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The Population Model, the Sampling Model and the Inverse Model

Consider two events, A and B, their marginal probabilities, their conditional probabilities and their 
joint probabilities :

                P(Ā)     P(A)
  P (B)    P(Ā B)   P(A B)    P(A |B)
  P (B̄)    P(Ā B̄)   P (A B̄)   P(A | B̄)
              P(B| Ā)  P (B| A)

We then have odds(B|A )=
P(B|A)
P(B̄ |A)

and the three other odds.

We have the odds ratio ORB  =
odds(B|A)
odds(B| Ā)

which the odds of B in the presence of A divided by 

the odds of B in the absence of A.

We have the odds ratio ORA  =
odds(A|B)
odds(A| B̄)

which the odds of A in the presence of B divided by 

the odds of A in the absence of B.

But, it turns out that ORB = ORA =
P(A B)P(Ā B̄)
P(A B̄)P(Ā B)

.

Now, if we have disease D and exposure E and if all of the probabilities make sense, we see that :
   ORD = ORE so the odds ratio can be expressed in terms of either disease status or in terms of 
exposure status. A cross sectional study would, in principle,  have all the probabilities.

Now consider a case-control study where we determine individuals with disease; the cases. and then we
determine individuals without disease; the controls. There is no probability distribution for case-control
status. Most authors write P (E |D) for the probability of E for those selected individuals with 
disease and P(E | D̄) for the probability of E for those selected individuals without disease. With this
understanding, we have ORE which is the odds of exposure for those with disease divided by the 
odds of exposure for those without disease.

Keogh & Cox (2014) 'Case Control Studies' provides the clearest presentation of this material and 
much more.
They consider three different models: 
The population model : based on the joint probabilities.
The sampling model : based on the probability for exposure those with disease and the probability for 
exposure for those without disease.
...and a third model which they call the inverse model or the formal interpretative model : now 
'formally' based on the probability of disease for those exposed and the probability of disease for those 
not exposed.
They make the clear statement that the inverse model is "not the distribution generating the data".



They, then, present the sampling model and the inverse model explicitly, first for this simple example:

If, for the sampling model, p = P(E) , then log(  p
1-p

)=β0+β1 D

If, for the inverse model, q = P(D) , then log(  q
1-q

)=α0+α1 E .

Then, Keogh & Cox show that the MLE for α1 is the same as the MLE for β1 . In addition, they 
point out that the 'asymptotic' standard errors for the MLE's are the same and that the exact inferences 
based on the hypergeometric are the same.

Later in their book, Keogh & Cox, expand this material to more 'realistic' settings using logistic 
regression with many explanatory variables. They include considerably more elaborate contexts as 
well.

There is a wide class of models where the MLE's for the appropriate parameters will be identical. There
are, though, many settings where the two models [ sampling and inverse ] will not yield the same 
MLE's but, as developed in Keogh & Cox, there is, nevertheless, a theoretical justification for the 
inferences from the inverse model. In other words, the 'classic' theory for Maximum Likelihood is 
shown to apply to these inverse models.

The sampling model may not be based on logistic regression. If, for example, the exposure is a 
measured 'continuous' variable. One could argue that the sampling model would based on linear 
regression and the study of the expected exposure. The inverse model would still be a logistic 
regression studying the log odds of disease. In this situation, there are no directly comparable 
regression coefficients.

Also, the sampling model and the inverse model would determine different diagnostics and assessments
like the AUC, outlier detection and goodness of fit, for examples.

Selection Bias
Now consider the study of the prevalence of disease D. Suppose the probability of selection is 
conditional on disease status. So we have : P (S|D)  and  P (S| D̄) and then we have:
  ORS which is the odds of selection for those with disease divided by the odds of selection for those 
without disease.
Now if we are prepared to assume an analog of the Population Model with the four joint probabilities, 
then we have that ORS= ORD which is the odds of disease for those selected divided by the odds of 
disease for those not selected.
Now if, for example, P (S|D)  is greater than P(S| D̄) , then ORS= ORD  is greater than one . We 
can then see that P(D| S)  is greater than P(D) indicating selection bias.


