. The limiting form of the likelihood difference taken with respect to the maximum o f

likelihood (at = = w). .
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limiting form of the likelihood function is the likelihood function of w as a
hormal variable with location quantity 7; the actual value for the quantity =
is 7 = 0 (note that the actual value for the quantity was chosen as the origin
for the present analysis). :

*2.2 A Vector-Valued Quantity 6. Consider now a vector-valued quantity
0 =(6,...,6); and let 6° = (67, ..., 09) designate the actual value of
the quantity, the value that determines the distribution of the response
variable x.

Derivatives of the likelihood function can be taken with respect to the
different coordinates of 6:

9 15:0) = 19(2:6) = 2 In f(x:
I(z:8) = 1YV(x:6) aeilnf( :0),

29,
1P(x:0) = (I(2:9), . . ., ['(x:0)),
62 a2
[(z:0) = 19(2:0) = In f(x:8),
30,00, 8 = 17(@:0) = 2 In f(2:0)
5%jf<w:e) = 19(z:0),
C f(%:0) = 97 (2:0).
29,00,

Assumptions 2, 3, and 4 can be generalized by replacing a first derivative by
edch of the first-order derivatives in turn; by replacing a second derivative by
each of the second-order derivatives in turn; by replacing a third derivative
by each of the third-order derivatives in turn; and by replacing

E{I (:09:6°% £ 0
by the nonsingularity of the matrix
[A0(z:09) ... [ak)(z: Q)
E( |- . 160
[ED(2:09) - .. JER) (5 0)
For a vector-valued quantity 8, Lemma 6 becomes the following:

Lemma 8. 1f the classical model f(=:8) satisfies the generalized Assump-
tions 2, and 3, then
E{1P(%:0%:6% = 0,
E{1P(2:0%1'D(x:6°):6° = J(6°),
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where
jn(ﬂ") ' jlk(eo)
J(O) =] - . ,
jkl(eo) ) jkk(e(.))

7,(80) = E{—19 (:6%):0% = cov {I(:8°), [V (:6°): 8°}.

Proof. A direct extension of the proof of Lemma 6. The mean-value
characteristic of the likelihood gradient (1°(=:0)) at 6°,

J(8°) = cov {I’(z:6°),17(:6%):0%,
is called the Fisher information matrix at 8°.

For a sequence of response observations Z;, ¥, . . .

the likelihood
‘derivatives are additive: ’

I(x:0) = > 1(x;:9),
1
19(x:0) = X 1(=;:90),
. 1
169(x:8) = 3 197(,:6).
i
At 0° the properties of mean and variance for indepgndent variables give
' E{IP(x:6%): 0% = nEQP(2:8%:0%,
cov {IP(x:8°), 1P(x:8%):8°% = n cov {1P(z:0°), 1°(z: 6%):6°}.

For the vector-valued quantity 8, Lemma 7 becomes,

Lemma 9. If the mean and variance of 1P(z: 6% exist at 8°, and if

E{12(:09):69) = 0, then the distribution of

' S 1P(z,:0°
Py _ 2t )
Jn Jn
approaches the multivariate normal distribution with mean 0 and covariance

matrix J (8°). If J(8%) is nonsingular, then the distributio‘n ‘of

L 10 .o_ﬂ__l_—lo"D‘:eo_
w=ﬁJ (e)lD(x.e)-.\/EJ () 3 170"

i
i
1

|

t
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gpproaches the multivariate normal distribution with mean 0 and covariance
matrix J1(69).

Proof. A direct application of the central limit theorem for vector

variables.

Now consider the form of the likelihood function near 6° as the number n
of response observations becomes large. Suppose the model f(x:8) satisfies
the generalized Assumptions 2 and 4. The likelihood difference near 8° can be
expanded in a Taylor series and rearranged following the pattern for a real
quantity. .

The limiting form of the likelihood difference relative to the actual 8° is

—3w — )T (O (w — 1) + 3w J(0%)w
in terms of 8 = 8° + tn*, and is — oo otherwise. The variable w,

___i_ —1r0N\1.D Q0
w—-ﬁj (09)1(x 6%,

has a limiting multivariate normal distribution with means equal to zero and
covariance matrix J~1(0°).

The likelihood function has a maximum at v = w. If the likelihood
difference is taken with respect to the maximum likelihood, then the limiting
form of the likelihood function becomes -

—3(w — DVJ(O)(W — 7) + W (8)wW — [—10 + fw'I(8)w]
o ’ = —§(w — 1) J(0%)(w — 7).
See Figure 6. :

The limiting form of the likelihood function involves a single variable w;
the variable w has a limiting normal distribution with covariance matrix
J-1(8°); the limiting form of the likelihood function is that of w as a normal
variable with location quantity ©; the actual value for the quantity Tis T = 0

(note that the actual value for the quantity was chosen as the origin for the
present description). )

3 LIKELIHOOD INFERENCE: LARGE SAMPLE

Consider a continuous response variable # and a quantity 6. Suppose there
is no structuring relationship between the quantity 6 and the response
z—just a-classical model f(x:0) satisfying Assumptions 1,2, and 4. Consider
a large number n of response observations =, . .. , Z,.

Within the classical model a multiple response vector (zy, ..., %,) has
only its likelihood function to identify it. By the results in the preceding
section, for sufficiently large n the likelihood function has normal quadratic

i
i
i
B
C
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d

0

[¢] T .
(6:°,02%) 8= 620 + Ton~%
T=w Lt —wy (%) (7 ~w)

Figure 6. The limiting form of the likelihood différence takex} re‘lati\./e to Fhe maxn:num
likelihood; w is a variable with limiting multivariate normal distribution with covariance
matrix J-1(8%); the location quantity for w is © and T has actual value 0 (but only because
the actual value was chosen as the origin in the analysis).

form in the neighborhood of the actual value and approximates — oo else-

~ where. In the neighborhood of a value 6* near the actual value the likelihood

depends on the single variable w:
. — [V(x:0%)
nje*)

The variable w has a limiting normal distribution with location quantityf =,

W =

r=<n— 6%, >

and variance 1/j(6%); the limiting likelihood function is the likelihood

function for the normal variable w. _ L )
A change in the, quantity 6 produces a change in the hkehh.ood funcgf)n

I(2:0) at various response values z. This produces a decrease in probablht.y

for some values and an increase for other values. For 2 large sample this

produces a loss of certain response observations and a gain of other response

observations, and thereby produces a change in w. The large samplé model

i — V(6 — 6%
+If 6 = 6° designates the actual value for the quantity 0, then 7 = 0= V(6 — 0%)
designates the actual value of the location quantity . The details of the change of reference
point from 6° to an adjacent 6* are examined in Problem 3.
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can then be approximated by the simple measurement model:
e,
w=rT -+ e,
The model has an error variable e with a normal distribution with mean 0 and

variance 1/j(0%); and it has a structural equation in which a realized value
Jrom the error distribution provides the link between the observed value of w,

. pE

w7 i
nj(6*)

and the unknown value of =,

= /n(0 — 6%).

This measurement model with reference value 6* is applicable for 6* close
to the true 6° (within the range for the approximations in Section 2.1).

For convenience, the measurement model can be expressed directly in
terms of the quantity 6. A change of scale by the factor n*¢ gives

.
Jn’
I00:0%) _ g gy o
mey Ot

(Note that the denominator #j(6*) is the variance of the likelihood derivative
for the multiple response calculated at 6*:

nj(0*) = var {{V(x:6%):0%} = var {3 I (x,:6%):0%};

it is the Fisher information at 0* for the multiple response x.)
Now consider the analysis of a multiple-response vector (z, ..., ,).
General familiarity with the application may suggest 'an initial reference

-value 6. The limiting likelihood function appropriate to the reference value

6 may indicate that the maximum likelihood value is elsewhere; the
indicated position from the limiting likelihood is at the 8 value given by

9 0(0) _ Z“)(Xlﬁ(m)
CIGON
Designate this value of 8 by

o — glo + l_“_)_(X?@(m).
nj(6)
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A similar analysis at the reference value 6 may indicate that the maximum
is again elsewhere:
l(l)(x:e(l))

(2 . gt
T e

Typically, seQeral iterations lead to a reference value 6* located a.PprCin'
mately at the maximum of the likelihood function. The approximating

measurement model is then

£
Jn
1M(x:6%) = (0 — 6% + L
nj(0%) Jn
Analysis of the simple measurement model is given in Chgpter One. Tests of
significance concerning a § value can be made by calculating the correspond-

ing error value and comparing it with the error distribution. The structural
distribution for the quantity 6 is normal with variance 1/rj(6*) and located at

* M
nj(0*) -
(If 6* is the exact maximum, then IW(x:0%) = 0 and the distribution is

" located at 6*.) _ '

The corresponding results for a vector quantity 6 can be sl?.te_d briefly.
Let f(2:0) be a classical model satisfying the generalized As§umpt10ns 1,2,
and 4. Consider a multiple response vector (%, ..., %,) with » l‘arge. For
a value 8* near the actual 6° the large sample model can be approximated by

the simple measurement model:
e,
w=1++e

The model has an error variable e with a multivariate normal distribution with

mean 0 and covariance matrix J-(8%); and it has a structural equation in which

a realized value from the error distribution provides the link between the

observed value of w,
~1/n%
W = \/ﬁwll’(xze*),
n

and the unknown value of

= Jn(® — 6%).
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The measurement model can be expressed directly in terms of the quantity
6: '

L
N
J7(6%) 12(x:0%) = (8 — 6%) + —
n . \/n

(note that the matrix multiplying the likelihood gradient vector is the inverse
of the Fisher information matrix,

nJ(0%) = E{IP(x:0%)1'2(x:0%):0%) = E i 12(2,:0%)1 D ,: 0%): 0%,

for the multiple response x).

Now consider the analysis of a response vector (z,, . . . , x,). The approxi-
mating model at a reference value 6 may indicate that the maximum like-
lihood value is elsewhere:

8 — g 4 G0 1P(x:6),
n

The model at 8% may indicate that the maximum is elsewhere:

0% — g 4 J7He) 1P(x:0').
n -
Typically, a reference value 8* near the maximum point for the likelihood
may be obtained in several iterations.
Tests of significance can be made by using the approximating measurement

model. The structural distribution for 8 is multivariate normal with covariance
matrix (nJ(8*)) and located at

8% + (nJ(0%))UP(x:6%).

NOTES AND REFERENCES

The likelihood function was promoted and developed by R. A. Fisher;
see Notes and References, Chapter Four. The proof in Section 1 that the
likelihood, outside a neighborhood of the actual value of the quantity, goes
to — oo with increasing sample size is derived from Wald (1949).

The limiting normality of the location of maximum likelihood was
presented by Fisher (1922) and given heuristic proof in his subsequent papers.
It has been widely examined in the literature. .

The limiting quadratic form of the likelihood function has received general
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recognition and is implicit in Fisher’s treatment of likelihood, but it has
apparently had no direct examination in the literature.

The strong law of large numbers and the convergence theorem for
orthogonal variables may be found in Loéve (1960). .

The iterative procedure in Section 3 is based directly on the limiting
likelihood function appropriate to the reference point being examined. It was
proposed on other grounds by Fisher (e.g., 1956).

Fisher, R. A. (1922), On the mathematical foundations of theoretical statistics, Phil. Trans.
Roy. Soc. London, A222, 309-368; also as Paper 10 in Fisher (1950).

Fisher, R. A. (1950), Contributions to Mathematical Statistics, Wiley, New York.

Fisher, R. A. (1956), Statistical Methods and Scientific Inference, Oliver and Boyd, London.

Fraser, D. A. S. (1964a), Local conditional sufficiency, J. Roy. Statist. Soc., B26, 52-62.

Fraser, D. A. S. (1964b), On local inference and information, J. Roy. Statist. Soc., B26,
253-260.

Loéve, M. (1960), Probability Theory, Van Nostrand, Princeton.

Wald, A.(1949), Note on the consistency of the maximum likelihood estimate, Ann Matlz
Statistics, 20, 595-600.

PROBLEMS

*1. Prove Lemma 8§ in Section 2.2.
*2. Suppose the classical model f(x:8) satisfies the generalized Assumptions 2 and 4 in
Section 2.2. In the pattern followed for a real quantity, derive the limiting form of the
likelihood function for bounded =,

0 = 8° + Y4,
where 89 designates the actual value of the quantnty

*3, Conslder the change from 69 as reference point to 6* as reference pomt (Section 3).
Let

0% = 6% + on~%,;
then
T* = 1 — J. ]
Let b
_ID(x:6%)
Vaje*)
Show that
=w—20+ry,
where

Pr { limr, = 0:00} =1.

—r Q

Then show that the limiting form of the likelihood function is

'-J‘(Pi*—) (W* — 7.*)2 +j(%i) w*z.
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- and show that w* has a limiting normal distribution with location quantity r* and '

variance 1/j(0*); the actual value for +* is —4.
4. Consider the simple measurement model
@) de,
z=0+e.
The corresponding classical model for the response variable = is
f(z — 6) d.

And the corresponding model for a multiple response is

T1/G: — O I de.

Simplify Assumptions 1, 2, and 4 and express them in terms of properties of the error
density.

5 (Continuation). Show that the likelihood function from x in the full model

, R [T flw; — 0 TT dx;
is the same as the likelihood function from = 8(x) in the conditional model.

6 (Continuation). Show that the location 8(x) of maximum likelihood is a location variable.
Show that the conditional model for f(x) given the orbit is

&) TT 6 +d; — 6)db.

7 (Continuation). Under Assumptions 1, 2 and 4 show that with probability 1 the limiting
conditional distribution of V'n (6(x) — 6% is normal with mean 0 and variance 1/](6")_
Thus the conditional analysis, given orbit, applied to the classical location model agrees
in large samples with the likelihood analysis in Sections 2 and 3 (Fraser, 1964a,b.)



CHAPTER NINE

Precision

and Information

The simple measurement model in Chapter One describes multiple measure-
" ments on a real-valued quantity 6; the error distribution of the measuring
instrument is known. .

If the error probability distribution in the reduced model is broad and
diffuse, the measurements on & can be called imprecise. Alternatively, if the
error probability distribution is narrow and concentrated, the measurements
can be called precise. This chapter examines the concept of precision for
measurement models, for structural models, and for classical models with
large-sample likelihood inference.

The simple measurement model produces a structural probability distribu--

tion for the quantity 6. A large value of the structural density function at a
certain value for 8 is information in favor of that value or information for
that value. A small value of the structural density at a value for 8 is informa-
tion against that value. This chapter also examines the concept of information
for measurement models and for structural models.

1 PRECISION: WITH A REAL-VALUED QUANTITY

Consider the simple measurement model but in a slightly generalized form.
Let z, be a first measurement on § with corresponding error distribution
filen) dey, . .., and let 2, be an nth measurement on 6 with corresponding
error distribution f;,(e,) de,. The composite model,

H.fi(ei) Hdei,
x = [0, lle,

is a structural model. .
Let r(x) be a location variable and d(x) be the reference point; the

318
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reduced model is |
' k@) ITT £ + d.(x) dr,
r(x)=0+r.

The case of normal error again leads to special simplicities: the conditional
error distribution is the same on each orbit; and the conditional error distribu-

tion is normal but more concentrated. Let the ith error variable be normal
with known variance o2:

fie;) de; = :/—;1—-— exp {—— l—ej} de,.

2
2 [ 26:‘

The conditional error distribution is

Z

el () 3 (g

This distribution for the reduced model has normal form; its variance is
0%, where

1_s1,
% o’
but its location depends on the choice of reference point. A conVenient
reference point is the center of the conditional distribution; this requires

d,
2-=0
7
and leads to
2 2
r(x) — z(%/U;) — z z _(_’5
2 (1)s3) o}
(tl?e cdgrdinates are weighted in proportion to reciprocal variances). With
this choice for the location variable, the conditional distribution becomes
. .
g(r:d) dr = kexp {— %L} dr

ok

= —_—.];————exp{.. 112_.} dr-
\/ZﬂO'R 20’% ’

this distribution is the same on each orbit; and it is normal with mean zero
and variance o%,

a;

=M=
™~

|
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The reduced measurement model is

r,
Zx =0 4,

where r designates a normal variable with mean 0 and variance o%.
- Thus, with normal error components, the error variable in the reduced

model is also normal; and the reciprocal variance for the error in the reduced .

model is the sum of the reciprocal variances for the components:

I
=M
—-

A small reciprocal variance gives a diffuse distribution and implies imprecise
measurement. A large reciprocal variance gives a concentrated distribution

. and implies precise measurement. .

For a normal error distribution the preczston is defined to be the reciprocal
variance.

Let jp be the precision in the reduced model and j; be the precision of the
ith error component:

Then, with normal error components in the measurement model, the error in-.
the reduced model is also normal and its precision is the sum of the component

precisions:
Je=h+t Tt
Now consider a séquence of response variables z;,..., %, with corre-
sponding classical models fi(z,:6), . . . , f,(,:6) involving a real quantity 6.

Suppose that some generalized assumptions are fulfilled that cover the -

extensiont of ‘the limiting-likelihood results to variables with differing
distributions. Then, as the number of response variables approaches infinity,
the likelihood function approaches normal quadratic form and the model
adrmits approximation by the simple measurement model

r,
(1) . A%
0

T The central limit theorem and the law of large numbers have extensions for differently
distributed variables; the details for the generalized assumptions are not of importance here.
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where r designates a normal variable with mean 0 and precision Z Ji(6 )
where

19,2 60%) = 5% 1(2,:6%) = %m £z 0%),
7{0%)

If

var {I¥(z,:0%):6%}
= E{— 1" (;:0%):6%},
and where 6* is in a small neighborhood of the actual £°.

Thus the error in the approximating model is normal and its precision
Jr(0%) is the sum of components j,(8%), .. . , j,(B*), one from each of the com-
ponent variables. The approximating model is as if each component Variable
x; were a measurement variable with normal error and with precision j(6%).

For a classical model f(x:0) satisfying Assumptions 1, 2, and 4 in Chapter
Eight, the precision at the value 0 is defined to be the vuriance of the likelihood

. derivative:

J(0) = var {{M)(x:6):6}.

When independent variables involving the same quantity 6 are combined,
the precisions are added to obtain the precision of the composite variable.
The precision for a large number of variables is equal to the precision of the
approximating normal measureinent model. For a small number of variables,
specifically measurement variables, the conditional error distribution depends
typically on the orbit; the concept of precision is inadequate. A concept of
information in Section 3 is then needed to give a general description of the

_measurement process.

2 PRECISION: WITH A VECTOR-VALUED QUANTITY

Consider the simple measurement model extended to cover a vector
quantity 8 = (6, ..., 6,)". For an ith measurement let

filer, -« -, ey) dey; - - - dey; = fi(e;) de;
be the error distribution, and let x, = 0 + e,

i 6, €y

T || e €ri
be the structural equation; the group is the location group on R*:

G={[al]l: —w<a < o}
where

[a,I]x =a + x.
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The multiple model for n measurements is
H fi{e) H de;, )
(X1, LI ,X.") = [6’ I](ela L aen); .

thisis a slightly gehcralized form of the simple compasite—measztremeﬁt model

in Problem 8, Chapter Four. ‘
Let £(%y, . . . , X,,) be a location variable:

ria+ x5, ... ,a+x,,)=a+r(x1,...,xn),
andletd,,..., d,, be the corresponding deviations:
‘ 4(Xyy - v -0 Xp) =X — r(Xy, - - X
The reduced model is .
k(d,, ..., d,) 11/ + 4y dr,
(X, ..., X,) =60 +r

The X, E notation would be simpler, but it is more convenient here to have

separate designations for the individual measurements. "
Consider the case of normal error. Let e; be multivariate normal wit

known inverse covariance matrix J;:

v
fie de, = (-‘2-1—%7 exp {—heil e} de.
yr

The conditional error distribution is

g(r:dy, ..., d,)dr=Kkexp{—} 3 (r 4+ d) T+ d)}dr
= k" exp {——%r' >Jr—rx g J,d\dr.
= v

This reduced-model distribution is also multivariate normal; its inverse
covariance matrix is

‘IR=zJia .
1

but its location depends on the choice of reference point. A con\'/ement
reference point is the center of the conditional distribution; this requires

>Jd; =0
and leads to _

r(xb L] xn) = ‘II—ZI Z‘Iz‘xi

1
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(the coordinates are weighted in proportion to inverse covariance matrices).
With this choice for the location variable, the conditional distribution
becomes
121
. al”
g(r:d,...,d,)dr = (2_”)“2

this distribution is the same on each orbit; and it is multivariate normal with
mean O and inverse covariance matrix

exp {—3r'Jpr} dr;

n
Jp = gJi.
The reduced measurement model is
r!

JE 2 Jx, =8+,
1

where the error r is multivariate normal with inverse covariance matrix
Jp=2J,

For a normal error distribution the precision is defined to be the inverse
covariance matrix.

The precision for the ith component is J;; the precision for the reduced
model is Jp:

JR=ZJ1'~
1

Thus, with normal error components, the reduced model has normal error and
its precision is the sum of the component precisions.

Now consider a sequence of response variables z, ..., %, with corre-
sponding classical models fi(x;:0),...,f,(x,:0) involving the vector
quantity 8. Suppose that generalized assumptions are fulfilled that ensure the
limiting-normal likelihood function and the approximation by the simple
measurement model: - :

r,
(S T(6) ™ 3 1P(@,:0%) = (8 — 6%) + 1,

where r designates a multivariate normal variable with mean 0 and precision
Jr(0%) = 2 J,(8%), where

9 0
17(x;:0%) = 20 I, 0%) = a—elnfi(zi:e*)’
J{(8%) = E{1P(x;:0%)1'D(x,:0%):0%},

and where 8% is in a sma.lbl neighborhood of the actual 6°.
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Thus the error in the approximating model is normal, and its precision
Jg(8%) is the sum of the components J,(8%), .. ., J,(8%). The approximating
model is as if each component variable z; were a measurement variable with
normal error and precision J,(8%).

For a classical model satisfying generalized Assumptions 1, 2, and 4 in

Chapter Eight, the precision matrix at the value 8 is

J(8) = E{1°(z:0)I'D(z:0):0};

an alternative expression involving second derivatives is given in Section 2,

Chapter Eight.

When independent variables involving a quantlty 0 are combmed the
precision matrices are added to obtain the precision matrix for the composite
variable. For a large number of variables the precision is the precision of
the approximating normal measurement model.

-3 INFORMATION: THE SIMPLE MEASUREMENT MODEL

Consider the simple measurement model
T1 fled 11 des,
x=01+ce,
" and the corresponding reduced model

k(a(x) Hf(r + dy(x)) dr,
r(x) = 6‘+ r.

With various error distributions and with various observed orbits, a
broad range of conditional error distributions is possible. The concept of
precision is useful with normal errors or with a large number of error com-
ponents; for other cases the more general concept of information is needed to
effectively assess measurements and the measurement process.

The structural probability element for 6 given the measurement vector X is -

g*(0:x) df = k(d(x)) TT f(z; — 6) db;
this probability element gives the probability that the quantity is in a neigh-
borhood df of 6. The level of this probability can be described conveniently
in logarithmic units: the information for the value O given the measurement
vector X is

I(x, 0) = In g*(8:x) = In (k{dx)) T] f(z: — ).

A large positive value for the information I(x, 6) is information in favor of -

the 8 value; a large negative value is information against; the value 0 corre-
sponds to unit structural density. :
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Note that the difference in information between two 6-values is equaI to
:the log-likelihood difference:

I(x,0") — I(x, ) = In (k(dx)) TT f(z; — 6")) —

= In ([T /(= — 8")
= I(x:0") — I(x:9").

In (k(d()) TT f(=; — 67)
In (TT /(e — )

The information function is thus a representative log-likelihood function,
but it has vertical placement—it has a zero point on the vertical scale.

For the simple measurement model having normal error with variance o2
the conditional error distribution is

z

. _ 1 n\t n
édyde = |-— — —1&* =\ gde.
g(é:a) (Zw 02) exp { 3o cr[;'} de

0.

The information for 6 given x is then

2
0.

(x,0) =} In (2) — 3102 — 3z — 0)2(12)
o Go
(see Figure 1).

The information I(x, 6) descrxbes information for 0 given the measurement
vector x. Consider now the measurement process and its overall effectiveness.
Let 6° designate the actual value of the quantity. Then, for the process
of makmg n measurements on the quantity 6°, let

1(6°; 6) = E{I(x, 6):6°

I(x,0)

4l ( p 2) in (2m)

$in(7;) ~4m@m
_%(x o)(agz

/AN T w—

Figure 1. The information I(x, ) for 6, given x in the case of normal error.
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be the information for the value 0 given the quantity 6°; it'is the mean value of
the information I(x, 6) at 6 when the quantity has value 6°.

1(6°; 6) = f In g*(0:%) TT f(z: — 6% T d=; -
= f tn (k(d®) TT /(= — 8) TT /(= — 6% TT d=
= f In (k(d(X)) H F(es — ) TI £(e) TT dew-

Note that the information at 6 given 6° depends only on the difference
6 =10— 8

The information for the actual value 6° is perhaps the most significant
indicator of the effectiveness of the measurement process: I §6°; 0°). .

For the simple measurement model with normal error the information at

given 6° is
1/n -
0:6) = 31n (&) —}In(2 ——(—)E & — oy
16% 6) = } In (Gg) bin 2 — 25} B{Ce — 07}
n X 1 2 1
=}ln (;-2) — }In(2m) — 5(1 +0 02)

0. 0

(see Figure 2). The information for the actual value is
0% 6 = 3 1n (%) ~ 410 @) —

169,6)

iln (;;35)-";-111 2m)
—1(1+6% %)

Go2
30
—=0

Figure 2. The information at 6 = 6° 4 J, given the actual value‘0°.

0=00+6
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it is an increasing function of the precision n/o% Thus with normal error, the
information for the actual value and the precision are one-to-one monotone
functions each of the other.

Consider some properties of the information I(6°;6).
The information has a maximum value at the actual 6°;

I(6° 6) — I1(6°; 6% = E{I(x, 6) — I(x, 6%:6%
= E{l(x:0) — I (x:6°:6° < 0;
the inequality follows from Lemma 1 in Chapter Eight.

The curvature of the information at the actual value is equal to the precision:
Suppose Assumptions 1, 2, and 4 in Chapter Eight hold; then

0
— J(6%; 6 =0,
[36 ( )]e=u"
a?

_ 5%2 16° 6) = ~E{aezln(k(d(x))H Sz~ 0)) ;oo} - E{%z Ix:6): 90}’

00°
*4 INFORMATION: THE STRUCTURAL MODEL

Consider the structural model ,
S(E)dE, -

X = 0E,

[~ a 1(6%; 6)]9=00 = nj(6°).

‘and the corresponding reduced model

g([E]: D(X)) d[E],
[X] = 0[E];

the ciuantity 0 is an element of a group G (Assumption 3, Chapter 2), and the
conditional error distribution is ) .
In(E)
8(IE]: D) d[E] = k(D)f([E1D) —=—— d[E].
Ji((ED

The structural probability element for the quantity 6 is

g*(0:X) db = k(D(X))F(67X)J5(67X) JL(X]) do

Jr(IXT) J7(6)

= k(D(X))f (67 X)J (07 X) i—g-% dv(6);
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the right invariant differential dv(6) for 6 corresponds to the left invariant
differential du([E]) for [E]. The density function with respect to dy(0) can be
described conveniently in logarithmic units: ‘the information for the value 0
given the observation X is a

(X, 6) = ln( k(D)) f (6" X) (67 X)

JZ([X])).

J1(1X]

A large positive value is information for the 6 value; a large negative value is

information against the 6 value. : . o
The difference in information between two 6 values is equal to the hke]%-

hood difference for the two 8 values: the classical model for the response X is

| dx

FOTX)IN(O7X) TR

the log-likelihood function is - v
I(X:6) = R(X)+1In (f(B”IX YW n (672 [X])),
"the information difference from 6’ to 6” is -
I(X,0") — I(X,0)=1n (f(@”‘lX)JN(B"”l[X])) —In (f(@"lX)JN(O'_l [X]))
= (X:07) — [(X:0),

which is the likelihood difference from 6’ to 6”.

The information I (X, 6) describes information for 6 given X. Let f)“ denote
the actual value of the quantity. Then the information for 6 given 6° is defined
as

1(6°; 6) = E{I(X, 6):6°}

— ~1 '-—1 J;([X]) . 00—1X J. 60——1 dX
- f In (k(D(X))f(9 X)J(67%) JT[X])) JO- 10

The information for 6 has a maximum value at the actual 6°:
I(6°; ) — I(6°; 6°) = E{I(X:6) — I(X:-Q"»):G"V} :
FOX)INET) 0} .
= Elln Z——=——= 10" < 0;
[ e
the inequality follows from Lemma 1 in Chapter Eight. .
The curvature matrix of the information at the actual value is equal to the

- precision matrix. Suppose the generalized Assumptions 1, 2, and 4 in Chapter
Eight hold; then the jj’ element in the curvature matrix 1s

o 1(90-0)] - -—E{ & z(x:e“);e"]
[ 20,90, g P 90, a0,
= —E{IY(X:9°):0%),
which is the jj* element in the precision matrix.
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(1959). The Fisher information function is defined in Chapter Eight. The
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f In f(2:0)f(z:0) dz.

The Kullback information I*(6°, 6) is a mean value of a log-likelihood
difference:

IE(6°; 6) = f (In f(2:6°) — In f(z:6)) f(2:6°) dz.
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PROBLEMS

1. Show that the precision of the Cauchy error distribution

1 de
Tire’ —o <e< o,

is equal to the precision of the normal error distribution with mean 0 and variance 2. Use
the integral f “ U +)2dt = xf2.

2. Consider t_hc::) simple measurement model with uniform error:

fla=1, —i<e<y,

=0, otherwise.

- (Fisher, 1922.)

(i) Show that
1,0 = —In (1 — B), |r@®) — 0| < L‘;JE :

= —00, otherwise,
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where the location variable is
max z; + min z;

r(x) = 3

and R = max z; — min z;.

(ii) Show that
(6% 6) = —oo,  if B 5= 6O

(iii) For one measurement on 6 show that
1(6% 0% = 0;
and for two measurements on § show that
I1(6°6% =13.
3. Consider the simple measurement model with location variable r(x) = =, and
dx) = 0,d,(®), .. - d,(x) = (0, %3 — Ty, ..., Tp — zp).

The error distribution in terms of (eq, . . . , €,) can be expressed in terms of eq,dyy e
dy: .
11 fle) = gley: 0y, - . ., dn).

1(6%;6% = IS — I5;

Show that

the information at the actual value is the Shannon information in the original error distribu-
tion less the Shannon mformatxon in the orbital variable (whose value can be observed).

Answers to Selected Problems

CHAPTER ONE

1. (i) Reduced model: & = 0.79062; 61.5 = 8 + &.
(ii) Pr{—1.55 < & <155} =95%;
Pr{—2.04 < é £2.04} =99%.
(iif) The quantity 6 is normal with mean 61.5 and standard deviation 0.7906.
Pr{59.95 < 0 < 63.05} = 95%; Pr{59.46 < 6 < 63.54} = 99%.
3. (i) Reduced model: g(e)) dey; 157.01 = 6 + e}, where g(ey) de; = 50de; on (—0. 5
—0.48) and = 0 otherwise. Structural distribution: uniform on the interval (157.49,
157.51).
(ii) Reduced model and structural distribution as in (i); no.
(iii) The hypothesis = 157.60 leads to e, = —0.59, a value outside the range of the
error probability distribution; within the model the hypothesis is effectively denied.

5. (i) Reduced model: g(r) dr; r(x) = 8 + r, where g(r) dr = n exp {—-nr} dr on (0, )

..and = 0 otherwise.

(ii) The structural distribution is » exp {—nr(x) + nf} dd on (—, r(x)) and O else-
where.

9. The hypothesis leads to the value 2.4 for x3/1/ 3 or the value 17.28 for 2. The 1 and
+% points are 11.3 and 12.8; within the model there is strong evidence that the hypothesis
is not true.

12. The reference point has one d = 0, the remaining d’s greater than 0, and the sum of
the remaining d’s equal to n — 1. .

(i) Reduced model: g(b, 5) db ds; [b(x), s(x)] = [u, a] [b, s], where -

(n — 1yt im0 <6<,
Ty @ (== Dl {0 <5<

(i) The distribution of ¢ = b(e)/s(e) is

£(b, 5) = nexp {—nb}

~n
gL(t)=n( lt) , 0<t<oo.
The structural distribution for u is
b(x) — p\ du
SL ('——-—*S(x) @’ 0 < p < By

331
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15. (i) Reduced model: g(b, 5) db ds; [z, s(x)] = &, o]lb, s], where
£(6,9) = k@ TT(b + sd)f -t exp {— (b + sd)f}sm-2

on 0 <b< o, 0<s< o, and =0 otherwise. The normalizing constant (partly
evaluated) is
- P G )—1
k= (””)ﬁm o (SG+apy
(ii) The structural distribution for {u, o] is
g(mm‘” - 539) ’—(i)d do,
c c
where g(b, s) is given in (i).
22. (i) The orbits are rays from the origin (origin excluded). The reference points are the
points of intersection of orbits with the plane Yz =n
(i) The error probability distribution is T-(m)n" exp {—-ne}e gn-1 de on (0, oo)
(iii) The structural distribution for 0 is

" T E\ (D e
faee -5 (5) 7
CHAPTER TWO

12. (i) Suppose g€ g H, g,H. Then g = ghy = gohy with hy, hy€ H; g1H = gh'H =
gH = ghy H = g H. Otherwise, g, H and g,H are disjoint. It follows that {gH:g € G} is a
partition of G.

(ii) The sets gH, Hg each contam g Left partmon is equal to right partition <— gH = Hg
for all g <— H is normal.

13. Let H = H,, where i€ H,. For # in H:hH contains h; hH & {H,}; hence hH = H.
For k in H:hH = H contains i; #~* € H. Thus H contains / and is closed under formation
of products and inverses: H is a subgroup. It follows that {H,} consists of left cosets of H.

CHAPTER THREE

I 0
10. Let g = [ , ] be a general element in G:
a’ ¢

O I R S A
e e N B

Thus gL = Lg for all g and L is normal.
12. The analysis-of-variance table is

Source Dimension  Component Structure of Component
Mean 1 814.088000 (V5 + 0z))?
Linear ! 1102811 (a2Vo 148 + oz,)?
Quadratic 1 0.003681  (gV/0.003670 + ozg)?
Residual 2 0.005508 (op9)?
Total 5 815.200000
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(i) On hypothesis B3(= «g) == 0, F = 0.003681/(0.005508/2) == 1.337 is an observed ‘

“value of F on 1 over 2, a reasonable value; data in accord with hypothesis.

(i) On assumption oy = 0, the quantity «, is now 85> based on two structural vectors;
the fitted general level is 5.06216 + 272973z = 12.76 + 2.72973(z — 2.82); the structural
distribution is
+/0.005508 __ %

Vo148

where ¢ is ordinary  on 2 (precautionary analysis using residual length from three struc-
tural vectors).

By = 2.72973 — = 2.730 + 1(0.136),

17. (i) The convenient transformation variable and reference point are

[Y] = ! 0] D(Y)_[V]
- I:b'(y) ) lee))’

_ where b(y) is the vector of regression coefficients of y on the row vectors in ¥ and d(y) is

the unadjusted residual vector.

(i) dm(Y) = I dy;; du(g) = dv(g) = I1db,; A(g)=1.

(iii) Error: K@ f(Z b,v,,; + d)II db,,. Structural: k(d)U [l — 2P, )L dB,.
20. (i) The analysis of variance table is

Source Dimension Component
Mean 1 32,961.63
A 2 22.38
Residual 10 16.99
13 33,001.00
(ii) The structural distributions are described by
g — ”1'”‘2 =222 + 0.7431e,

— g = 1.90 + 0.9217¢%*,

where 5, 1{o¥ are ordinary ¢ vanables on 10 degrees of freedom.
26. The marginal structural distributions are

g V) dp = k(D(Y)sEP2(Y) - - s t(Y)

—
’ éz'c;
. —1 . PR -
J nf)s e S
s . . 1) (2)
Ypi — Up

(’G Y)dTG = k(D(Y))s(np-2(y) (n+1) (1) (y)

-
f mnfy st : dp.+ :‘:ﬁ—diﬁ
B? . 91 Tn)

Ypi 7 Hyp
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27. The marginal structural distributions are

— [T TN T (Dla 7
A, IT(Y)I"lT(Y)IVIT(Y)IA

i Vdy = Vi,

Ay A
g¥5(B:Y)dB = —212—1)—(;3,—1,—/—2- exp {—} tr T-1 S(¥)}
ds
32.14).,,_2( Yy S(zz) (1) n+p.—1

(1) )
where 7,(Y) is the positive lower triangular square root of
S(Y) + n(m(Y) — @) (m(Y) — p)".

29. (ii) Let ¥ = [¥] D(Y) be the positive lower triangular and orthogonal factorization
of ¥:

sa(Y) 0 ay(r)
t51(Y) s (Y) i
m=| - - om=| s
- . dl (Y)
1 (¥Y) -ty (X)) s (Y) 7

t5(Y), ..., ;4 (Y) and s;(Y) are the regression coefficients and residual length of y;
ondy(Y),...,d;_;(Y); d;(Y)is the unit residual vector.

‘ d
dn(N =T du) = %A-, i) = -
31. () —‘——(é-—;:—;‘;—;l’ﬂ exp {—3(Bsfy+ Tep st - - ST I dsgyy I dyye
(i) %%;lﬂ exp {—% tr S}S|{n—2~ D2 ‘-g .
(iii) —é—)—’;;—;ﬂ exp {—4 tr 51 S(¥)} o

.[Sm(y)'"S(m(y)]”f’n(l’)"'S%m(Y) ds

“n T % st Py (V) 0By =+~ 91y
A
@ —*(7)::272”—"3 exp {—} tr T S(V)}
SO By (1) - - - sty (1) d%

lzln/z S%l)(y). .. s&)(y) 21:(5(1)1) e O-z.mjz *
T 3
36. (i) gr(H:D)dH = k(D)f f(THY + D)) }-—I— dT - dH,

k(D)
Fxeoli

[z

FHB:Y)dB = — j fATHNE = V) - dT ds.
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\ T[T dT
{Tly

[TOI"T(Y)ly 45
5(B:¥)dT =k BV + 61 T(Y)D) d. \
g6 7)ds (D)f fBV + G2 T(V)D) dB —e = T Tl el

(il) gg(T: D) dT = k(D) f f(BV + TD)dB-
B

VV'|Ls
37. g(IEl: D) d[E] = H [' @ )TI 5 exp {—b; V'V’ ,}db]
i=1

A R A 4 -
LoETL L neroat] (Tz,,)(n—f);? Lexp {—#EsE, + B2} sg',)ﬂu-s(,,,r—fnds(,,n dts;.,
vz |z-re

&*0:Y)db = G exp {—4 tr ZL(B(Y) — B) VV'(B(Y) — B)}dD

. . ———
(Zﬂ)m—r)vlz
T [T T(Y)|
*(&:Y)dﬂi = nr n-r—p+l v
&% A Ay [T(¥)la
[ Tg(Y)|a
Ing.(Y)!" I Ta(Nly
A A
£HB:Y)dTE = W exp {—3 tr Z-1.S(Y)}

ds

PRl
(1) (o)

ds

A e
TR T rias

€Xp {—% tr %1 S(Y)} s("lTrﬁ)'—l(Y) n._r+1_p(Y)

VYR ds,

. szﬂ]—)r*}-p—-l( Y)-- s( )r+1—z)( Y)
where

’

b,

b,

P
and T'q(Y)is the positive lower triangular square root of
. S(Y) + (B(Y) — BYVV'(B(Y) — BY.
CHAPTER FOUR

1. (1) The structural distribution for 8 given § is = : :

£*(0:x:) db = ky(d(x)) T1 f(a; — 6:f) db.
(ii) The marginal likelihood function is R*(d)lk (@).
(iii) The marginal likelihood function is R*(d) cxp{ Zd2[20%} oL,

4. (ip) 1 0 - 0 Tu=%H . T H
5 (0 0 50 o
m=| . D(X) =
:,-;p 0 S(X) Tpy — jp R Zpp — iv

s(X) s(X)
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da dc

dX
(i) dm(X) = , At(g) p+1 , dv(g) =

n—p(X) (g) =2

(iv) g((E1: D:p) d[E] = kg(D) ILf, + sdyy, ..., 65+ sd,,izﬁ)s"p‘p‘ln de; ds,

P — "(X) 1 d
g7 0:X:p)do = kﬂ(D)nf[ —H e _ #,,:ﬁ]s ag)m) :d(,

(v) The marginal likelihood is R*(D)/ks(D).

. n ¥ né? 1 2\ () ne-p) /a1 ga
son((Z) el Pe) mme-IET T

. n ¥ n(E; — p;)" . 1
® H[[z?&é] P {‘ 2 }""’] Tt — P2

2O (20 (np-p}/2 yo2
&p {— 202 }[ 20'2] &

>10. (i) The structural distribution for 6 given Ais .

k@Y I f(z} — 6) 6.

(ii) The marginal likelihood for 1 is
PN
du;

1 da:,’}
k(d* dr;
(iii) The marginal likelihood for A (normal error) is
[ 2|2 ()"
dx;
12. (i) The structural distribution for B given Ais

“on1 P a2
k(D) fly} — T, NI dB,,.
(if) The marginal likelihood for 4 is
RY(Dy) J: M)
KDy (VI AV %"
13. (i) The structural distribution for 8 given 1 is

—————I VV"% — .._1_._ — Ayy/ v, _ A
2ol exp { 2% B — b)) VYV (B — by ))} dg

dz;

(ii) The marginal likelihood'function is

R*(Dy) 1Z(d‘)2 [y 1)
P73 VIR HVis

oy~
CHAPTER FIVE

1. (i) The distribution of error position is

n Y nd) o (n )% nd) k-
Togt | TP\ 58 D | gt | P\ ) B g
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(ii) The structural distribution is

n U n o n % no dy
(5;;‘2] °"P{" z—a‘i(“l*“l)z} iy [5;55] exp {“ %5(”“““2)2} a5

The first two parts give the marginal distribution for (u;, #9).
6. (ii) The indicated transformation variable is

[X] = (1 0 }
T lx sow

where O(X) is the rotation matrix used in Problem 4.
(ili) dm = dX[s"P(X); dp = dg[cP*; dv = dgc; A = 1/cP.
(iv) g(IE]: D:B) dIE] = kyg(D) f(IE1D: B)s"?-P-1 d(E]

£*0:X:5) db = ky(D) f(O-X: B ng) dy. do dQ.
SO
™) g*(, 0:X:P) dy do = kﬂ(D)IIf[ —H, - e 2 ﬂ] npi()dp do.
(vi) The marginal likelihood function is R*(D)/k[,(D).
7. (i) The error position distribution is
g(E}: D) dIE] = \/ exp dé’,-]
Anp—p S np-p-1 g, 90005y
(2”)(7;-1)17/2 exp 2 s ds - Am e Az *

(ii) The structural distribution is

7 73 F. — 0.)2
£*0:X)do = ]'II [[51%2] exp {— 'i(—iz—a-z-’-‘i)—} d,u,-]

(zﬂ)(n«l)plz 202 o o Ay Ay

The structural distribution for location is

PP s P(X
i Xy dy = Anp-p n? ) I dy;..
S PP C ki)
s5(X)

9. () Gis unitary’ on RP" provided points Y having yy, ..., Y, linearly dependent are
excluded.
(i) Let the rows of D(Y)be an orthonormal basis correctly oriented for L*(yy, . - - , ¥p);
let C(Y) be the matrix that produces the basis y;, . . . , ¥, from the basis d, ..., d,.

ay dg dg

dm= ———; du=-—"; dv=—-; A=1
W dm = “TEr P e

g1
@ g—g; =lgl->.
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10. (i) The distribution for error is

s
(C:D)dC = k(D)IIf| C |2 dc.
&
dy;
(ii) The structural distribution is
-
Yua
e vy T
*(0: ¥)dT = k(D) T f| T-1 ‘ ar
g r:1) (D1 f T T
AR \ym'
11. (i) The distribution for the quantity T is
Y1i |
PR (P B B 6 0T A
k(D) T4, f| B —
@TI40/ RGN
Ypi )
(ii) The structural distribution for X is
Y1i
2 - |T(V) dx
KDY I 411f| Slntpri/z 9P
A 12 2
Yopi
12. (i ‘ Ay Ay s 52 2 n—1 n—p T
O ggmE P {—3@sty) + G} spyt o sy Wdsy Wy, -
A4 _
(i) W exp {—$(Eshy) + Se2 )Tt s{;,,lfn ds;) 1L dt;; .
e Ap o Ay das
(iii) ’"—(‘E;)Eﬁéﬁé exp {-—% tr S} IS“"‘I”I’/2 -51—) .
. - S(NPE de  dQ
iv n Aﬂ—z)+1 - Z__l I = . .
@) 2y exp{ ir A S(Y)} =2 [Bls Ap-- -4,
R ot oy SOOI 4
(V) W CXP{'—'% tr X S(Y)}-—‘E‘Tl-z—— T-GTI; .
N AntAp g _ [S(M™* dZ
(Vi) ~ G P {—3tr =S¥} TS 2

20. (i) g7(H: D) dH = k(D) f F(CEHY + D)) |CI*-? dC - dH,
(o}

k(D)

*B:Y)dB = —
Er(B:Y) [CnF

f flecHx — syy)|C-rdC - ds.
c

do

A.’P.'.AZ
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(ii) gg(C: D) dC = k(D)J. f(BY + CD)dB- |C["?"dC,
B

X0 7) dF = 3 eanpr 40
gHI:Y)dl k(D)jBf(BV + -1 (D) dB T [T
D T 35
21. () k(D) T Af (8~ 8V)) '—C—(—{)ln—d s
5 [B"  1Bla
. 2 C(V)|-"dB dE
(i) k(D) Il—[ Af(BHY — BY)) “WL——:li:i 7w
N 24 2 Apy A
22. () fiﬁlﬁ exp{—1% ? b; V'V 7bj} 1;1 db; - W exp {—}(Es;) + 20}
_ — 4o '
sa)'r—-l - S(p)r—'DH ds(,-, II dtj:;, . m .

The marginal distribution of (B, T) is given by the first two parts of the preceding dis-
tribution.

e d
(i) An—EZ )(ﬁ:);r/;pﬂ exp {—ttr S}‘S‘m—r—p—l)/zi‘_j
'y
| vyr|pr TR
(iii) L—é;;%—/g-—- exp{—3%tr =-YB(Y) — BYVV'(B(Y) — BY}dB

A, A

n—r

— [S(V)|»-m2 4B dQ
~___ﬁ;)_(i._%z%§.’l‘fiexp {=} o T S(Y)}

S| [, dy - Ay
[Vy PR S(Y) T
7+ S(N(BY) — B)VV'(B(Y) — BY|"?
IS(Nj=-nE ds
PN
|S(Y)|(n-2 g%
[E[ETeeslE 29

n—r—p+l

A A4
(iv) n—7r
A4 - An—-g)+1
cA

n
A L .
. Ez&)‘"-?)‘wrlﬁ 28 exp {—1 tr T S(V)}

dB; — -

E A oA
W) P e {5 SN}

23. The simplified matrix-variate t-distribution:

A, A |vy|pe

dH.
I+ HVVHTE

n—r

A

n—r—p+1

n e An—-ﬂ+1
CHAPTER SIX

2. I(%,0) = —0,In (In z). Linearization with respect to §* = —In 6 ‘gives I* = Inlnz
with distribution function 1 — exp {— exp {/* — 6*}}.

CHAPTER SEVEN

3. The squared length of the difference vector is 15.948037; %2 = 63.792. The 1 and 7,
points for % on 5 are 15.086 and 16.750; there is strong evidence against the hypothesis
of symmetry.
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Ay, 34

Abelian group, 75 .
Additional quantity, 188, 203
Adjusted differential, 30, 55
Adjusted position matrix, 238
Affine group, 6, 22

Affine multivarfate model, 225, 248
Affine subspace, 7

Affine transformations, 5
Analysis-of-variance table, 113
Area of sphere, 34

Bessel function, 201
Binomial model, 267, 282

Bundle of orbits, 12, 29, 58

Cauchy error, 16, 329
" Chi distribution, 264

Classical model, 41, 186

Combining information, 19

Commutative group, 75

Compensating factor, 30, 55, 57, 60, 77

Composite measurement model, 211

Composite multinomial model, 268, 284,
290

‘Composite response model, 192

Composite structural equation, 9, 26, 52
Conditional distribution, 72
Conditional probability distribution, 14,
32, 59

Conditional structural model, 188, 203
Conditioned model, 71
Conditioning by outside information, 67
Continuous Poisson distribution, 258
Coordinates, change of, 59
Correlation coefficient, 193, 195
Coset, 65, 67

left, 81

right, 81

Decomposition of error distribution, 72
Decreasing determinant, 148
Determination, 18

Diagonal transformation, 29

Direct product, 192

Double exponential error, 43, 44

Error characteristic, 38, 67, 68

Error distribution, 4, 5, 21, 50, 58
factorization, 73

Error probability distribution, 14, 32, 53,

59

Error variable, 3, 21, 49, 50

Euclidean manifold, 54

Event, 11 -

Exponential error, 43, 44, 46

Extended I-vector, 6

Factor group, 81
Fisher information, 304
matrix, 310
Form, 190
Frequency models, large samples, 270

Generalized positive affine group, 47

" Genotype, 284

Group, 6

affine, 6, 22
generalized positive affine, 47
location, 6, 22, 75, 213, 220, 232, 321
location-positive linear, 80
location progression, 79, 141, 235
location rotation, 218
location scale, 43, 212
positive affine, 21, 22, 43, 80, 192,227
positive linear, 80, 232, 246
progression, 78, 142, 177
regression-positive linear, 47, 249
regression progression, 179, 250

) 341
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regression scale, 88, 92, 98

rotation, 197, 220, 221, 235, 244, 245,
250

scale, 22, 76

scale and shear, 78

shear, 77

translation, 6, 22, 75, 213, 220

translation rotation, 218

Heine-Borel theorem, 302
Homogeneity, 10, 26, 276
Hypergeometric model, 268, 291, 293
Hypothesis, 18, 37, 64

Identity transformation, 5
Increasing determinant, 148
Indicator function, 36

. Inference, 19, 39, 63

likelihood, large sample, 311
Information, 325, 326, 328
Inner product, 101

error, 153

matrix, 251

quantity, 153
Instrument, 3
Internal error, 17, 49
Invariant differential, 30, 55, 57

factorization, 73

left, 59

right, 60
Inverse transformations, 5

Lattice point, 276
Left coset, 65
Left invariant differential, 59
Likelihood difference, 296
Likelihood function, 185, 295
far from the quantity, 295
large sample, 307
limiting form, 311 .
near the quantity, 302
Likelihood iteration, 314, 315
Likelihood modulation, 196
Likelihood ratio, 187
Linearized Poisson, 257
distribution of, 260
Linearized variable, 253
Linear multivariate model, 247
Linear subspace, 6
Line of support, 297

Linkage, 279

Location, 23

Location distribution, 39, 241

Location group, 6, 22, 75, 213, 220, 232,
321

Location model, 42

Location-positive linear group, 80

Location-progression group, 79, 141, 235

Location-rotation group, 218

Location-scale group, 43, 212

Location-scale model, 42

Location variable, 7

Log-likelihood function, 187

Marginal distribution, 72
Marginal likelihood function, 190, 202,
205, 256

-Marginal probability element, 189, 204

Marginal structural distribution, 217
Measurement, 4
Measurement model, 21, 190, 243
with additional quantity, 214
- on the circle, 196
on the sphere, 220
Model, affine multivariate, 225, 248
binomial, 267, 282
composite measurement, 211
composite multinomial, 268, 284, 290
composite response, 192
conditional structural, 188, 203
hypergeometric, 268, 291, 293
linear multivariate, 247
location scale, 42
measurement, 21, 190, 243
measuremernit-with additional quantity,
214
measurement on the circle, 196
measurement on the sphere, 220
multinomial, 268, 279
multiplicative measurement , 45, 211
multivariate, 225
Poisson, 267, 293
progression, 139
regression, 85, 97
regression linear, 248
regression progression, 178
regression with additional quantity, 215
simple composite measurement, 212,
217, 243, 322 )
simple measurement, 4, 210, 244, 259

simple measurement with additional
quantity, 213
simple progression, 178
simple regression, 171, 275
simple regression with additional quanti-
. ty, 214
stochastically monotone, 252
structural, 50
transformed measurement model, 214
transformed regression, 205
transformed simple measurement, 213
transformed simple regression model,
214
Modular function, 62
Multinomial model, 268, 279
Multiplicative measurement model, 45,
211
Multivariate model, 225

Natural response, 203
New coordinates, 9
Nikodyn derivative, 54
Noncentral #-distribution, 211
Normal error, 15, 32, 42, 45, 46, 132,
150, 206, 210, 212, 213, 214, 215,
224, 237, 243, 244, 245, 246, 247,
248, 251, 319
bivariate, 192, 193
Normal error distribution, for the circle,
-200 '
for the sphere, 224
Normal subgroup, 81

Observation, 18

Orbit, 6, 22, 23, 25, 50
Orthogonal basis, 106
Orthogonal component, 238
Orthogonality conditions, 101
Orthogonality equations, 101
Orthonormal set, 124

Outside information, 68

Pareto distribution, 263

Partition, 22, 48, 50, 65

Period of oscillation, 170
Phenotype, 284

Poisson basis, 268

Poisson distribution, 257, 258, 264
Poisson model, 267, 293

Position, 7, 23, 51, 276
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Positive affine group, 21, 22, 43, 80, 192,
227

Positive linear group, 80, 232, 246

Positive orthogonal group, 197, 220, 221,
235, 244, 245, 250

Precision, 320, 327

Precision matrix, 323

Primary quantity, 188

Probability for an unknown constant, 10

Probability function, 185

Process, 17

Product of transformations, 5

Progression group, 78, 142, 177

Progression model, 139

Projection, 99

Pythagorean theorem, 103

Quantity, 4, 18, 49, 50

Realized error, 50
Realized value, 4
Reduced model, 14, 32, 53, 59, 186, 189
Reduction, 11, 27
Reference direction, 197, 220
Reference point, 8, 25, 51, 276

change of, 60 —
Regression coefficients, 102
Regression-linear model, 248
Regression model, 85, 97

with additional quantity, 215
Regression-positive linear group, 47, 249
Regression-progression group, 179, 250
Regression-progression model, 178
Regression-scale group, 88, 92, 98
Residual length, 103.
Residual vector, 101, 103
Response level, 21
Right coset, 67
Rotation group, 197, 220, 221, 235, 244,

245, 250
Rotational symmetry, 219, 234, 247,
250

Scale and shear group, 78
Scale distribution, 39, 242
Scale group, 22, 76

Scale variable, 45

Scaling, 23

Semidirect product, 69
Shannon error, 330
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Shape, 190
Shear group, 77
Simple composite measurement model,
212, 217, 243, 322
Simple measurement model, 4, 210, 244,
259
with additional quantity, 213
limiting form, 317
Simple progression model, 178
Simple regression model, 171, 275
with additional quantity, 214
Stabilizer subgroup, 216
Stirling’s formula, 259
Stochastically monotone model, 252
Strictly convex, 297
Structural distribution, 20, 41, 63
combining, 84
factorization, 74

Structural equation, 4, S, 14, 21, 32, 50,

53
composite, 9
Structural model, 50
Structural probability, 20, 41, 64, 256
Structural vectors, 96, 274
orthogonal, 106
Subgroup, 22
Subspace, affine, 7
linear, 6
System, 17

Test of significance, 18, 37, 64

t-distribution, 40

matrix valued, 251

simplified, 134 .
Three-factor design, 176
Transformation groups, see Group

- Transformations, 5

Transformation variable, 25, 51 -
Transformed measurement model, 214
Transformed regression model, 205
Transformed simple measurement model,
213 '
Transformed simple regression model, 214
Translation, 6, 8
Translation group, 6, 22, 75, 213, 220
Translation-rotation group, 218
Triangular component, 238 )
Triangular orthogonal factorization, 124
Triangular square-root factorization, 125
t-variable, matrix valued, 251"
simplified, 134
Two-factor design, 174

Uniform error, 36, 43, 44, 46, 329
Uniform shift, 265
Unitary group, 49 -

Volume cross-sectional to orbit, 191

Weibull error, 44, 45, 211,°263
Wishart distribution, 156, 158, 181




