
  

Models In Epidemiology And Biostatistics
Gordon Hilton Fick

Session 9 :
The Fit : 

Characteristics and Assessment



  

Two Situations to Consider 

1) Models with a fixed set of distinct fitted values
  - typically seen in models that deal with stratified
analyses

2) Models with a potentially different fitted value
for each individual.
  - typically seen in models with a measured
predictor such as actual age, actual height etc...



  

1) Models That Determine a Fixed Set of Fitted
Values



  

A Return to 4 Strata: Age and Gender

Lets us consider the study of a
disease/exposure relationship with age group
(Y O) and gender (F M) as potential
modifiers/confounders.

The table from ' table e g a,c(mean d) '

records the 8 estimates of the conditional
probabilities: the 'observed' proportions



  

. cs dis exp,by(age gender) or

      age gender |       OR       [95% Conf. Interval]   M-H Weight
-----------------+-------------------------------------------------
             0 0 |    1.179451     .7858152   1.770499        21.12 (Cornfield)
             0 1 |    .7972632     .5030501   1.264035       20.608 (Cornfield)
             1 0 |    .9949764     .6448348   1.535662       20.304 (Cornfield)
             1 1 |    .8470745     .5651307   1.269885       25.568 (Cornfield)
-----------------+-------------------------------------------------
           Crude |    1.840806     1.540884   2.199106              
    M-H combined |    .9497717     .7678975   1.174722
-------------------------------------------------------------------
Test of homogeneity (M-H)      chi2(3) =    1.983  Pr>chi2 = 0.5758

                   Test that combined OR = 1:
                                Mantel-Haenszel chi2(1) =      0.23
                                                Pr>chi2 =    0.6350
. table e g a,c(mean d)

----------------------------------------------------
          |                 a and g                 
          | -------- y -------    -------- o -------
        e |        f         m           f         m
----------+-----------------------------------------
       ne | .6015037  .2970822    .2942779  .6573427
        e |  .640327  .2520325    .2932331  .6190476
----------------------------------------------------



  

The model for p=Pr(D)

would be:

and this model gives fitted values for the log
odds

for each individual in the study. 

There are, however, only 8 different fitted
values. One distinct value for each combination
of E, G and A.

log p/1−p=01G2 A3GA4 E5EG6 EA7EGA

log  p /1−p=b0b1Gb2 Ab3GAb4 Eb5EGb6 EAb7EGA



  

Model 1
. logit d g a ga e eg ea ega

Logistic regression                               Number of obs   =       2000
                                                  LR chi2(7)      =     239.85
                                                  Prob > chi2     =     0.0000
Log likelihood = -1259.9624                       Pseudo R2       =     0.0869

------------------------------------------------------------------------------
           d |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
           g |  -1.272966   .2099288    -6.06   0.000    -1.684418   -.8615129
           a |  -1.286432   .2109222    -6.10   0.000    -1.699831   -.8730315
          ga |   2.799137   .2970468     9.42   0.000     2.216936    3.381338
           e |   .1650489   .2078437     0.79   0.427    -.2423173     .572415
          eg |  -.3916184   .3146884    -1.24   0.213    -1.008396    .2251594
          ea |  -.1700852   .3043002    -0.56   0.576    -.7665025    .4263322
         ega |   .2306881   .4374387     0.53   0.598    -.6266761    1.088052
       _cons |   .4117347   .1771099     2.32   0.020     .0646057    .7588638
------------------------------------------------------------------------------

. predict lohat,xb

. predict phat,p

. est stor m1

The predict option xb gives the fitted values on the log odds scale: the
fitted log odds
The predict option p gives the fitted values on the probability scale: the
fitted proportions



  

. tab lohat

     Linear |
 prediction |      Freq.     Percent        Cum.
------------+-----------------------------------
  -1.087801 |        123        6.15        6.15
  -.8797331 |        133        6.65       12.80
  -.8746968 |        367       18.35       31.15
  -.8612309 |        377       18.85       50.00
   .4117347 |        133        6.65       56.65
   .4855078 |        357       17.85       74.50
   .5767836 |        367       18.35       92.85
   .6514745 |        143        7.15      100.00
------------+-----------------------------------
      Total |      2,000      100.00

. tab phat

      Pr(d) |      Freq.     Percent        Cum.
------------+-----------------------------------
   .2520327 |        123        6.15        6.15
   .2932331 |        133        6.65       12.80
   .2942779 |        367       18.35       31.15
   .2970822 |        377       18.85       50.00
   .6015037 |        133        6.65       56.65
   .6190476 |        357       17.85       74.50
    .640327 |        367       18.35       92.85
   .6573427 |        143        7.15      100.00
------------+-----------------------------------
      Total |      2,000      100.00



  

Fitted Proportions

Notice that, for this model here, the fitted
proportions are the same as the observed
proportions. The model fits the data (the
observed proportions) exactly.

There are 8 regression coefficients and these
coefficients directly correspond to the 8
conditional probabilities.

Any simpler model “nested” within this model
will inevitably yield fitted values that do not
reproduce the observed proportions. 



  

Model Assessment

Likelihood ratio tests essentially compare the
fitted values obtained from 2 candidate models:
one model nested within the other model.

In principle, an assessment the quality of a fit
should include comparing fitted values either
through analytic testing methods or through
graphical methods.

Now consider the following nested model:



  

Model 2
. logit d g a ga e

Logistic regression                               Number of obs   =       2000
                                                  LR chi2(4)      =     237.86
                                                  Prob > chi2     =     0.0000
Log likelihood = -1260.9553                       Pseudo R2       =     0.0862

------------------------------------------------------------------------------
           d |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
           g |  -1.472424   .1457904   -10.10   0.000    -1.758168    -1.18668
           a |  -1.432539   .1444609    -9.92   0.000    -1.715677   -1.149401
          ga |   2.903936   .2172565    13.37   0.000     2.478121    3.329751
           e |  -.0515205   .1084388    -0.48   0.635    -.2640565    .1610156

       _cons |    .570101   .1223205     4.66   0.000     .3303572     .8098449
------------------------------------------------------------------------------

. predict phat2,p

. est stor m2



  

. tab phat2

      Pr(d) |      Freq.     Percent        Cum.
------------+-----------------------------------
   .2781126 |        123        6.15        6.15
   .2861905 |        133        6.65       12.80
   .2885734 |        377       18.85       31.65
   .2968302 |        367       18.35       50.00
   .6265755 |        357       17.85       67.85
   .6268158 |        367       18.35       86.20
   .6385494 |        143        7.15       93.35
   .6387865 |        133        6.65      100.00
------------+-----------------------------------
      Total |      2,000      100.00

. gen diff2=phat-phat2

. tab diff2

      diff2 |      Freq.     Percent        Cum.
------------+-----------------------------------
  -.0372828 |        133        6.65        6.65
  -.0260799 |        123        6.15       12.80
  -.0075278 |        357       17.85       30.65
  -.0025522 |        367       18.35       49.00
   .0070426 |        133        6.65       55.65
   .0085089 |        377       18.85       74.50
   .0135112 |        367       18.35       92.85
   .0187933 |        143        7.15      100.00
------------+-----------------------------------
      Total |      2,000      100.00



  

Residuals

The residuals are the differences between the
observed and the fitted.

Here, we consider diff2 and we see very tiny
residual values.

Now consider the following model:



  

Model 3
. logit d g a e
 

Logistic regression                               Number of obs   =       2000
                                                  LR chi2(3)      =      45.75
                                                  Prob > chi2     =     0.0000
Log likelihood = -1357.0128                       Pseudo R2       =     0.0166

------------------------------------------------------------------------------
           d |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
           g |  -.0042679   .0907935    -0.05   0.963      -.18222    .1736841
           a |   .0165261   .0907765     0.18   0.856    -.1613925    .1944448
           e |   .6101303   .0907885     6.72   0.000      .432188    .7880725
       _cons |  -.4690968   .0910724    -5.15   0.000    -.6475956   -.2905981
------------------------------------------------------------------------------

. predict phat3,p

. est stor m3



  

. tab phat3

      Pr(d) |      Freq.     Percent        Cum.
------------+-----------------------------------
   .3838201 |        377       18.85       18.85
     .38483 |        133        6.65       25.50
   .3877361 |        143        7.15       32.65
   .3887497 |        367       18.35       51.00
   .5341382 |        123        6.15       57.15
      .5352 |        367       18.35       75.50
   .5382481 |        357       17.85       93.35
   .5393086 |        133        6.65      100.00
------------+-----------------------------------
      Total |      2,000      100.00

. gen diff3=phat-phat3

. tab diff3

      diff3 |      Freq.     Percent        Cum.
------------+-----------------------------------
  -.2821055 |        123        6.15        6.15
  -.2460755 |        133        6.65       12.80
  -.0944718 |        367       18.35       31.15
  -.0867379 |        377       18.85       50.00
   .0807996 |        357       17.85       67.85
    .105127 |        367       18.35       86.20
   .2166737 |        133        6.65       92.85
   .2696066 |        143        7.15      100.00
------------+-----------------------------------
      Total |      2,000      100.00



  

Fit Assessment

The residuals comparing Model 3 with Model 1
are large.

The residuals comparing Model 2 with Model 1
are much smaller.  

Our primary assessment would be based on the
epidemiology but we can also observe the
comparison in the quality of the fit. 

The likelihood ratio tests would be:



  

. lrtest m1 m3

Likelihood-ratio test                                  LR chi2(4)  =    194.10
(Assumption: m3 nested in m1)                          Prob > chi2 =    0.0000

. lrtest m1 m2

Likelihood-ratio test                                  LR chi2(3)  =      1.99
(Assumption: m2 nested in m1)                          Prob > chi2 =    0.5753



  

Coronary Heart Disease and Smoking

Now let us consider a study of CHD and
smoking status. Age at entry was 'measured' at
entry into the study. Here, only integer ages are
available: ranging from 39 to 59. This was a
large study and so there were reasonable
numbers to study the CHD/Smoking
relationship in each of the 21 age 'groups'.



  

. cc chd69 smoke,by(age)

             Age |       OR       [95% Conf. Interval]   M-H Weight
-----------------+-------------------------------------------------
              39 |          2      .6966061   6.191832            3 (exact)
              40 |   .3966942      .0677972   1.641754     3.931408 (exact)
              41 |   4.525862      .9284312   43.18059     .9957082 (exact)
              42 |   5.644444      .5428601   280.0709     .4054054 (exact)
              43 |   1.156146      .3089201   4.175369          2.8 (exact)
              44 |   6.354369      1.332136   59.90066     .8765957 (exact)
              45 |      5.875      1.191274   56.22355     .8602151 (exact)
              46 |   3.141553      .7159255   18.92927     1.288235 (exact)
              47 |   .8783784      .1570899   4.919971     2.013605 (exact)
              48 |   3.748387      1.186502   13.90961     1.890244 (exact)
              49 |       1.16      .4101005   3.311061     4.104478 (exact)
              50 |      2.125       .506783   10.35947     1.659259 (exact)
              51 |   3.504902      .9886477   15.57106     1.658537 (exact)
              52 |   1.698113       .483206   6.784542     2.345133 (exact)
              53 |   1.559091      .3915896   6.678235     2.095238 (exact)
              54 |        7.5      1.413465   73.77356     .6728972 (exact)
              55 |   1.058824      .2219518   5.044204        2.125 (exact)
              56 |   1.285714      .3060225   5.372781     2.210526 (exact)
              57 |        .75       .100976   4.903224     1.777778 (exact)
              58 |         .2      .0040691    2.01862     2.232143 (exact)
              59 |   1.309524      .2605058   6.275484     1.787234 (exact)
-----------------+-------------------------------------------------
           Crude |   1.877353      1.434086   2.465718              (exact)
    M-H combined |   1.883757      1.444799   2.456078              
-------------------------------------------------------------------



  

The right model should help here

We can see that:

1)  a number of the OR estimates are much
larger than 1 

2) these larger OR estimates are at the
intermediate ages

Perhaps the pattern among the estimates of the
log odds can be seen with the right display.

We can get these estimates from the
corresponding logistic regression model:



  

. logit chd smoke##age

Logistic regression                               Number of obs   =       3154
                                                  LR chi2(41)     =     124.40
                                                  Prob > chi2     =     0.0000
Log likelihood = -828.42295                       Pseudo R2       =     0.0698

------------------------------------------------------------------------------
       chd   |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
     1.smoke |   .6931472   .4924238     1.41   0.159    -.2719857     1.65828
             |
         age |
         40  |   .1718503   .5181037     0.33   0.740    -.8436144    1.187315
         [the rows recording ages 41 to 58 not included here]
         59  |   1.645156   .6020774     2.73   0.006      .465106    2.825206
             |
   smoke#age |
       1 40  |  -1.617737   .8379347    -1.93   0.054    -3.260059    .0245851
         [the rows recording ages 41 to 58 not included here]
       1 59  |  -.4234836   .8520745    -0.50   0.619    -2.093519    1.246552
             |
       _cons |  -2.944439   .3877834    -7.59   0.000     -3.70448   -2.184398
------------------------------------------------------------------------------

. predict loh,xb

. twoway (scatter loh age if smoke==0,msymbol(sh) color(black) ytitle("Log Odds"))
(scatter loh age if smoke==1,msymbol(Dh) color(black)), legend(label(1 "Nonsmoker")
label(2 "Smoker")) scheme(s1mono)



  

Fitted Values (Observed Log Odds) Versus Age

Here we have used the elaborate logistic
regression model to provide us with the
observed log odds.

The role here is to try to determine the nature of
the relationship between the log odds of CHD
and age; separately for the smokers and the
nonsmokers.

The first graph next gives some indications but
it is not clear.



  



  

Smoothed Observed Log Odds

Smoothers can often provide the investigator
with better cues from such graphs

The most commonly seen smoother is called
lowess
. twoway (lowess loh age if smoke==0,lpattern("-") color(black) ytitle("Smoothed
Log Odds")) (lowess loh age if smoke==1, color(black)), legend(label(1
"Nonsmoker") label(2 "Smoker")) scheme(s1mono)

These 2 curves suggest the consideration of
parabolae.



  



  

. logit chd s a sa a2 sa2 

Logistic regression                               Number of obs   =       3154
                                                  LR chi2(5)      =      72.68
                                                  Prob > chi2     =     0.0000
Log likelihood = -854.28167                       Pseudo R2       =     0.0408

------------------------------------------------------------------------------
         chd |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
         s   |  -21.21013   10.07058    -2.11   0.035    -40.94809   -1.472157
         a   |  -.4223795   .3125062    -1.35   0.177     -1.03488    .1901213
         sa  |   .9384068   .4183366     2.24   0.025     .1184821    1.758332
         a2  |   .0052485   .0031931     1.64   0.100    -.0010099     .011507
        sa2  |   -.0099179   .0042943    -2.31   0.021    -.0183345   -.0015013
       _cons |   5.269134   7.544311     0.70   0.485    -9.517443    20.05571
------------------------------------------------------------------------------

. predict loh2,xb

. twoway (line loh2 age if smoke==0,lpattern("-") color(black) ytitle("Log Odds"))
(line loh2 age if smoke==1,color(black)), legend(label(1 "Nonsmoker") label(2
"Smoker")) scheme(s1mono)



  



  

Standard Errors for the Fitted Values 

As always, the estimates alone are inadequate
without standard errors or confidence intervals.

Further, intervals constructed for a log odds can
be transformed to intervals for probabilities.
. predict seloh2,stdp

. gen cil=loh2-1.96*seloh2

. gen cih=loh2+1.96*seloh2

. twoway (line loh2 age if smoke==0,lpattern("-") color(black) ytitle("Log
Odds")) (line cil age if smoke==0,lpattern(".") color(black))(line cih age if
smoke==0,lpattern(".") color(black))(line loh2 age if smoke==1,color(black))
(line cil age if smoke==1,lpattern(".") color(black))(line cih age if smo
ke==1,lpattern(".") color(black)), legend(off) scheme(s1mono)



  



  

Getting the estimates of the probabilities

. gen cilp=1/(1+exp(-cil))

. gen cihp=1/(1+exp(-cih))

. gen pest=1/(1+exp(-loh2))

. twoway (line pest age if smoke==0,lpattern("-") color(black)
ytitle("Probability Estimate")) (line cilp age if smoke==0,lpattern(".")
color(black))(line cihp age if smoke==0,lpattern(".") color(black))(line pest
age if smoke==1,color(black))(line cilp age if smoke==1,lpattern(".")
color(black))(line cihp age if smoke==1,lpattern(".") color(black)), legend(off)
scheme(s1mono)

These estimates (fitted proportions) can give us cues to the
issues at hand for specified sets of smoking status and age.

i.e. For a person of a given age and of given smoking status,
the model provides an estimate of the probability of CHD.

The quality of such estimates and the narrowness of the
intervals provide for alternate criteria to assess a model.



  



  

2) Models That Determine a Potentially Distinct
Fitted Value for each Individual in the study

Each individual has a unique set of conditions



  

All different fitted values

The second situation is where there is one or
more measured variables ( like “actual” age
rather than age group ) so that each individual
in the study has their own unique set of
conditions. A participant's age could be
computed from their data of birth compared with
the date of entry into a study. There would
typically be very few sets of individuals with
exactly the same age (in days).



  

Residuals
● Notice, here, that the data, here, cannot be

separated into groups where, in each group, all
conditions are the same. In a sense, there are
no groups and hence no group observed
proportions.

● In a way, then, the observed proportions are all
either 0 or 1 and every model will yield fitted
values         that are between 0 and 1:  all
potentially different for each infant. Every
residual value is either          or          .

0−p 1−p

p



  

Fitted Value Assessment

The investigator can view the 2 sets of fitted
values:

- for the those with the outcome

- for those without the outcome

Unusual, outlying fitted values or odd clusters of
fitted values can give the investigator clues to
trouble



  

Generalized Additive Models

“Generalized Additive Modeling” [Hastie and
Tibshirani (1990)] has shown considerable
promise in the assessment of models:
particularly when the functional form of one or
more measured independent variables is under
question and may not be a series of lines. In the
context of logistic regression,  a  generalized
additive model [GAM] looks like:



  

 

: where the s functions are not specified but are
constructed using “smoothers” as part of the
model algorithm. 

The graph of these “smooth” curves can be
assessed. 

There are tests of significance associated with
nonlinearity in this setting as well.

Several software systems [including Splus and
R] have implemented GAM. Alas, Stata has not
[yet] taken on this implementation.

log  p /1− p=∑
i

 

i x i∑
j

 

s y j



  

The purpose(s) for a model

1 : Attempts at Etiology ? - 

      Understanding the disease-exposure

      relationship 

      Identifying modifiers, confounders and other
      important explanatory variables

2 : Prediction ? Forecast ? The future ? -

      Trying to predict a person's outcome based

      on their explanatory variables



  

From estimates to prediction

Logistic regression gives estimates of log odds and
estimates of probabilities.

How do we get predictions from the estimates?

We establish a threshold.

If a probability estimate is above the threshold, we
'predict' the presence of the outcome [disease,
CHD, ...]

If a probability estimate is below the threshold, we
'predict' the absence of the outcome [no disease, no
CHD, ...] 



  

Actual outcome compared with prediction

From the data used to build the model and
construct the fit, we now have 2 sets of
probability estimates: a set of estimates for
those with CHD and a set of estimates for those
without CHD.

We would hope for high estimates for those
with CHD and low estimates for those without
CHD.

The prevalence of CHD in this study population
provides a guidepost for such deliberations.



  

Prevalence of CHD

. ci chd

    Variable |        Obs        Mean    Std. Err.       [95% Conf. Interval]

-------------+---------------------------------------------------------------

         chd |       3154    .0814838    .0048721         .071931    .0910367

Without knowledge of age and smoking status, one could
estimate the prevalence of CHD, from the data at hand, to be
0.0814838

From the model, estimates above 0.0814838 could suggest
CHD while estimates below 0.0814838 could suggest  No CHD.

+ if       >0.0814838 and – if       < 0.0814838   

If we were to classify the study participants in this way and
compare with their actual CHD status, we would get:

p p



  

. estat class,cutoff(0.0814838)

Logistic model for chd

              -------- True --------
Classified |         D            ~D  |      Total
-----------+--------------------------+-----------
     +     |       163          1158  |       1321
     -     |        94          1739  |       1833
-----------+--------------------------+-----------
   Total   |       257          2897  |       3154

Classified + if predicted Pr(D) >= .0814838
True D defined as chd != 0
--------------------------------------------------
Sensitivity                     Pr( +| D)   63.42%
Specificity                     Pr( -|~D)   60.03%
Positive predictive value       Pr( D| +)   12.34%
Negative predictive value       Pr(~D| -)   94.87%
--------------------------------------------------
False + rate for true ~D        Pr( +|~D)   39.97%
False - rate for true D         Pr( -| D)   36.58%
False + rate for classified +   Pr(~D| +)   87.66%
False - rate for classified -   Pr( D| -)    5.13%
--------------------------------------------------
Correctly classified                        60.30%
--------------------------------------------------



  

Cutoff or Threshold

Here the cutoff (sometimes called the
threshold) determines the classification rule.
These classifications can be called predictions.

Based on this cutoff, we obtain estimates of
sensitivity and specificity:

. cii 257 163

                                                         -- Binomial Exact --
    Variable |        Obs        Mean    Std. Err.       [95% Conf. Interval]
-------------+---------------------------------------------------------------
             |        257    .6342412     .030044        .5721294    .6932173

. cii 2897 1739

                                                         -- Binomial Exact --
    Variable |        Obs        Mean    Std. Err.       [95% Conf. Interval]
-------------+---------------------------------------------------------------
             |       2897    .6002761    .0091008        .5821723    .6181772

. 



  

Sensitivity and Specificity as functions of the
Cutoff

Alternatively, one can think of the sensitivity and
specificity as functions of the probability cutoff. One
can graph sensitivity and specificity estimates versus
the cutoff. When the cutoff is zero, the sensitivity
estimate is 1 and the specificity estimate is 0. If the
cutoff is one, the sensitivity estimate is 0 and the
specificity estimate is 1. As the cutoff rises, the
sensitivity estimate declines and the specificity
estimate rises. The graphs are “step” functions with a
step for every distinct fitted value. Steps down for
sensitivity and steps up for specificity.
. lsens,connect(stairstep stairstep) msize(tiny tiny) scheme(s2mono)



  



  

Or one can think in terms of the false positive
rate = 1 – specificity. When the cutoff is zero,
the sensitivity is 1 and the false positive rate is
1. If the cutoff is one, the sensitivity is 0 and
false positive rate is 0. A graph of the sensitivity
estimates versus the false positive rate
estimates can be useful for assessment of a
logistic regression model.  The more the plotted
values are in the 'upper left ' corner of the
display, the better. The “curve” obtained by
joining these points based on the ordered fitted
values is widely determined. This curve is
called a receiver operating characteristic curve
(ROC curve). 
. lroc,msize(tiny) xline(0.3997,lpattern("-")) yline(0.6342,lpattern("-"))
scheme(s1mono)



  



  

ROC, Sensitivity and Specificity

The graph shows the ROC for our candidate
model.

The dotted lines cross at the point on the curve
corresponding to the cutoff of 0.0814838 as
seen earlier.



  

Interpreting the ROC curve

Parts of this curve corresponding to very low
sensitivity indicate cutoffs of no use. Similarly,
the parts of the curve corresponding to very low
specificity indicate cutoffs of no use as well. 

One would presumably view the central portion
of this curve with some credibility. The cutoff
discussed earlier surely falls in this range.

Nevertheless, some investigations focus on the
area under the (entire) curve. 

The area under the curve (AUC) 

aka the c-statistic (history of this label?)



  

AUC: Standard Errors & Confidence Intervals

AUC estimates are formed from sensitivity (Sn)
estimates and specificity (Sp) estimates.

Accordingly, the precision of AUC estimates is
materially dependent on the denominators of
the Sn and Sp estimates.
. quietly: logit chd s a sa a2 sa2

. predict phat2, p

. roctab chd phat2

                      ROC                    -Asymptotic Normal--

           Obs       Area     Std. Err.      [95% Conf. Interval]

         --------------------------------------------------------

          3154     0.6546       0.0178        0.61971     0.68946



  

Comparing AUC 

. quietly: logit chd smoke##age

. predict phat1,p

. roccomp chd phat1 phat2

                              ROC                    -Asymptotic Normal--

                   Obs       Area     Std. Err.      [95% Conf. Interval]

-------------------------------------------------------------------------

phat1             3154     0.7014       0.0161        0.66991     0.73286

phat2             3154     0.6546       0.0178        0.61971     0.68946

-------------------------------------------------------------------------

Ho: area(phat1) = area(phat2)

    chi2(1) =    14.85       Prob>chi2 =   0.0001



  

Inside the workings of AUC

Lets take the example from Rabe-Hesketh:
Diagnosis of Heart Attacks on the use of serum
creatine kinase (CK) levels for the diagnosis of
myocardial infarction (MI:heart attack). 

As a start, let us suppose that we wish to
assess “a CK of more than 100”  as a
discriminator. 



  

. table ck100, c(mean infct)

-----------------------
    ck100 | mean(infct)
----------+------------
        0 |    .2694611
        1 |    .9585492
-----------------------
. quietly: logit infct ck100
. predict phat1,p
. tab phat1

  Pr(infct) |      Freq.     Percent        Cum.
------------+-----------------------------------
    .269461 |        167       46.39       46.39
   .9585493 |        193       53.61      100.00
------------+-----------------------------------
      Total |        360      100.00



  

. estat class

Logistic model for infct

              -------- True --------
Classified |         D            ~D  |      Total
-----------+--------------------------+-----------
     +     |       185             8  |        193
     -     |        45           122  |        167
-----------+--------------------------+-----------
   Total   |       230           130  |        360

Classified + if predicted Pr(D) >= .5
True D defined as infct != 0
--------------------------------------------------
Sensitivity                     Pr( +| D)   80.43%
Specificity                     Pr( -|~D)   93.85%
Positive predictive value       Pr( D| +)   95.85%
Negative predictive value       Pr(~D| -)   73.05%
--------------------------------------------------
False + rate for true ~D        Pr( +|~D)    6.15%
False - rate for true D         Pr( -| D)   19.57%
False + rate for classified +   Pr(~D| +)    4.15%
False - rate for classified -   Pr( D| -)   26.95%
--------------------------------------------------

Correctly classified                        85.28%
--------------------------------------------------



  



  

. quietly:logit infct ck

. predict phat2,p

. lsens,connect(stairstep stairstep) scheme(s2mono) lpattern( solid dash)



  

. roccomp infct phat1 phat2,summary graph plot1opts(msize(tiny))
plot2opts(msize(tiny)) scheme(s2mono)

                              ROC                    -Asymptotic Normal--
                   Obs       Area     Std. Err.      [95% Conf. Interval]
-------------------------------------------------------------------------
phat1              360     0.8714       0.0168        0.83839     0.90442
phat2              360     0.9593       0.0099        0.93991     0.97862
-------------------------------------------------------------------------
Ho: area(phat1) = area(phat2)
    chi2(1) =    59.72       Prob>chi2 =   0.0000



  

Arbitration based on AUC

● The AUC estimate with actual CK levels is
0.9593 suggesting that the actual CK levels
(modeled with a linearity assumption) provide
“better prediction” than a simple threshold of
CK>100.

● This is a very simple example of a comparison
of 2 models where a Likelihood Ratio test is not
directly available. [One model is not nested
within the other model]

● The AUC estimate is not based on the models
per se... just their fitted values



  

AUC as a Probability

You may have noticed that the AUC is a number
between 0 and 1. It does, in fact, have an
interpretation as an estimate of a probability. Suppose
a case and a control are each randomly selected. If
the classification is based  a rule that classifies the one
with the higher fitted value and hence the higher CK
value as the case, the one with the lower fitted value
and hence the lower CK value as the control, then
such a  rule will correctly classify with a fixed
frequency estimated by the AUC. [This property can
be easily verified for the simple 2x2 table. (For this
interpretation, the classification rule requires
“guessing” if the CK values are the same)]



  

Recent commentary

NR Cook (2008) 'Statistical Evaluation of
Prognostic versus Diagnostic Models: Beyond
the ROC Curve' Clinical Chemistry 54: 17-23,
2008.

http://www.clinchem.org/cgi/content/full/54/1/17



  

Cross Validation

We are using our data twice here.

We are using the data to build a model and
then using the same data to assess the model.

This process is called internal cross validation.

Really, we should have one data set for the
model building and then another data set for the
model assessment.

If done with 2 datasets, we call the process
external cross validation.



  

Goodness?

Goodness of Fit (GOF) tests simply will not go
away.

They are notoriously low power except with
huge datasets.

Criticisms of GOF tests abound.

If a journal requires such a test be included, be
aware that the result of this test has little
consequence.
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