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Assuming No Modification
Let us consider the study of a disease (levels: 0 and 1) — exposure (levels: 0 and 1) relationship with a
single potential modifier/confounder that we will call the 'strata’ (levels: 0 and 1). The stratum specific
probabilities of disease will be called:  p; for the ith exposure and the jth stratum. For this
illustration, we will suppose that these population characteristics are not troubled by further
confounding or modification.

Rate differences:

If there is no RD modification, then p,;— po=p 11— Po Which is then the rate difference RD. This
is the 'correct' RD.

Now we are obliged to consider 'crude' determinations. We wish to consider 2 weighted sums:
Wo P +H(1=wy) py and  w; p;+(1—w)) py,

where, for the study under consideration, w, 1is the proportion among the unexposed of subjects in
strata 1 and w,; is the proportion among the exposed of subjects in strata 1. We will choose to think
of these proportions as specific to the study at hand and not necessarily related to any population.

The challenge is to determine whether these 2 weighted sums distort the message that is available from
the stratum specific analogues.

We can note that:
Pw=RD+p, and p,,=RD+ p, since there is no RD modification.
Accordingly we wish to consider:
woPoH(1=wy) py and w(RD+ py;)+(1—w)(RD+ py)
Taking the second minus the first gives us [say cRD] :
RD+(w;=w,)( Po; = Poo)
Notice that the stratum specific difference RD differs from the comparison of the 2 weighted sums by:
(W1 =wo) (P01 — Poo)
So both the terms  (w,—w,) and (py— pPy) must be nonzero, to have a nonzero difference.
This observation is the same as the common statement that:

1) the weights must be different in the 2 exposure groups



and
2) the 'risk’ in the absence of exposure must be different in the 2 strata.
Notice that since there is no RD modification, this statement is the same for those exposed.

(pn_Plo):(pm_Poo)

RD Example 1

Using: py=0.1p;,=0.6p,,=0.4 p,;;=0.9 so that RD=0.3

Now consider w,=0.9 w,=0.1

Then RD+(w,—wy)( po;—Poo)=0.3+(0.1—0.9)%(0.6—0.1)=0.3—0.8%0.5=—0.1
The visual below illustrates this matter.
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Naming pi(w)=p,w+p,(1-w)
So, without modification we have p,(w)=RD+ p,(w)

Unexposed @ —— Exposed

RD

Poi— P
In the example, w,—w,<—0.3/0.5=—0.6 where w, could be as small as zero and w, could be
as large as one.

To see a sign change in cRD, the weights satisfy w,;—w,<—

RD

To see cRD = k* RD we have w,—w,=(k—1)———
Poi—Puw

Rate Ratios:
If there is no RR modification, then po/ Poo= P/ Po; Which is then the rate ratio RR.
We can note that:

Piw=RR*xp, and p, =RR* p, since there is no modification.

Accordingly we wish to consider:



Wy poH(1—=wy) py and w,(RR* po)+(1—w,)(RR* py,)
Taking the second divided by the first gives us [say cRR]:

« W1P01+(1_W1)P00
Wo Por +(1_Wo)poo

RR which equals RR when  (w; —w)( py; —pey) =0.

This is the same condition as for the RD.
Since  (p;;— P1o)=RR*(po— pPo) Wwe have a similar statement as with RD.

Now we have log p,(w)=log RR+log p,(w)
RR Example 1

Using:  py=0.01 p;;,=0.225 p,,=0.04 p,,=0.9 so that RR=4
The graph shows a case when cRR=1.

w

Unexposed — Exposed

Odds Ratios:

[(1— /(11—
If there is no OR modification, then 2.2 (L= pw) _ Pu/U=Pu) i the odds ratio OR.

P00/<1_p00) P01/(1_P01)

Piol (1= p 1) =OR* pyo/ (1= pyy)
pul(1=p,)=0ORx* py /(1= p,,)

pi(w) Po(w)

But we do not have log =log OR +log
1—p,(w) 1—po(w)



In fact, logM - logM is a function of w.
1=pi(w) 1= po(w)

OR Example 1

Using: log Poo =—9 log Plo =—8 log Por =—2 log P =—1 so that log OR =1
1=poo —Pio 1=po I=py

So there is no OR modification but but there is modification with RD, RR and HR. RDo=.000212
RD1=.149738 RRo=2.717706 RR1=2.256165 HR0o=.999788 HR1=.829997

w
Unexposed —  Exposed
Now let us graph the red line minus the blue line :
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w
M - log ] is not equal to the assumed common log OR of 1 but can less than

l—pﬂw) l—pdw
0.85 in this example. Notice, then, that this phenomenon is not confounding. It goes by many names.

So log

Maybe calling it attenuation would be the clearest name for it. It can be shown that the difference
plw) o polw)
- Og

T W) T B T py(w)

will always be less than the assumed common log OR.

Other names seen in the literature are 'non-collapsibility' and even 'non-linearity'. Sometimes this non-
constant difference is illustrated with examples where modification is also present. This makes the
issue harder to parse.

The first publication on this matter appears to be :
Myra L. Samuels : Biometrika, Vol. 68, No. 3 (Dec., 1981), pp. 577-588.

Myra Samuels (1940-1992) was a member of the Department of Veterinary Pathobiology at Purdue
University. She completed her PhD (Statistics) University of California, Berkeley with
supervisor Jerzy Neyman.

In her paper, Samuels 'applied' Jensen's inequality. Very cool !
Many authors have written about this matter since Samuels.

The study of the magnitude of the attenuation is an active area of research.
So when will the attenuation matter?
If the HR is “near” one, then attenuation will be “minor”.

Let p,=xq, Forgiven gq,,the RR will be constant As x10, HR—1landso OR —RR

Recently, Diego Nobrega and I have developed a formula for the maximum attenuation.

With a=p,, b=p, c=p, d=p,
e=bc—ad f=(1-b)(1—c)—(1—a)(1-d)

g=(c—a)(d—b) h=eflg
r=(d—c)—(b—a)

we get that :

A, =log(((1-w)a+we)'=1)=log(((1-w)b+wd) " —1)

\/Z—(b—a)
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when w =

Here is another even more extreme example :



Difference

All of the development in this session is for the population domain.

With actual data,

1) We get estimates of the probabilities.

2) We get the “actual” fractions.

3) There are finite sets of possibilities for the estimates and the actual fractions.
4) There are the practical issues of modification and confounding.

5) There are the merits and demerits for exploring counterfactuals.



