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The Assumptions For Linear Regression

Assumptions:

1. E  y =∑
j=0

k

 j x j The conditional mean is a linear combination of the explanatory variables

2. Var  yi= 2 The conditional variance is constant. 
3. y1  y2  y3  ...  yn are statistically independent.
4. The conditional distributions are normal distributions [This assumption makes the inferences 

exact] or, at least, the conditional distributions are symmetrical [ to provide meaning for the 
conditional mean]

If all assumptions, but #1,  hold, it may be possible to use a nonlinear model with least squares. By 

nonlinear, we mean that there no way to express the conditional mean as E  y =∑
j=0

k

 j x j . Notice 

that a model like E  y=01 x2 x
2 is still called a linear model in so far as the conditional 

mean is a linear combination of the explanatory variables [ 1, x and x2 ]. But models like:

E  y=01 2
x [exponential]

or like: E  y=0
1

1e
2x3

 [logistic]

are nonlinear. 
We would still call a model for a micro assay studying the relative potency k [of the test relative to the 
standard] like: E  y=01 x1k−1dx a linear model because if we were to write
2=1k−1 then we get E  y =01 x2dx [d is the indicator for the test version of the 

drug]

Assumption 1 is a bit slippery. The conditional mean must be linear in the explanatory variables; the 
right set of them though. So, for example, if the conditional mean is, in fact, a quadratic in x and
E  y =01 x2 x

2 [i.e. linear in  1 x x2 ]  and the model under consideration is only
E  y =01x , then assumption 1 is not held by the model under consideration. Similarly, the 

absence of a necessary product of terms invalidates assumption 1. Models capturing multiplicative 
effects may not be expressible according to assumption 1 as well.

If all assumptions, but #2, hold, it may be possible to model the form of the conditional variance and 
then use a technique called 'weighted' least squares. The weights are then chosen to be proportional to 
the reciprocals of the variances. [Gauss-Markov].

If all assumptions, but #3, hold, it may be possible to adjust the methods if the form of the lack of 
independence is known. In particular, there are methods that handle matching or blocking or clustering.
There are methods that are specific for longitudinal studies. Direct empirical assessment of 
independence is typically difficult. Most times, researchers must be aware that their study design may 
require one of the more specific methods. The independence assumption cannot be overlooked. Studies 
that involve appropriate elements of randomness [like simple random sampling] and/or randomization 
and for which an outcome is measured only once per subject usually enable the assumption of 



independence.

If all assumptions, but #4, hold, there are a vast list of options available to the analyst. Often, if 
assumption 4 is not tenable, then other assumptions are questionable as well. For example, if the 
conditional distribution is skewed, then the conditional variance is most likely not constant. As noted 
earlier, tests and confidence intervals may still have their [approximate] sampling properties even if the
conditional distributions are skewed so long as the sample sizes are 'large enough'. Nevertheless, the 
absence of symmetry may make the interpretation of the conditional means somewhat shallow and, 
potentially, of little scientific value.

Now we will add to the mix, the challenge of a sample that contains one or more observations that plain
and simply do not follow the model that the others do follow. The reasons for such violations are many.
Maybe inclusion/exclusion criteria were not followed for one or more subjects. Maybe the measuring 
device fails in some way occasionally. Maybe data entry has imperfections. The data entry clerk cannot
have  perfect methods. Errors/blunders/failures can and do happen.

“The occurrence of observations we do not like is the commonest feature of all experimental and other 
statistical inquiries.”  (D.B. DeLury)

An implicit assumption [maybe a fifth assumption] is that our data does not contain any of these 
violations.

Analysts will use methods designed to find these violations. Inevitably, these methods, can, on 
occasion, find 'so-called' outliers. The detection of outliers can be important in so far as the investigator
may then know that there are violations. Outliers are detectable violations sometimes. Outliers, though, 
can be truly legal [in the sense that the model still holds] but they are unusual. And.... so... what we do 
with the outliers?

“The decision to reject observations should never be reached lightly. The decision to reject is a decision
that the error system is out of control and we lose the essential basis for reaching assured conclusions. 
In a way, the concern is less about the observations we remove than the ones we retain. How 
trustworthy are they if the error system is not to be trusted? “ (D.B. DeLury)

Outlying observations need to be checked, if at all possible, using the original raw records. Perhaps the 
reason for outlyingness can be determined. Of course, simply deleting an observation because we do 
not like it is not the basis for strong science. If the review process reveals trouble in the study, then, at 
best, the investigator needs to describe such trouble under limitations/qualifications in any manuscript. 
There are automated methods for outlier deletion out there, this writer cannot recommend such 
automated methods. Their use is a strong indication that the study is in big trouble. How can 
generalizability be possible is such muddled messes?

“...it would still be true that the Natural Sciences can only be successfully conducted by responsible 
and independent thinkers applying their minds and their imaginations to the detailed interpretation of 
verifiable observations. The idea that this responsibility can be delegated to a vast computer 
programmed with Decision Functions belongs to the fantasy of circles rather remote from scientific 
research.”      (R.A. Fisher)

Assessment of Assumptions and Data Transformations

It is generally acknowledged that any one study of a particular outcome is not going to provide the 



basis for an assessment process. Often, health research is not conducted with large enough sample sizes
to enable empirical assumption assessment in some definitive way. Further, the soundest methods for 
assumption assessment are of largely graphical nature. It is probably unfair to expect that health 
researchers will be able to stare at a graph and use this staring to make some assessment. Graphical 
assessment is not easily learned. There are endless shades of gray. It is rare to see a display that 
resolves one or more of these matters. Having said all this, there are definitely some graphical methods 
that are superior to other graphical methods. There are also some misconceptions about certain 
strategies for graphical assessment.

Even before beginning an empirical assessment, it is best to review the literature for currently accepted 
assumptions and to consider well established strategies to enable reasonable assumption validity.

For example, it is generally accepted that skewness in a distribution is inevitable in variables capturing 
duration [of illness] , length [of hospital stay], distance [from a smelter] and other similar variables. 

Another example is variables based on ratios [such as BMI]. These distributions are most often skewed 
as well.

The commonest resolution to this form of skewness is to use a logarithmic transformation. Sometimes, 
the investigator will consider a transformation from x to y like y=log(x+A) where A is chosen to 
correctly handle data values of x=0.[if x=0 is possible]

It is worth repeating that symmetry (or absence of skewness) is valuable for the conditional distribution
of the response. Skewness in an explanatory variable is not, per se, a concern since all statements from 
regression analyses are conditional statements given a particular set of values for the explanatory 
variables. At the stage of interpretation, the possible distribution of the explanatory variables is not 
relevant. On the other hand, there are many circumstances in which the linearity with an explanatory 
variable  is enhanced by a transformation that also, coincidentally, improves symmetry.

If a transformation is planned for an outcome, then interpretation may be enhanced if corresponding 
explanatory variables are transformed as well. For example, consider a study of household water 
consumption in the year 2005. It may be relevant to consider household water consumption in, say, the 
year 2000 as a potential explanatory variable. If household water consumption is transformed say using
logarithms, then both variables [2000 and 2005] ought be transformed.

The assumptions about distribution form are based on the conditional distributions. If there are just a 
small number conditions under consideration, then you may be able to plot graphs of the conditional 
distributions for every distinct combination of conditions. We did this with the blood pressure example 
by considering the boxplot of blood pressure for the 12 different groups. You may be tempted to graph 
the distribution of blood pressure ignoring the conditions. Unfortunately, this graph tells us little about 
the individual conditional distributions [unless all 12 groups have the same conditional mean] since this
single combo “distribution” may be distorted by the possibly different conditional means. A set of 
skewed conditional distributions can look symmetrical when combined in a single plot. Similarly, a set 
of symmetrical conditional distributions can look skewed when viewed in a single plot. 

One needs to strip off the conditional means from the individual conditional distributions if one wants 
to try to assess distribution form on the basis of a single graph. Here is where the residuals help. The 
residuals e i are estimates of the errors i . If all other assumptions are holding reasonably, then the 
residuals should provide for an assessment of distribution form of the errors. A simple boxplot of the 
residuals can help to detect outliers. A more sensitive display is called the q-q plot. This has the 



residuals on the vertical axis and the quantiles of the standard normal on the horizontal axis. This graph
will show a roughly straight line if normality is plausible. Right skewed residuals will veer above the 
line on the right hand side while left skewed residuals will veer below the line on the left hand side.

regr bp Y Z S B YS ZS YB ZB SB YSB ZSB
predict bph
predict res,residuals
qnorm res

The blood pressure residuals show no sign of skewness. No visual evidence against the symmetry 
assumption.

Graphing the residuals versus the fitted values can be helpful in the assessment of the constant variance
assumption. No visual evidence against the constant variance assumption.

scatter res bph



Here, there is no indication that the variability of residuals is somehow dependent on the conditions, or 
the conditional means. Systolic and diastolic blood pressure are 'well known' to be symmetrically 
distributed. So most researchers would probably note that these graphs are consistent with the 
commonly accepted assumption. Such displays are usually constructed as a check though. Such 
displays can reveal outliers in a more explicit way than other methods. The presence of such outliers 
can distort the fitted values and damage the value of the residuals as well. If an outlier is influential, 
most analysts would say they are in trouble. Tough road ahead, indeed. There are those who would 
argue that detection of such trouble is not worth the trouble. Something like, what we do not know, 
cannot hurt us. Ostriches might agree with this view.

There are numerous possible enhancements to such visual assessments. Some authors suggest plotting 
the absolute value of the residuals versus the fitted values. Some suggest adding a smoothed version of 
the absolute value of the residuals [lowess smoothers are highly regarded, these days]

There are many options available in the assessment of the assumption of linearity of the response to 
specific explanatory variables. Generalized Additive Models (GAMs) [gam in Stata but MSWindows 
only], Restricted Cubic Splines [mkspline in Stata] and Fractional Polynomials [fp in Stata] are often 
used. In the context of linear regression, we can graph the residuals versus individual specific 
explanatory variables as another potentially valuable way to assess linearity. Have a look at the wells 
example again.

regr lc R W WR
predict res,residuals
scatter res R

If this graph showed any 'curvature' [if we could 'see' a U shape or a parabolic shape] we might have 
visual evidence against linearity of log of concentration versus log of distance. No visual evidence 
against linearity here. Again, adding a lowess smooth to this graph may enable a clearer assessment of 
possible of possible curvature.
If such displays lead to uncertain assessment, this may be an occasion to consult with a biostatistician 
who is familiar with interpretation of such displays. Researchers at the beginning of their use of such 
tools tend to 'see' too much in these sorts of displays. This can be thought of as a criticism of visual 
assessment. I do not agree. Some researchers feel the need to add pointless 'goodness-of-fit' tests 



arguing that visual assessment is too 'subjective' and that , somehow, the GOF tests are then preferred. 
Nonsense.


