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Joint Models
[ parts adapted from Henderson (2000) and Kolamunnage-Dona (2017) ]

Many scientific investigations generate both : a) Longitudinal outcomes - Repeated measurements of 
response variables at a number of time points b) Event time or Survival outcomes - Times to recurrent 
or terminating events 

Examples : a) Quality of life and survival time in cancer studies b) CD4 count and time to AIDS-
defining condition in HIV research c) Cognitive decline and time to diagnosis of Alzheimer’s disease 
in suspected cases

Lets consider a rather famous example : A longitudinal study into the treatment of schizophrenia A 
placebo-controlled randomized clinical trial of drug treatments for schizophrenia  ( Henderson et al. 
2000 ) The primary response variable was the total score obtained on PANSS (positive and negative 
symptom scale), a measure of psychiatric disorder There were three treatment arms: placebo, standard, 
and experimental

Schizophrenia trial data Protocol: PANSS assessments at baseline followed by 1, 2, 4, 6, and 8 weeks 
Patients were withdrawn from the study due to ‘inadequate response’(36% of patients). Some were 
failed to complete the trial protocol for other reasons, unrelated to the patient’s mental state (17% of 
patients)

Schizophrenia trial outcomes Longitudinal outcome : PANSS assessments at 0, 1, 2, 4, 6, 8 weeks 
Event-time outcome : Time to withdrawn from the study (dropout) 

     



It is not clear whether the apparent decrease in PANSS profiles reflects a genuine change over time or 
an artefact caused by selective dropout.
Patients with high PANSS values (worse prognosis) being less likely to complete the trial?

Joint modelling (of longitudinal and event time data) combines the longitudinal and event time data 
simultaneously.
As of 2015: > 200 methodological papers and > 60 clinical applications of joint models.

Joint modelling may : a) improve inference for a longitudinal outcome b) provide an adjustment of 
inferences about longitudinal measurements to allow for possibly outcome-dependent dropout c) 
improve inference for a time-to-event outcome
We consider the distribution of time to a terminating or recurrent event conditional on longitudinal 
measurements Evaluate the underlying relationship between longitudinal and event time processes

There are a number of implementations of this model in R and Stata [ for example ]



Perhaps the most well developed [ currently ? ] uses the R package joineR, 

with the general recipe: 
a) Create a joint data object using the joineR with the jointdata() function 
b) Fit a joint model using the joineR with the joint() function 
c) Calculate SEs using joineR  with the jointSE() function

The joint model for y = PANSS  and for dropout with logh(t ) has [ for example ]
a) subject specific terms in the [sub] model for the longitudinal data :  u0+u1 t
b) then this term is included in the [sub] model for dropout : γ1u1 + γ2(u0+u1 t )
which has estimates : 0.349 u1 + 0.042 ( u0+u1 t ) 

Many details are included in the paper by Henderson et al (2000).  See Table 3
There is evidence against γ1=0 and against γ2=0 and so there is evidence of a crucial 
association between the two parts of the joint model. The results are not the same as the two separate 
[ marginal ? ] models.

[ from Henderson et al (2000) section 5 ]
[ The complete dataset does not appear to be available. ]

We now return to the illustrative example introduced briefly in Section 1. Data are available from 523 
patients, randomly allocated amongst the following six treatments: placebo, haloperidol 20 mg and 
risperidone at dose levels 2 mg, 6 mg, 10 mg and 16 mg. Haloperidol is regarded as a standard therapy. 
Risperidone is described as ‘a novel chemical compound with useful pharmacological characteristics, 
as has been demonstrated in in vitro and in vivo experiments’. The primary response variable was the 
total score obtained on the PANSS, a measure of psychiatric disorder. In an earlier analysis of these 
data, Diggle (1998) combined the four risperidone groups into one, and for comparability we do the 



same. The resulting numbers of patients randomized to placebo, haloperidol and risperidone treatments 
were 88, 87 and 348.

The study design specified that the PANSS score should be taken at weeks −1, 0, 1, 2, 4, 6 and 8, 
where −1 refers to selection into the trial and 0 to baseline. The week between selection and baseline 
was used to establish a stable regime of medication for each patient, and in the analysis of the data we 
shall exclude the week −1 measurements. Of the 523 patients, 270 were identified as drop-outs and 183
of these gave as the reason for drop-out ‘inadequate response’. In our analysis we shall treat drop-out 
due to inadequate response as a potentially informative event, and drop-out for other reasons as a 
censored follow-up time. Exact drop-out time was not recorded during the trial, the only information 
being on the first missed observation time. For this analysis we imputed each drop-out time from a 
uniform distribution over the appropriate interval between last observed and first missed measurement 
times. Results were not sensitive to imputation. 

All three groups had a decreasing mean response, perhaps at a slower rate towards the end of the study.
The overall reduction in mean response within each active treatment group is very roughly from 
between 90 and 95 to around 75. This appears close to the criterion for clinical improvement, which 
was stated, in advance of the trial, to be ‘a reduction of 20% in the mean PANSS scores’. The decrease 
in the placebo group was smaller overall. However, at each time-point these observed means are, 
necessarily, calculated only from those subjects who have not yet dropped out of the study. Figure 1(b) 
shows estimated survival curves for time to drop-out due to inadequate response: large differences 
between groups are evident, with the highest drop-out rate in the placebo group and the lowest in the 
risperidone group. 

In the analyses reported here we assume a "saturated" model for the mean PANSS response, with a 
distinct element of β  for each treatment and measurement time combination. We have also analyzed
the data assuming a quadratic time trend for each treatment, which gave very similar results and is not 
reported here. For the drop-out model we assume time constant treatment effects, with the standard 
treatment haloperidol group as baseline and thus one entry in α  for each of the placebo and 
risperidone groups. We used the method of Section 4 for estimation for all models, with an initial 
analysis using M = 500 simulations for all expectations, then once the approximate estimates were 
obtained a more refined analysis with M = 1000 simulations at the E-step within the inner EM 
algorithm but M = 2000 simulations for likelihood evaluation. This led to a standard deviation of 
around 0.02 for Monte Carlo error in the log expected likelihoods.



Table 2  summarizes the results of fitting a variety of models for the latent processes W 1 and W 2 . 
We begin (Model I) with a simple random intercept model for W 1 , no random effects allowed in the 
drop-out model and hence no association. There is no improvement in fit (measured by the likelihood 
value) when frailty orthogonal to W 1  is allowed (not shown) with the estimated frailty variance lying
on the boundary of zero. However, once latent association is allowed there is a substantial 
improvement in combined likelihood (Model II). The frailty result here is worth a comment: the initial 
analysis without latent association indicated no frailty in the drop-out component, which might be 
taken to suggest that there are no unmeasured covariates which could influence drop-out. Yet from 
Model II there is a clear association with the PANSS score. We suspect this result is caused by the 
known difficulty of estimating frailty effects with a semi-parametric baseline when there are few 
covariates.
A standard Laird–Ware random slope and intercept model apparently fits the marginal PANSS 
distribution almost as well as the Diggle intercept and Gaussian process model (Model VI), with once 
more strong evidence of association between the longitudinal and drop-out components (Model VII). 
Inclusion of a frailty term U 3  leads to improved likelihood (Model VIII). Of the models considered 
this is the only instance where we found frailty to have a non-negligible effect. When the model is 
extended to a full linear random effects model for W 2(t )  (Model IX) there is another substantial 
increase in likelihood, with a large drop in LY  more than compensated by an increase in the cond 
likelihood component LN | Y . There is almost no loss in likelihood in removing from this model the 
separate effect on drop-out of the random intercept term U 1  (Model X). On the basis of this 
likelihood analysis, this is our "final model" for these data. 

Thus, under Model X drop-out appears to be affected separately by two latent factors: the current value 
of W 1(t )  and the steepness of the trajectory. Since high PANSS indicates poor condition, both of 



these conclusions are clinically reasonable: patients with either poor or rapidly declining mental health 
have increased risk of drop-out due to inadequate response. Parameter values for this model are given 
in Table 3 together with the corresponding estimates when no association between PANSS and drop-
out is assumed, the two components being analysed separately. Note the reduction in the random slope 
variance σ2

2  under separate analyses, and the attenuation of estimated treatment effects on the drop-
out process, both consistent with the simulation results in Table 1. Standard errors in Table 3 were 
obtained by a Monte Carlo method, refitting Model X to 100 simulated data sets generated using 
parameter values taken from the original analysis. In order to complete the re-estimations within a 
reasonable time we used the smaller value of M = 500 in the Monte Carlo likelihood evaluation and 
stopped each inner EM algorithm as soon as an iteration caused a decrease in estimated likelihood. We 
accepted the value of ξ = ( σ12 ,σ2 ,ρ ) which gave the maximum estimated likelihood after 30 
iterations of the outer simplex. Our experience is that the estimated ξ is quickly very stable but Monte 
Carlo noise in the likelihood function evaluation prevents the simplex procedure from indicating 
convergence when M is small. Estimated values of β under Model X are shown in Figure 2(a), with ± 
two standard errors. These estimate the hypothetical drop-out-free population PANSS profiles, and are 
higher than the observed profiles (also shown) as a result of the tendency for patients with high scores 
to drop out due to inadequate response. Mean values for haloperidol-treated patients are lower (and 
thus better) than for the placebo group, as expected, but higher than the mean values for the resperidone
group. A similar though less pronounced pattern is seen if the same model is assumed for the 
measurements but there is no latent association with drop-out (Model VI, Figure 2(b)). The general 
estimated drop-out-free pattern in Figures 2(a) and 2(b), of a late increase in PANSS after an inital fall, 
occurs to some extent for all the Laird–Ware intercept plus slope models we considered (Models VI–X)
but for none of the other models. To illustrate, Figures 2(c) and 2(d) show estimated values of β under 
the apparently best fitting intercept-only and intercept plus SGP models (Models II and V).
We investigated model adequacy by comparing data simulated under the final Model X with that 
observed in the trial. Figure 3 illustrates some of our findings, based on 100 simulations of samples of 
88, 87 and 348 subjects in the three treatment groups, as in the trial itself. The upper plot in Figure 3 
compares the observed mean PANSS scores amongst patients still involved in the study with the 
corresponding simulation means, and the lower plot compares observed and simulated survival curves. 
The simulated values are close to those observed in all cases. A similar plot (not shown) based on the 
intercept- only model with latent association (Model II) also shows very good agreement, and there is 
reasonable agreement also (but larger standard errors) for the best intercept plus SGP model (V), except
for some overestimation of drop-out rate for the haloperidol group (again not shown). Other plots based
only on PANSS profiles for subjects who complete the trial also show good agreement between 
observed and simulated data for all models. 



Notation and choices of symbols remains quite varied in this literature. To stay closer to choices made 
in these sessions, we might get:

y=β0+β1 δ1+β2δ2

+β3w1+β4w2+β5w4+β6w6+β7w8

+β8 δ1w1+β9 δ1w 2+β10δ1w4+β11δ1w6+β12δ1w8

+β13δ2w1+β14δ2w2+β15δ2w 4+β16δ2w6+β17δ2w8

+u0+u1 t+ϵ

where δ1 is the indicator for placebo and δ2 is the indicator for risperidone.

logh(t)=log h0(t )+α1 δ1+α2δ2+γ0u0+γ1u1+γ2(u0+u1 t )

where u0 and u1 are common to both sub-models.

This model pair would be Model IX in Henderson. Their Model X sets γ0=0

Marchenko (2016) considers Henderson's Model II [no subject specific slope u1 ] but with only a 
portion of the dataset [150 subjects] available to Henderson [523 subjects]

Some authors call u1 the steepness and they call u0+u1 t the 'current value'.

Notice, with the dropout sub-model, if γ2≠0 , then the model is not a proportional hazards model.


