Models In Epidemiology And Biostatistics
Gordon Hilton Fick

Conditional Models With Repeated Measures

In considering the dental data, the asthma data and the pain data, we have identified a number of issues
that need to be addressed.

1) Repeated measurements from the same individual are not independent. For example:
. use pott.dta

. reshape wide

. corr distl dist2 dist3 dist4

(obs=27)
| distl dist2 dist3 dist4
_____________ +____________________________________
distl | 1.0000
dist2 | 0.6256 1.0000
dist3 | 0.7108 0.6349 1.0000
dist4d | 0.5998 0.7593 0.7950 1.0000

2) Regression analyses adjusting for subjects has an analog with viewing subjects like confounders but
subjects are not 'populations'. Rather they might be viewed as a sample from a population. We tried:

27
E(y)=B,+ Z B ;5 ,+Bzage+P,oage*sex where §; is the indicator for the jth subject. The first
=2

27 B, atterhpt to 'adjust’ for subjects. A more realistic plan conceives of u; instead of B; where
the u; areasample from a population of such children.

3) We need to consider data that have varying numbers of repeated measurements per individual.

4) We need to consider data with varying values for the covariates. For example, in the dental data, we
should use the child's actual age when each distance measurement was recorded.

5) The regression analyses considered so far have not enabled the separation of key between subjects
comparisons. In the asthma data, we could not consider order modification in our regression approach.
6) So far, we have seen that the data could be placed in either wide format or in long format. In long
format, a covariate of interest [age in the dental data] is recorded as a column with multiple rows per
individual. In wide format, the covariate is implicitly a part of the outcome variable name. This would
be acceptable with the data recorded in 'waves' [as in ages 8, 10 12, 14] but would not be practical if we
recorded the child's actual age.

7) We would like to have methods that extend these matters to dichotomous outcomes [logistic
regression and others], ordinal outcomes [proportional odds models and others], count outcomes
[poisson, negative binomial and variants] and interval 'measured' outcomes [linear regression and its
many extensions]

8) We need to identify other settings in which a lack of independence is crucial [matching, blocking,
clustering; for example] and then anticipate that our methods extend to these settings.

We can write our models in vector/matrix notation:

y=XB+e€ [linear]



log(ﬁ)=XB [logistic: p=Pr(y=1) ]

logh=X B+loge [poisson or negative binomial with exposure e ; E(y)=A

log( %) =X B—x; [proportional odds model] p;=Pr (y>cut j)

i
All our models use the assumption that y are statistically independent.

If y isnormally distributed, statistical independence is the same as VAR y being a diagonal
matrix. In many circumstances, we restrict this assumption even more and say that VAR y=c"1

Let us now consider the 'simplest' conditional model:
y=XPB+Zu+e or E(y:u)=XPB+Zu and, for now, we will assume that VAR e=c’]

and let us return to the dental data:

y will be a 108 x 1 column vector; X will be a 108x4 matrix; B will be a 4x1 column vector;

u will be a 27x1 column vector; Z will be 108x27 matrix and € will be a 108x1 column vector.
The columns of Z are the indicators for each of the 27 subjects. The u vector is something new.
They are not regression coefficients in the sense we seen before. They are unknown values from a
probability distribution with mean zero and VAR u=co.1 . Also, it is standard here to require that

1'u=0 . This constraint ensures the correct interpretation of B
With this model and our data, we will have estimates for the regression coefficients and o> as before
. Now we will get an estimate for o> and predictions for the u
We then get different sets of quantities to study. We get estimates of X B like before but we now
also get estimates of E(y:u)=XP+Z u

. mixed dist age sex as || subject:
Performing EM optimization:

Performing gradient-based optimization:

Iteration O: log likelihood = -214.31953
Iteration 1: log likelihood = -214.31953
Computing standard errors:
Mixed-effects ML regression Number of obs = 108
Group variable: subject Number of groups = 27
Obs per group: min = 4
avg = 4.0
max = 4
Wald chi2 (3) = 142.05
Log likelihood = -214.31953 Prob > chi2 = 0.0000
dist | Coef. Std. Err. 4 P>|z| [95% Conf. Interval]

age | .784375 .0765383 10.25 0.000 .6343626 .9343874



sex | 1.032102 1.508864 0.68 0.494 -1.925217 3.989422

as | -.3048295 .1199125 -2.54 0.011 -.5398537 -.0698054

cons | 16.34062 .9630849 16.97 0.000 14.45301 18.22824

Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval]

_____________________________ +________________________________________________
subject: Identity |

var (_cons) | 3.030561 .9552074 1.633923 5.621014

_____________________________ +________________________________________________

var (Residual) | 1.874597 .2945645 1.377699 2.550711

LR test vs. linear regression: chibar2 (01) = 49.60 Prob >= chibar2 = 0.0000

. predict yhm,xb

. predict yhc,fitted
. predict u, reffects
. predict res,res

scatter yhc age,connect(ascending) msymbol (i) mlabel (subject) by (sex)

ytitle("conditional")

scatter yhm age,connect(ascending) msymbol (i) by (sex) ytitle("marginal")

gen uO=u

. by subject: replace u0=. if n!'=1
gnorm u,ytitle("sorted observed")
graph box res, over (sex) marker (1l,mlabel (subject))
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There are many ways to extend the above model. Lets try:

E(y:uyu,)=XB+Zyu,+Z,u, where Z, contains the indicators for the subjects as before and

Z, isagain a 108x27 matrix that contains the ages for each child. Each row of [ #, #; ] then
provides intercept and slope adjustment of each child. Further it fairly standard to model

VAR uy=0.,I and VAR u,=c’,I and to allow for a covariance o, . It is known that intercept
and slope are typically correlated.

. mixed dist age sex as || subject: age,covariance (unstr)
Performing EM optimization:

Performing gradient-based optimization:

Iteration O: log likelihood = -213.92903
Iteration 1: log likelihood = -213.90624
Iteration 2: log likelihood = -213.90298
Iteration 3: log likelihood = -213.90298

Computing standard errors:

Mixed-effects ML regression Number of obs = 108

Group variable: subject Number of groups = 27

Obs per group: min = 4

avg = 4.0

max = 4

Wald chi2 (3) = 121.59

Log likelihood = -213.90298 Prob > chi2 = 0.0000

dist | Coef Std. Err 4 P>|z| [95% Conf. Interval]

_____________ +________________________________________________________________

age | .784375 .0827532 9.48 0.000 .6221818 .9465682

sex | 1.032102 1.535496 0.67 0.501 -1.977414 4.041618

as | -.3048295 .1296493 -2.35 0.019 -.5589375 -.0507216

cons | 16.34062 .9800834 16.67 0.000 14.4197 18.26155

Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval]

_____________________________ +________________________________________________
subject: Unstructured |

var (age) | .0237593 .0340875 .0014276 .3954176

var (_cons) | 4.556941 4.671805 .610965 33.98839

cov(age,_cons) | -.1982569 .3790498 -.9411809 .5446671

_____________________________ +________________________________________________

var (Residual) | 1.716202 3302811 1.176944 2.502541

LR test vs. linear regression: chi2 (3) = 50.44 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

The four graphs in the first example should be repeated.
. drop yhm yhc u u0 res
. predict yhm,xb
. predict yhc,fitted
. predict ul u0, reffects
. predict res,res
scatter yhc age,connect(ascending) msymbol (i) mlabel (subject) by (sex)
yt1tle("cond1t10nal")



scatter yhm age,connect(ascending) msymbol (i) by (sex) ytitle("marginal")
. by subject: replace u0=. if n!=1
. by subject: replace ul=. if n!=l

gnorm ul,ytitle("sorted observed")

gnorm ul,ytitle ("sorted observed")

scatter ul u0

graph box res, over (sex) marker (1l,mlabel (subject))

Next, lets briefly look at the asthma data:
use forsal.dta

reshape long

gen ord =tr

replace ord =l-ord if grp==

mixed pef tr ord grp ||id:

Mixed-effects ML regression Number of obs = 24

Group variable: id Number of groups = 12

Obs per group: min = 2

avg = 2.0

max = 2

Wald chi2 (3) = 19.11

Log likelihood = -121.55306 Prob > chi2 = 0.0003

pef | Coef Std. Err z P>|z| [95% Conf. Interval]

_____________ +________________________________________________________________

tr | -38.33333 9.084224 -4.22 0.000 -56.13808 -20.52858

ord | 3.333333 9.084224 0.37 0.714 -14.47142 21.13808

grp | -29.16667 26.93013 -1.08 0.279 -81.94875 23.61541

cons | 364.1667 20.0967 18.12 0.000 324.7779 403.5555

Random-effects Parameters | Estimate Std. Err [95% Conf. Interval]

_____________________________ +________________________________________________
id: Identity |

var (_cons) | 1928.126 893.9558 777.1136 4783.946

_____________________________ +________________________________________________

var (Residual) | 495.1387 202.1395 222 .4464 1102.119

LR test vs. linear regression: chibar2 (01) = 12.03 Prob >= chibar2 = 0.0003

Notice the resemblance [closeness] to the three t-tests considered earlier. Not exactly the same. The
three t-tests perhaps get the edge [for this little study] since they correctly use the t-distribution for the
p-values and confidence intervals. Our new conditional model uses approximate z values. On the other
hand our conditional model approach is quite general and extensions to a wide range of cross over type
studies are available.

Now lets revisit the pain study with conditional models:
logit( p:u)=XPB+Z u where p=Pr(y=1:u)
The regression coefficients now have interpretations in terms of conditional log odds [conditional on
u ]. We have adjusted for subject specific components.
We can construct estimates assuming #=0 but these are not marginal log odds. We can construct
predictions of the conditional log odds and the u . Assessment of the u can be limited if there are
only a fixed small set of possible outcomes and explanatory variables.



use pain.dta

replace grp=grp-1

gen trg=tr*grp

melogit imp tr grp trg || id:

Mixed-effects logistic regression Number of obs = 168

Group variable: id Number of groups = 84

Obs per group: min = 2

avg = 2.0

max = 2

Integration method: mvaghermite Integration points = 7

Wald chi2 (3) = 14.57

Log likelihood = -105.41698 Prob > chi2 = 0.0022

imp | Coef. Std. Err. z P>|z| [95% Conf. Interval]

_____________ 4$4--————————eee e

tr | .3327301 .4738805 0.70 0.483 -.5960587 1.261519

grp | -1.530021 .5735093 -2.67 0.008 -2.654079 -.4059636

trg | 1.891031 .752978 2.51 0.012 .4152214 3.366841

cons | .2166222 .3527853 0.61 0.539 -.4748242 .9080687

_____________ +________________________________________________________________
id |

var (_cons) | .6153444 .7999041 .0481522 7.863574

0.91 Prob>=chibar2 = 0.1704

LR test vs. logistic regression: chibar2(01)
For proportional odds, we now have:

logit( p;:u)=XB—«,+Z u where p,=Pr(y>cut;:u)
Again, the regression coefficients are in terms of conditional log odds

. meologit ove tr grp trg || id:
Mixed-effects ologit regression Number of obs = 168
Group variable: id Number of groups = 84
Obs per group: min = 2
avg = 2.0
max = 2
Integration method: mvaghermite Integration points = 7
Wald chi2 (3) = 24.12
Log likelihood = -251.87999 Prob > chi2 = 0.0000
ove | Coef. Std. Err. z P>|z| [95% Conf. Interval]
_____________ +________________________________________________________________
tr | .0601627 .4147691 0.15 0.885 -.7527698 .8730952
grp | -1.528548 .525087 -2.91 0.004 -2.557699 -.4993961
trg | 2.206275 .6230285 3.54 0.000 .9851615 3.427388
_____________ +________________________________________________________________
/cutl | -5.220747 .7941854 -6.57 0.000 -6.777322 -3.664173
/cut2 | -1.396146 .4046063 -3.45 0.001 -2.18916 -.6031321
/cut3 | -.3287973 .380997 -0.86 0.388 -1.075538 .4179431
/cutd | .5194378 .3821936 1.36 0.174 -.2296478 1.268523
/cuth | 2.978362 .511053 5.83 0.000 1.976716 3.980007
_____________ +________________________________________________________________

id |

var (_cons) | 1.498867 .7778412 .5420376 4.144733
LR test vs. ologit regression: chibar2 (01) = 7.33 Prob>=chibar2 = 0.0034

melogit provides the conditional model for repeated dichotomous outcomes and the logit link.



meologit provides the conditional model for repeated ordinal outcomes, the logit link and the
proportional odds assumption.

Now let us consider a study of count outcomes.
log(A:u)=XPB+Z u where y~poisson(h:u)
The details are given in the paper by Breslow and Clayton (1993)

use epilepsy.dta

gen lsl=log(seizures+l)

sort subject vs

lab def trl 0 placebo 1 active

lab val treat trl

scatter 1lsl vs,connect(ascending) by (treat) mlabel (subject)
table treat,c(mean lbas sd lbas)

table treat vs,c(mean 1lsl sd 1lsl)

gen trv=treat*vs

mepoisson seizures treat vs trv || subject:
Mixed-effects Poisson regression Number of obs = 236
Group variable: subject Number of groups = 59
Obs per group: min = 4
avg = 4.0
max = 4
Integration method: mvaghermite Integration points = 7
Wald chi2 (3) = 10.26
Log likelihood = -695.90821 Prob > chi2 = 0.0164
seizures | Coef. Std. Err. z P>|z| [95% Conf. Interval]
_____________ +________________________________________________________________
treat | -.2126636 .2713048 -0.78 0.433 -.7444113 .3190841
vs | -.0428052 .028845 -1.48 0.138 -.0993403 .0137299
trv | -.0314748 .0405755 -0.78 0.438 -.1110014 .0480518
cons | 1.878152 .1953233 9.62 0.000 1.495326 2.260979
_____________ +________________________________________________________________
subject |
var (_cons) | .8788584 .1788546 .5897836 1.309619
LR test vs. Poisson regression: chibar2(01) = 1884.04 Prob>=chibar2 = 0.0000
. mepoisson seizures treat vs trv || subject: vs ,cov(unstr)
Mixed-effects Poisson regression Number of obs = 236
Group variable: subject Number of groups = 59
Obs per group: min = 4
avg = 4.0
max = 4
Integration method: mvaghermite Integration points = 7
Wald chi2 (3) = 3.30
Log likelihood = -686.33683 Prob > chi2 = 0.3470
seizures | Coef Std. Err 4 P>|z| [95% Conf. Interval]
_____________ +________________________________________________________________
treat | -.2509616 .2987855 -0.84 0.401 -.8365704 .3346471
vs | -.0434861 .045908 -0.95 0.344 -.133464 .0464918
trv | -.0138791 .0627282 -0.22 0.825 -.1368241 .1090658
cons | 1.864557 .2166208 8.61 0.000 1.439987 2.289126
_____________ +________________________________________________________________
subject |
var (vs) | .0211017 .0091714 .0090024 .0494622



var (_cons) | 1.032918 .243383 .650879 1.639199

_____________ +________________________________________________________________
subject |

cov(_cons,vs)| -.0573591 .0381642 -1.50 0.133 -.1321596 .0174414
LR test vs. Poisson regression: chi2 (3) = 1903.18 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

log(M:u)=XPB+Z u where y:u~NB(\) with E(y:u)=\ and VAR (y:u)=diag[A(1+a))]

. menbreg seizures treat vs trv || subject:

Mixed-effects nbinomial regression Number of obs = 236
Overdispersion: mean

Group variable: subject Number of groups = 59

Obs per group: min = 4

avg = 4.0

max = 4

Integration method: mvaghermite Integration points = 7

Wald chi2 (3) = 3.97

Log likelihood = -655.11664 Prob > chi2 = 0.2649

seizures | Coef Std. Err 4 P>|z| [95% Conf. Interval]

_____________ +________________________________________________________________

treat | -.2438501 .3021013 -0.81 0.420 -.8359577 .3482575

vs | -.0447497 .0465564 -0.96 0.336 -.1359985 .0464991

trv | -.0184578 .0667353 -0.28 0.782 -.1492566 .112341

cons | 1.89958 .2157934 8.80 0.000 1.476633 2.322528

_____________ +________________________________________________________________

/lnalpha | -2.008753 2353817 -8.53 0.000 -2.470092 -1.547413

_____________ +________________________________________________________________

subject |
var (_cons) | .8447953 1788146 .5579315 1.279152
LR test vs. nbinomial regression:chibar2(01) = 183.61 Prob>=chibar2 = 0.0000

Mean dispersion is the default. Constant dispersion is an option.

Breslow & Clayton provide one analysis and discussion. The following is a close version of their
results.

. mepoisson seizures lbas treat lbas_trt lage v4 vs || subject: vs ,cov(unstr)
Mixed-effects Poisson regression Number of obs = 236
Group variable: subject Number of groups = 59
Obs per group: min = 4

avg = 4.0

max = 4

Integration method: mvaghermite Integration points = 7
Wald chi2 (6) = 118.18

Log likelihood = -654.32718 Prob > chi2 = 0.0000
seizures | Coef. Std. Err 4 P>|z| [95% Conf. Interval]
_____________ +________________________________________________________________
lbas | .8850952 .1312167 6.75 0.000 .6279152 1.142275

treat | -.9281649 .4020194 -2.31 0.021 -1.716108 -.1402214
lbas_trt | .3378666 .2043677 1.65 0.098 -.0626867 .7384199
lage | .4760858 .353526 1.35 0.178 -.2168124 1.168984

vd | -.1392905 .0845376 -1.65 0.099 -.3049812 .0264001



vs | -.0131428 .0415294 -0.32 0.752 -.0945388 .0682532

cons | 2.165474 .2410654 8.98 0.000 1.692995 2.637954

_____________ +________________________________________________________________
subject |

var (vs) | .0230964 .0098286 .0100304 .0531828

var (_cons) | .3929233 .1249306 .2107011 .7327381

_____________ +________________________________________________________________
subject |

cov(_cons,vs)| -.0571615 .0308857 -1.85 0.064 -.1176965 .0033734

LR test vs. Poisson regression: chi2 (3) = 325.78 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

Lets now take a look at a study in Gregoire (1996). We can look at the data with:

use depress.dta
sort group subj visit
twoway connected dep visit,connect (ascending) by (group) ytitle (Depression) xlabel(1/6)

This data set display is probably too busy and we should, perhaps, regraph with about 10 subjects or so
per display. Nevertheless, this display illustrates a whole range of issues that we did not see in the
dental study. Some subjects have only one score after baseline (like subject #61) . Some subjects have
only 2 scores (like subject #8). The majority of subjects completed all 6 visits. Subject #39 seems so
different from the rest. Subject #53 appears to have an “impossibly” low score at visit #1 especially as
this person's pre-assignment score was 26. Should we treat the 'completers' the same as the 'dropouts'?

Also, there are ten dropouts in the placebo and six in the active group.
table group visit,c(n dep)

| visit
group | 1 2 3 4 5 6
__________ +___________________________________
placebo | 27 22 17 17 17 17
estrogen | 34 31 29 28 28 28

placebo estrogen

Depression
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Here is the same data with the baseline values added as 'visit 0':

Placebo Estrogen

30

20

Depression

Graphis by group

Notice that those receiving placebo seem to 'benefit' from being in this study. Placebos can be
wonderful things :-) Lets further explore the idea of a post baseline slope as we did with the dental
study. This is a bit trickier still in that we need to advise Stata to ignore those individuals with only one
post baseline measurement. This requires use of the 'capture' command and the use of a system variable
_rc. Have a look at the Stata Programming Manual for more on this valuable and powerful set of
utilities.

quietly forval num = 1/61 {

capture regr dep visit if subj== num'

if rc==0 regr dep visit if subj=="num'

if _rc==0 replace blist= b[visit] if subj=='num'

}
by subj: replace blist=. if n!=l

Placebo Estrogen

10

blist

I e

L

W

Graphs by group

This display shows that median slope may be more negative for those receiving estrogen but there are
serious outliers [that come from individuals with only 2 measurements]. Here is a display of the

dropouts

twoway connected dep visit if drop==1,connect(ascending) by (group) ytitle (Depression)
xlabel (1/6) mlabel (subj)
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The next two analyses enable us to consider dropout status as potential modifier/confounder.
Completers: drop==0; dropouts: drop==1.

. mixed dep group drop dg || subj:

Mixed-effects ML regression Number of obs = 295

Group variable: subj Number of groups = 61

Obs per group: min = 1

avg = 4.8

max = 6

Wald chi2 (3) = 26.94

Log likelihood = -876.67365 Prob > chi2 = 0.0000

dep | Coef Std. Err z P>|z| [95% Conf. Interval]

_____________ +________________________________________________________________

group | -4.075945 1.308373 -3.12 0.002 -6.64031 -1.511581

drop | 3.766207 1.934725 1.95 0.052 -.0257844 7.558199

dg | 3.115024 2.957592 1.05 0.292 -2.681749 8.911798

cons | 13.37725 1.032059 12.96 0.000 11.35446 15.40005

Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval]

_____________________________ +________________________________________________
subj: Identity |

var (_cons) | 15.46552 3.469955 9.96283 24.00746

_____________________________ +________________________________________________

var (Residual) | 15.8517 1.453268 13.24459 18.972

LR test vs. linear regression: chibar2(01) = 104.98 Prob >= chibar2 = 0.0000



. mixed dep group drop || subj:

Mixed-effects ML regression Number of obs = 295

Group variable: subj Number of groups = 61

Obs per group: min = 1

avg = 4.8

max = 6

Wald chi2 (2) = 25.54

Log likelihood = -877.22587 Prob > chi2 = 0.0000

dep | Coef. Std. Err z P>|z| [95% Conf. Interval]

_____________ +________________________________________________________________

group | -3.464283 1.180574 -2.93 0.003 -5.778165 -1.1504

drop | 5.100048 1.470863 3.47 0.001 2.217209 7.982886

cons | 12.99666 .9732443 13.35 0.000 11.08914 14.90419

Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval]

_____________________________ +________________________________________________
subj: Identity |

var (_cons) | 15.69568 3.529713 10.10086 24.38945

_____________________________ +________________________________________________

var (Residual) | 15.87724 1.45723 13.26328 19.00637

LR test vs. linear regression: chibar2 (01) = 105.01 Prob >= chibar2 = 0.0000

Now we can consider the distribution of the residuals € conditional on the subject specific
components u . The default is to assume [conditional] independence and constant variance.

There are a very wide range of possible forms for this distribution. We do continue to assume
independence between the residuals from different subjects.

As a couple of examples, we can allow for possibly different variances, say, between treatment groups
or allow for the Toeplitz form of covariances.

. mixed dep group drop || subj:,res(,by(group))

Mixed-effects ML regression Number of obs = 295

Group variable: subj Number of groups = 61

Obs per group: min = 1

avg = 4.8

max = 6

Wald chi2(2) = 25.57

Log likelihood = -877.22 Prob > chi2 = 0.0000

dep | Coef Std. Err z P>|z| [95% Conf. Interval]

_____________ +________________________________________________________________

group | -3.464819 1.180137 -2.94 0.003 -5.777845 -1.151792

drop | 5.094085 1.469908 3.47 0.001 2.213119 7.975051

cons | 12.99742 .9723903 13.37 0.000 11.09157 14.90327

Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval]

_____________________________ +________________________________________________
subj: Identity |

var (_cons) | 15.6917 3.528878 10.09822 24 .38345



Residual: Independent,

by group
placebo: var (e) 15.68204 2.291416 11.7768 20.88227
estrogen: var (e) 16.00389 1.884266 12.70594 20.15785
LR test vs. linear regression: chi2 (2) = 105.02 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.
. mixed dep group drop || subj:,res(toeplitz 1,t(visit))

Mixed-effects ML regression Number of obs = 295

Group variable: subj Number of groups = 61

Obs per group: min = 1

avg = 4.8

max = 6

Wald chi2 (2) = 25.94

Log likelihood = -856.75753 Prob > chi2 = 0.0000

dep | Coef. Std. Err z P>|z| [95% Conf. Interval]

_____________ +________________________________________________________________

group | -3.504549 1.145759 -3.06 0.002 -5.750195 -1.258903

drop | 5.004422 1.460866 3.43 0.001 2.141178 7.867666

cons | 13.08391 .9416329 13.89 0.000 11.23834 14.92948

Random-effects Parameters | Estimate Std. Err [95% Conf. Interval]

_____________________________ +________________________________________________
subj: Identity |

var (_cons) | 12.20801 3.39303 7.080542 21.04861

_____________________________ +________________________________________________
Residual: Toeplitz (1) |

covl | 6.957426 1.199411 4.606623 9.308229

var (e) | 18.07575 1.922631 14.67432 22.26561

LR test vs. linear regression: chi2 (2) = 145.95 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.
estat wcorr

Standard deviations and correlations for subj = 1:

Standard deviations:

visit | 1 2 3 4 5 6
_____________ +________________________________________________

Correlations
visit | 1 2 3 4 5 6

_____________ +________________________________________________

1] 1.000

2 | 0.633 1.000

3| 0.403 0.633 1.000

4 | 0.403 0.403 0.633 1.000

5| 0.403 0.403 0.403 0.633 1.000

6 | 0.403 0.403 0.403 0.403 0.633 1.000



estat wcorr,cov

Covariances for subj = 1:

I

+

| 30.284
| 19.165 30.284

| 12.208 19.165 30.284

| 12.208 12.208 19.165 30.284

| 12.208 12.208 12.208 19.165 30.284

| 12.208 12.208 12.208 12.208 19.165 30.284



