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Introduction to Models That Relax The Proportional Hazards Assumption

Stratification

We now consider models that allow for varying [and nonproportional] baseline hazards. Perhaps we
have s strata. We are concerned that the baseline hazard will vary in nonproportional ways across these
strata. We anticipate using a model like:

k
logh(t)=loghy(t)+ . B,x, fori=1tos

Jj=1

One can use 'parametric’' forms for the stratum specific baseline hazards log/, (¢) oruse the Cox
approach that then constructs the regression coefficient estimates admitting stratum-specific hazards
without specifying their forms. Notice, that, in both approaches, the proportional hazards assumption is
partially maintained but is now within strata.

A worthy example comes from addiction research. [Caplehorn & Bell(1991)]. They studied heroin
addicts receiving methadone maintenance treatment to help them overcome their addiction. Early
dropout is an important issue with this treatment. We will consider the time from admission to
termination of treatment (in days). Status refers to dropout (1) or end of study (0). Possible explanatory
variables are maximum methadone dose (dose), prison record (prison). Participants came from two
different clinics.

The investigators were concerned that the baseline hazard for the two clinics might be nonproportional.
We fit a fairly elaborate model that allows for clinic specific baseline hazard and explanatory variables
that may depend on clinic as well. Then we view the two clinic specific log baseline cumulative
hazards versus time.

use caplehorn.dta

gen d60=dose-60

gen cl=clinic-1

gen pc=prison*cl

gen dp=d60*prison

gen dpc=dp*cl

gen dc=d60*cl

stcox d60 prison dp dc pc dpc,strata(clinic) basech(bch) nohr
gen lbch=log (bch)

twoway (line lbch time if cl==0,connect(stairstep)) (line lbch time if
cl==1,connect(stairstep))

The two curves look to be about the same until about the 400 day mark and then the curves separate
from one another. This offers a visual cue that these 2 curves are not separated by a constant vertical
distance. Strong visual evidence that the two hazards are not proportional.

The modeling process could then proceed as usual but keeping the two clinic specific baseline hazards
in each model. One might then arrive at:

. stcox d60 prison,strata(clinic) nohr

Stratified Cox regr. -- Breslow method for ties

No. of subjects = 238 Number of obs = 238
No. of failures = 150

Time at risk = 95812



LR chi2 (2) = 33.94

Log likelihood = -597.714 Prob > chi2 = 0.0000
_t | Coef Std. Err. z P>|z| [95% Conf. Interval]
_____________ +________________________________________________________________
d60 | -.0351449 .006465 -5.44 0.000 -.0478162 -.0224737

prison | .3887882 .1689154 2.30 0.021 .0577201 .7198563

Stratified by clinic
We can then explore whether there are meaningful differences between the regression coefficients with
and without the separate baseline hazards.

stcox d60 prison,nohr

Cox regression -- Breslow method for ties
No. of subjects = 238 Number of obs = 238
No. of failures = 150
Time at risk = 95812
LR chi2(2) = 38.22
Log likelihood = -686.55176 Prob > chi2 = 0.0000
_t | Coef. Std. Err. z P>|z| [95% Conf. Interval]
_____________ +________________________________________________________________
dée0 | -.0360866 .006001 -6.01 0.000 -.0478484 -.0243248
prison | .1897446 .1642743 1.16 0.248 -.1322272 .5117163

With regard to dose, the assumed common slope estimates are similar but the impact of a prison record
(assumed common to dose) is seen more clearly with the 'stratified' model.

Time Varying Explanatory Variables
Now we relax the proportional hazards assumption in a quite different way. We now consider
circumstances where some of the explanatory variables may change during the period of follow up.

k, ks
logh(t)=log ho(t)+z Bx,+ Z B,x;(t) where the second set of explanatory variables are

Jj=1 Jj=k+1
functions of time  x,(¢) for j=k,+1 to k,

Time Varying Explanatory Variables : Indicators

The simplest form of time varying explanatory variable is an indicator variable. We will use as an
illustration the [rather infamous] Stanford Heart Transplant study. The outcome is time until death (in
days from entry into the trial) and the exposure is heart transplant. Age, year of entry and previous

surgery are possible confounders or modifiers. A fragment of this dataset looks like:

. list id transplant start stop event in 1/25,sep (25)

1. ] 1 0 0 50 1
2. ] 2 0 0 6 1
3. ] 3 0 0 1 0|
4. | 3 1 1 16 1
5.1 4 0 0 36 0|
6. | 4 1 36 39 1
7.1 5 0 0 18 1



8.1 6 0 0 3 1

9. | 7 0 0 51 0 |

10. | 7 1 51 675 1|
11. | 8 0 0 40 1
12. | 9 0 0 85 1
13. | 10 0 0 12 0 |
14. | 10 1 12 58 1
15. | 11 0 0 26 0 |
16. | 11 1 26 153 1|
17. | 12 0 0 8 1
18. | 13 0 0 17 0|
19. | 13 1 17 81 1|
20. | 14 0 0 37 0 |
21. | 14 1 37 1387 1
22. | 15 0 0 1 1
23. | 16 0 0 28 0 |
24. | 16 1 28 308 1|
25. | 17 0 0 36 1
o - +

Notice that the first 2 IDs (patients) have one row while IDs 3, 4 and 7 have 2 rows each. IDs 3, 4 and 7
had transplants while IDs 1, 2, 5, 6 and 8 did not have a transplant. It is acknowledged that the change
in transplant status may change the hazard and, for any given patient, the change in status may or may
not happen during the trial time and, if the transplant occurs may occur at varying times through the
course of the study. Hence we say that 'transplant' E(t)) is a time varying.

E(t) is either always zero (no transplant) or it is a step function with a single step from zero to one at
the time of the transplant. Patient age, year accepted into the trial and previous surgery are measured at
'baseline’ and are said to be time fixed.

Lets start with a 'simple' model (ignoring age (A), year (Y) and surgery (S))
log(h(t))=log(h(2))+B,E(1)

With this model, all patients that did not have a transplant (E(t)=0 for all time t) have the same hazard
function (here, the baseline hazard function). Consider patient 7 (transplant at day 51). For this patient,
this model presents the same baseline log of hazard until time 51. At time 51, the log hazard changes
by the amount B, and then follows the same shape as the baseline log hazard but vertically shifted by

the amount B,

Now consider a model with age (A) included:
log(h(t))=log (hy(t))+ B, A+B,E (t)+B;3AE (1)

[Age has been centred at age 48]. For a patient of [baseline] age 48 (A=0), we get the same
interpretation as above. Now consider a patient of age 49 (A=1) that did not have a transplant. The log
of the hazard is the baseline log hazard shifted by B, . For a 49 year old patient that did have a
transplant at day 51, the log hazard follows the same log hazard as the untransplanted 49 year old until
time 51 at which time the log hazard shifts by the amount B,+B; . More generally, for a patient of
age A receiving a transplant at time T. The log of hazard is the baseline log of hazard shifted by

B, A until time T at which time the log hazard shifts by B,+B;4 If B; is zero, then we can see
that the impact of transplant does not depend on [baseline] age.

It is worth emphasizing that baseline age is time fixed. One might think that one could add a patient’s
actual age as time varying. This action serves no purpose since a patient's age and time are merely
shifted versions of each other. Adding actual age as explanatory variable serves to change the baseline
hazard [and its interpretation] but has no impact on the regression coefficients. Adding time varying



functions of age is another [and complicating] matter.
Models can be built that include time varying variables, time fixed variables and interactions between
any 2 (or more) of such (whether time varying or time fixed).

Here are some analyses of the Stanford Heart Transplant dataset. These analyses essentially reproduce
the results from pg. 139 of Kalbfleisch & Prentice (1980 & 2002). [A 'corrected’ version of this dataset
(from http://lib.stat.cmu.edu/datasets/ ) was used] It is instructive [and challenging!] to read the
interpretations given in K&P and to consider possible next steps in analysis.

(Stanford Heart Transplant Data)
stset
-> stset stop, id(id) failure (event)

id: id
failure event: event !'= 0 & event < .
obs. time interval: (stop[_n-1], stop]

exit on or before: failure

172 total obs.
0 exclusions
172 obs. remaining, representing
103 subjects
75 failures in single failure-per-subject data

31954 total analysis time at risk, at risk from t = 0
earliest observed entry t = 0
last observed exit t = 1800
stvary
failure _d: event
analysis time _t: stop
id: id
subjects for whom the variable is
never always sometimes
variable | constant varying missing missing missing
_____________ +______________________________________________________________
transplant | 34 69 103 0 0
start | 34 69 103 0 0
age | 103 0 103 0 0
year | 103 0 103 0 0
surgery | 103 0 103 0 0
ta | 34 69 103 0 0
ts | 90 13 103 0 0
ty | 34 69 103 0 0
stcox transplant age surgery ta ts,nohr
Cox regression -- Breslow method for ties
LR chi2(5) = 12.45
Log likelihood = -292.09953 Prob > chi2 = 0.0291
_t | Coef. Std. Err z P>|z]| [95% Conf. Interval]
_____________ +________________________________________________________________
transplant | .1181019 .3276902 0.36 0.719 -.5241591 .7603629
age | .0138234 .0181253 0.76 0.446 -.0217015 .0493482
surgery | -.5457023 .61091 -0.89 0.372 -1.743064 .6516592
ta | .0347659 .0272543 1.28 0.202 -.0186515 .0881833
ts | -.2916307 .7581853 -0.38 0.701 -1.777647 1.194385
stcox transplant year ty,nohr
Cox regression -- Breslow method for ties
LR chi2(3) = 8.61
Log likelihood = -294.02098 Prob > chi2 = 0.0350


http://lib.stat.cmu.edu/datasets/

_t | Coef. Std. Err z P>|z| [95% Conf. Interval]
_____________ +________________________________________________________________
transplant | -.2822266 .5142526 -0.55 0.583 -1.290143 .7256901
year | -.264717 .1051108 -2.52 0.012 -.4707305 -.0587036

ty | .1362093 .1409024 0.97 0.334 -.1399543 .4123729

stcox transplant age year ta ty,nohr

Cox regression -- Breslow method for ties
LR chi2 (5) = 14.83
Log likelihood = -290.90889 Prob > chi2 = 0.0111
_t | Coef. Std. Err z P>|z| [95% Conf. Interval]
_____________ +________________________________________________________________
transplant | -.5883537 .5427372 -1.08 0.278 -1.652099 .4753917
age | .015514 .0173418 0.89 0.371 -.0184754 .0495033
year | -.2735364 .1058311 -2.58 0.010 -.4809614 -.0661113
ta | .0338558 .0279495 1.21 0.226 -.0209242 .0886359
ty | .201259 .1424636 1.41 0.158 -.0779645 .4804825

Refer to Crowley & Hu(1977) and K&P(2002) for their interpretations.
year is in fact Year(19XX) + [the YY day of the year]/365.25 —[1967 +275/365.25]

eg) November 15, 1967 is 1967+320/365.25 — [1967+275/365.25] = 45/365.25 = 0.12320329

stcox transplant year surgery ty ts,nohr

Cox regression -- Breslow method for ties
LR chi2(5) = 12.35
Log likelihood = -292.14897 Prob > chi2 = 0.0303
_t | Coef. Std. Err z P>|z| [95% Conf. Interval]
_____________ +________________________________________________________________
transplant | -.2920895 .5059006 -0.58 0.564 -1.283636 .6994575
year | -.2536811 .1076625 -2.36 0.018 -.4646958 -.0426664
surgery | -.2361504 .6281973 -0.38 0.707 -1.467395 .9950937
ty | .1644914 .1416135 1.16 0.245 -.1130661 .4420488
ts | -.5504738 .7758498 -0.71 0.478 -2.071111 .9701638
stcox transplant age year surgery ta ts,nohr
Cox regression -- Breslow method for ties
LR chi2(6) = 16.21
Log likelihood = -290.22034 Prob > chi2 = 0.0127
_t | Coef. Std. Err z P>|z]| [95% Conf. Interval]
_____________ +________________________________________________________________
transplant | .0771957 .3316176 0.23 0.816 -.5727628 .7271541
age | .0149866 .0176007 0.85 0.395 -.0195102 .0494834
year | -.1363152 .0709655 -1.92 0.055 -.275405 .0027746
surgery | -.4191803 .6156507 -0.68 0.496 -1.625833 .7874728
ta | .0269781 .0271197 0.99 0.320 -.0261756 .0801318
ts | -.298129 .7580001 -0.39 0.694 -1.783782 1.187524
stcox transplant age year surgery ta,nohr
Cox regression -- Breslow method for ties
LR chi2(5) = 16.06
Log likelihood = -290.29562 Prob > chi2 = 0.0067

t | Coef. Std. Err. z P>|z]| [95% Conf. Interval]



+
transplant | .0474531 .3221818 0.15 0.883 -.5840116 .6789178
age | .0152199 .0175019 0.87 0.385 -.0190832 .0495229

year | -.1360785 .0708987 -1.92 0.055 -.2750373 .0028803
surgery | -.6211691 .3678687 -1.69 0.091 -1.342178 .0998403

ta | .0270955 .0271401 1.00 0.318 -.0260981 .0802892

Time Varying Variables With A Specific Functional Form

More elaborate time varying variables can be considered.

k m
log(h(2))=log (hy(1))+ Bjxj+g(t)z y,z, Where g(t) is some chosen function. With such
j=1 =1
choices of the function g (other than unit steps) , the models are not invariant to changes in analysis
time (even with Cox models). A direct assessment requires a dataset that records, for each subject, a
separate row of data for each distinct failure time if g(t) changes in any given time interval. This
enables the consideration of 'continuous' time varying variables as the model fitting process is only
dependent on the values of such functions at the distinct failure times. In principle, more than one g
function could be considered. Stata has option [called tvc] that can handle some of the dataset matters
for you.

Now let us consider the data from a study of recovery time from walking pneumonia in pneumonia.dta
Two drugs (Type =0 or 1) are being compared. The patient 's [baseline] age (Age) is also involved.
Suppose we know that the actual level of either drug in the body has a half-life of 2 days so that level is
proportional to e %3

-0.35t

logh(t)=logh,(t)+B,Age+e vy, Type
stcox age type,nohr
failure _d: cured
analysis time _t: time
Cox regression -- Breslow method for ties
No. of subjects = 45 Number of obs = 45
No. of failures = 36
Time at risk = 677.9000034
LR chi2 (2) = 27.28
Log likelihood = -102.90267 Prob > chi2 = 0.0000
_t | Coef. Std. Err. z P>|z| [95% Conf. Interval]
_____________ +________________________________________________________________
age | -.1275093 .0280598 -4.54 0.000 -.1825055 -.072513
type | -.7711755 .3563117 -2.16 0.030 -1.469534 -.0728173
stcox age, tvc(type) texp(exp(-0.35*_t)) nohr
failure _d: cured
analysis time _t: time
Cox regression -- Breslow method for ties
No. of subjects = 45 Number of obs = 45
No. of failures = 36
Time at risk = 677.9000034
LR chi2 (2) = 28.06
Log likelihood = -102.51376 Prob > chi2 = 0.0000



_t | Coef. Std. Err. z P>|z| [95% Conf. Interval]
_____________ +________________________________________________________________
rh |

age | -.1306558 .0299297 -4.37 0.000 -.189317 -.0719946
_____________ +________________________________________________________________
t I

type | -11.72067 5.184889 -2.26 0.024 -21.88286 -1.558474

Note: second equation contains variables that continuously vary with respect
to time; variables are interacted with current values of exp(-0.35*_t).

. disp exp(-0.35)
.70468809

. disp exp(-0.35%*2)
.4965853

logh(t)=logh,(t)—0.1307 Age—11.7207 e *** Type

So for any given age, the difference between log of the hazard with drug2 (type=1) and the log of the
hazard with drugl (type=0) is:

-10

-15

This model necessarily requires that the impact of the drug difference eventually goes to zero. We
could check if there is a lasting effect by including Type as a 'Time Invariant' covariate.



—-0.35t

logh(t)=logh,(t)+8,Age+p, Type+e "y, Type

If the sign of B, and the sign of Yy, are the same, then B, records the lasting effect initially

detailed by B,+Yy; attime=0. To see this, notice that e °3>" is one when t=0 while e *°¢ is

near zero when t is 'large'.

If the sign of B, and the sign of Yy; are notthe same, then we get other scientifically interesting
scenarios. As always, a careful graphing of the situation enables an appropriate interpretation.

To explore the circumstance here, we can consider:

. stcox age type, tvc(type) texp(exp(-0.35*_t)) nohr

Cox regression -- Breslow method for ties
No. of subjects = 45 Number of obs = 45
No. of failures = 36
Time at risk = 677.9000034
LR chi2 (3) = 28.37
Log likelihood = -102.36053 Prob > chi2 = 0.0000
_t | Coef Std. Err 4 P>|z| [95% Conf. Interval]
_____________ +________________________________________________________________
rh |
age | -.1298054 .0292817 -4.43 0.000 -.1871964 -.0724143
type | -.3283862 .5795018 -0.57 0.571 -1.464189 .8074163
_____________ +________________________________________________________________
t I
type | -8.202869 8.054333 -1.02 0.308 -23.98907 7.583333

Note: second equation contains variables that continuously vary with respect
to time; variables are interacted with current values of exp(-0.35*_t).

Apparently, there is no lasting effect.

In principle, models could be contemplated that allow for the estimates of the exponent (instead of
assuming the value -0.35) Such model fitting is not directly available with Stata [as of the Fall 2015].

Time Varying Explanatory Variables : Discrete Time-To-Event

Once one has the dataset in person period format and one adds the time varying variable(s) to the
dataset, one can proceed with modeling as usual. Graphing of the estimated log odds of the hazard
function will necessarily be participant specific.

Lets consider a study by Wheaton, Rozell, and Hall (1997), who examined the link between stressful
life experiences and the risk of a psychiatric disorder. Using a random sample of adults, ages 17 to 57,
in metropolitan Toronto, the researchers conducted a structured interview that allowed them to
determine whether, and if so at what age (in years), each individual first experienced a depressive
episode.

Among the 1393 respondents, 387 (27.8%) experienced a first onset between ages 4 and 39. Using the
same interview, the researchers also ascertained whether, and if so at what age, each respondent first
experienced 19 traumatic events, including major hospitalization, physical abuse, and parental divorce.



Here, we focus on one of these stressors, first parental divorce (pd), experienced by one-tenth of the
sample (n = 145) at risk of an initial depressive episode. We will consider the time-varying predictor
[pd] indicating whether the parents of individual i divorced during, or before, time period j. In the time
periods before the divorce, pd;=0 ; in time periods coincident with, or subsequent to, the divorce

pd;=1 Coding pd; in thisway allows one to capture both the immediate and long-term impacts
of parental divorce.

Following our earlier approach to discrete time, 36 time indicator variables could be considered but this
option needs some consideration of a diagnostic. Collapsing of some time intervals is required here.
Some authors consider polynomials to capture the salient features of the baseline hazard. We will
consider the time fixed variable 'female' and the time varying variable 'pd' for illustrative purposes.

use wheaton_pp, clear

logit event i.agea pd female

gen ageaa=agea

replace ageaa=6 if ageaa<é6

logit event i.ageaa pd female

predict loh,xb

twoway (lowess loh agea if id==24 & agea<2l) (lowess loh agea if id ==24 & agea
>20) ,legend (off)

drop loh

logit event age_18 age_18sqg age_18cub pd female

predict loh, xb

twoway (line loh agea if id==24 & agea<2?l) (line loh agea if id ==24 & agea >20),legend(off)
clear

set obs 1001

range age 4 40

gen lohb=-4.58664+0.0595987* (age-18)-0.0073603* (age-18)+2+0.0001847* (age-18)*3
gen lohf=lohb+0.5454514

gen lohpd=lohb+0.4150557

gen lohpdf=lohf+0.4150557

twoway (line lohb age) (line lohf age) (line lohpd age) (line lohpdf age)

use wheaton_pp.dta,clear

stset agea event, id(id)

stvary

stcox pd female,nohr

stcurve, haz atl (pd=0 female=0) at2(pd=1] female=0) at3(pd=0 female=1l) at4d (pd=1 female=1)
yscale (log)

cloglog event age_18 age_18sq age 1l8cub pd female



