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Two Situations to Consider

1) Models with a fixed set of distinct fitted values
- typically seen in models that deal with stratified

analyses

2) Models with a potentially different fitted value

for each individual.
- typically seen in models with a measured

predictor such as actual age, actual height etc...



1) Models That Determine a Fixed Set of Fitted
Values



A Return to 4 Strata: Age and Gender

Lets us consider the study of a
disease/exposure relationship with age group

(Y O) and gender (F M) as potential
modifiers/confounders.

The table from ' table e g a,c(mean d)’

records the 8 estimates of the conditional
probabilities: the 'observed' proportions



cs dis exp,by(age gender) or

age gender | OR [95% Conf. Interval] M-H Weight
_________________ +_________________________________________________
0 0 | 1.179451 .7858152 1.770499 21.12
01 | .7972632 .5030501 1.264035 20.608
10| .9949764 .6448348 1.535662 20.304
11| .8470745 .5651307 1.269885 25.568
_________________ +_________________________________________________
Crude | 1.840806 1.540884 2.199106
M-H combined | .9497717 .7678975 1.174722
Test of homogeneity (M-H) chi2 (3) = 1.983 Pr>chi2 = 0.5758
Test that combined OR = 1:
Mantel-Haenszel chi2 (1) = 0.23
Pr>chi2 = 0.6350

table e g a,c(mean d)

| .6015037 .2970822 .2942779 .6573427
e | .640327 .2520325 .2932331 .6190476

(Cornfield)
(Cornfield)
(Cornfield)
(Cornfield)



The model for p=Pr(D)

would be:
log(p/(1—p))=B,+B,G+B,A+B,GA+B,E+B,EG+B,EA+B,EGA

and this model gives fitted values for the log
odds

log(p/(1—=p))=b,+b,G+b,A+b,GA+b, E+b,EG+b,EA+b,EGA

for each individual in the study.

here are, however, only 8 different fitted
values. One distinct value for each combination
of E, G and A.



Model 1

. logit d g a ga e eg ea ega

Logistic regression Number of obs = 2000
LR chi2(7) = 239.85

Prob > chi2 = 0.0000

Log likelihood = -1259.9624 Pseudo R2 = 0.0869
d | Coef. Std. Err z P>|z| [95% Conf. Interval]
_____________ +________________________________________________________________
gl -1.272966 .2099288 -6.06 0.000 -1.684418 -.8615129

a | -1.286432 .2109222 -6.10 0.000 -1.699831 -.8730315

ga | 2.799137 .2970468 9.42 0.000 2.216936 3.381338

e | .1650489 .2078437 0.79 0.427 -.2423173 .572415

eg | -.3916184 .3146884 -1.24 0.213 -1.008396 .2251594

ea | -.1700852 .3043002 -0.56 0.576 -.7665025 .4263322

ega | .2306881 .4374387 0.53 0.598 -.6266761 1.088052

cons | .4117347 .1771099 2.32 0.020 .0646057 .7588638

. predict lohat,xb
. predict phat,p
. est stor ml

The predict option xb gives the fitted values on the log odds scale: the
fitted log odds

The predict option p gives the fitted values on the probability scale: the
fitted proportions



tab lohat

Linear |

prediction | Freq. Percent Cum.
____________ +___________________________________
-1.087801 | 123 6.15 6.15
-.8797331 | 133 6.65 12.80
-.8746968 | 367 18.35 31.15
-.8612309 | 377 18.85 50.00
.4117347 | 133 6.65 56.65
.4855078 | 357 17.85 74.50
.5767836 | 367 18.35 92.85
.6514745 | 143 7.15 100.00
____________ +___________________________________

Total | 2,000 100.00

tab phat

Pr(d) | Freq Percent Cum
____________ +___________________________________
.2520327 | 123 6.15 6.15
.2932331 | 133 6.65 12.80
.2942779 | 367 18.35 31.15
.2970822 | 377 18.85 50.00
.6015037 | 133 6.65 56.65
.6190476 | 357 17.85 74.50
.640327 | 367 18.35 92.85
.6573427 | 143 7.15 100.00
____________ +___________________________________

Total | 2,000 100.00



Fitted Proportions

Notice that, for this model here, the fitted
proportions are the same as the observed
proportions. The model fits the data (the
observed proportions) exactly.

There are 8 regression coefficients and these
coefficients directly correspond to the 8
conditional probabilities.

Any simpler model "nested” within this model
will inevitably yield fitted values that do not
reproduce the observed proportions.



Model Assessment

Likelihood ratio tests essentially compare the
fitted values obtained from 2 candidate models:
one model nested within the other model.

In principle, an assessment the quality of a fit
should include comparing fitted values either
through analytic testing methods or through
graphical methods.

Now consider the following nested model:



Model 2

logit d g a ga e

Logistic regression

Log likelihood = -1260.9553

Number of obs

2000
237.86
0.0000
0.0862

-1.472424
-1.432539

2.903936
-.0515205

.570101

LR chi2 (4) =

Prob > chi2 =

Pseudo R2 =
P>|z| [95% Conf
0.000 -1.758168
0.000 -1.715677
0.000 2.478121
0.635 -.2640565
0.000 .3303572

.1457904
.1444609
.2172565
.1084388

.1223205

-1.18668
-1.149401
3.329751
.1610156

.8098449

. predict phat2,p

est stor m2



tab phat2

Pr(d) | Freq

____________ +
.2781126 | 123
.2861905 | 133
.2885734 | 377
.2968302 | 367
.6265755 | 357
.6268158 | 367
.6385494 | 143
.6387865 | 133

____________ +
Total | 2,000

gen diff2=phat-phat2

tab diff2

diff2 | Freq

____________ +
-.0372828 | 133
-.0260799 | 123
-.0075278 | 357
-.0025522 | 367
.0070426 | 133
.0085089 | 377
.0135112 | 367
.0187933 | 143

____________ +
Total | 2,000

Percent

Percent



Residuals

The residuals are the differences between the
observed and the fitted.

Here, we consider diff2 and we see very tiny
residual values.

Now consider the following model:



Model 3

logit d g a e

Logistic regression Number of obs = 2000
LR chi2(3) = 45.75

Prob > chi2 = 0.0000

Log likelihood = -1357.0128 Pseudo R2 = 0.0166
d | Coef. Std. Err z P>|z| [95% Conf. Interval]
_____________ +________________________________________________________________
g | -.0042679 .0907935 -0.05 0.963 -.18222 .1736841

a | .0165261 .0907765 0.18 0.856 -.1613925 .1944448

e | .6101303 .0907885 6.72 0.000 .432188 .7880725

cons | -.4690968 .0910724 -5.15 0.000 -.6475956 -.2905981

. predict phat3,p
est stor m3



tab phat3

Pr(d) | Freq

____________ +
.3838201 | 377
.38483 | 133
.3877361 | 143
.3887497 | 367
.5341382 | 123
.5352 | 367
.5382481 | 357
.5393086 | 133

____________ +
Total | 2,000

gen diff3=phat-phat3

tab diff3

diff3 | Freq

____________ +
-.2821055 | 123
-.2460755 | 133
-.0944718 | 367
-.0867379 | 377
.0807996 | 357
.105127 | 367
.2166737 | 133
.2696066 | 143

____________ +
Total | 2,000

Percent

Percent



Fit Assessment

The residuals comparing Model 3 with Model 1
are large.

The residuals comparing Model 2 with Model 1
are much smaller.

Our primary assessment would be based on the
epidemiology but we can also observe the
comparison in the quality of the fit.

The likelihood ratio tests would be:



lrtest ml m3

Likelihood-ratio test
(Assumption: m3 nested in ml)

lrtest ml m2

Likelihood-ratio test
(Assumption: m2 nested in ml)

LR chi2 (4)
Prob > chi2

LR chi2 (3)
Prob > chi2

194.10
0.0000

1.99
0.5753



Coronary Heart Disease and Smoking

Now let us consider a study of CHD and
smoking status. Age at entry was 'measured’ at
entry into the study. Here, only integer ages are
available: ranging from 39 to 59. This was a
large study and so there were reasonable
numbers to study the CHD/Smoking
relationship in each of the 21 age 'groups’.



cc chd69 smoke, by (age)

Crude

.3966942
.525862
.644444
.156146
.354369
5.875
3.141553
.8783784
3.748387
1.16
2.125
.504902
.698113
.559091
7.5
.058824
.285714
.75

.2
1.309524

ok Ol

R W

B

1.877353
1.883757

[95% Conf.

.6966061
.0677972
.9284312
.5428601
.3089201
1.332136
1.191274
.7159255
.1570899
1.186502
.4101005

.506783
.9886477

.483206
.3915896
1.413465
.2219518
.3060225

.100976
.0040691
.2605058

1.434086
1.444799

Interval]

6.191832
1.641754
43.18059
280.0709
4.175369
59.90066
56.22355
18.92927
4.919971
13.90961
3.311061
10.35947
15.57106
6.784542
6.678235
73.77356
5.044204
5.372781
4.903224

2.01862
6.275484

2.465718
2.456078

M-H Weight

3.931408
.9957082
.4054054
2.8
.8765957
.8602151
.288235
.013605
.890244
.104478
.659259
.658537
.345133
.095238
.6728972
2.125
2.210526
1.777778
2.232143
1.787234

MNNRERARNR

(exact)
(exact)
(exact)
(exact)
(exact)
(exact)
(exact)
(exact)
(exact)
(exact)
(exact)
(exact)
(exact)
(exact)
(exact)
(exact)
(exact)
(exact)
(exact)
(exact)
(exact)

(exact)



The right model should help here

We can see that:

1) a number of the OR estimates are much
larger than 1

2) these larger OR estimates are at the
intermediate ages

Perhaps the pattern among the estimates of the
log odds can be seen with the right display.

We can get these estimates from the
corresponding logistic regression model:



logit chd smoke#itage

Logistic regression Number of obs = 3154
LR chi2 (41) = 124.40
Prob > chi2 = 0.0000
Log likelihood = -828.42295 Pseudo R2 = 0.0698
chd | Coef Std. Err z P>|z| [95% Conf. Interval]
_____________ +________________________________________________________________
1.smoke | .6931472 .4924238 1.41 0.159 -.2719857 1.65828
I
age |
40 | .1718503 .5181037 0.33 0.740 -.8436144 1.187315
[the rows recording ages 41 to 58 not included here]
59 | 1.645156 .6020774 2.73 0.006 .465106 2.825206
I
smokef#age |
140 | -1.617737 .8379347 -1.93 0.054 -3.260059 .0245851
[the rows recording ages 41 to 58 not included here]
1 59 | -.4234836 .8520745 -0.50 0.619 -2.093519 1.246552
I
_cons | -2.944439 .3877834 -7.59 0.000 -3.70448 -2.1843098

. predict loh,xb

twoway (scatter loh age if smoke==0,msymbol (sh) color (black) ytitle("Log Odds"))
(scatter loh age if smoke==1,msymbol (Dh) color(black)), legend(label (1l "Nonsmoker")
label (2 "Smoker")) scheme (slmono)



Fitted Values (Observed Log Odds) Versus Age

Here we have used the elaborate logistic
regression model to provide us with the
observed log odds.

The role here is to try to determine the nature of
the relationship between the log odds of CHD
and age; separately for the smokers and the
nonsmokers.

The first graph next gives some indications but
it is not clear.
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Smoothed Observed Log Odds

Smoothers can often provide the investigator
with better cues from such graphs

The most commonly seen smoother is called
lowess

. twoway (lowess loh age if smoke==0,lpattern("-") color(black) ytitle("Smoothed
Log Odds")) (lowess loh age if smoke==1, color(black)), legend(label (1
"Nonsmoker") label (2 "Smoker")) scheme (slmono)

These 2 curves suggest the consideration of
parabolae.
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logit chd s a sa a2 sa2

Logistic regression Number of obs = 3154
LR chi2 (5) = 72.68

Prob > chi2 = 0.0000

Log likelihood = -854.28167 Pseudo R2 = 0.0408
chd | Coef Std. Err z P>|z| [95% Conf. Interval]
_____________ +________________________________________________________________
s | -21.21013 10.07058 -2.11 0.035 -40.948009 -1.472157

a | -.4223795 .3125062 -1.35 0.177 -1.03488 .1901213

sa | .9384068 .4183366 2.24 0.025 .1184821 1.758332

a2 | .0052485 .0031931 1.64 0.100 -.0010099 .011507
sa2 | -.0099179 .0042943 -2.31 0.021 -.0183345 -.0015013

cons | 5.269134 7.544311 0.70 0.485 -9.517443 20.05571

. predict 1loh2,xb

twoway (line loh2 age if smoke==0,lpattern("-") color(black) ytitle("Log Odds"))
(line loh2 age if smoke==1,color (black)), legend(label (1l "Nonsmoker") label (2
"Smoker")) scheme (slmono)
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Standard Errors for the Fitted Values

As always, the estimates alone are inadequate
without standard errors or confidence intervals.

Further, intervals constructed for a log odds can
be transformed to intervals for probabilities.

. predict seloh2,stdp
. gen cil=loh2-1.96*seloh2
. gen cih=loh2+1.96*seloh2

twoway (line loh2 age if smoke==0,lpattern("-") color(black) ytitle("Log
Odds )) (line cil age if smoke==0,lpattern(".") color(black)) (line cih age if
smoke==0,1lpattern(".") color(black))(llne loh2 age if smoke==1,color (black))
(line cil age if smoke==1,lpattern( .") color(black)) (line cih age if smo
ke==1,1pattern(".") color(black)), legend(off) scheme (slmono)
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Getting the estimates of the probabilities

. gen cilp=1l/(l+exp(-cil))
. gen cihp=1l/(l+exp(-cih))
. gen pest=1l/(l+exp(-loh2))

twoway (line pest age if smoke==0,lpattern("-") color (black)
ytltle( 'Probability Estimate")) (line cilp age if smoke==0,lpattern(".")
color (black)) (line cihp age if smoke==0,lpattern(".") color(black))(llne pest
age if smoke==1,color (black)) (1line cilp age if smoke==1,lpattern(".")
color (black)) (line cihp age if smoke==1,lpattern(".") color(black)), legend(off)
scheme (s1lmono)

These estimates (fitted proportions) can give us cues to the
iIssues at hand for specified sets of smoking status and age.

l.e. For a person of a given age and of given smoking status,
the model provides an estimate of the probability of CHD.

The quality of such estimates and the narrowness of the
intervals provide for alternate criteria to assess a model.
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2) Models That Determine a Potentially Distinct
Fitted Value for each Individual in the study

Each individual has a unique set of conditions



All different fitted values

The second situation is where there is one or
more measured variables ( like “actual” age
rather than age group ) so that each individual
in the study has their own unique set of
conditions. A participant's age could be
computed from their data of birth compared with
the date of entry into a study. There would
typically be very few sets of individuals with
exactly the same age (in days).



Residuals

Notice, here, that the data, here, cannot be
separated into groups where, in each group, all
conditions are the same. In a sense, there are
no groups and hence no group observed
proportions.

In a way, then, the observed proportions are all
either O or 1 and every model will yield fitted
values that are between O and 1: all
potentially dlp‘erent for each infant. Every
residual value is either or

0—p 1-p



Fitted Value Assessment

The investigator can view the 2 sets of fitted
values:

- for the those with the outcome

- for those without the outcome

Unusual, outlying fitted values or odd clusters of
fitted values can give the investigator clues to
trouble



Generalized Additive Models

“Generalized Additive Modeling” [Hastie and
Tibshirani (1990)] has shown considerable
promise in the assessment of models:
particularly when the functional form of one or
more measured independent variables is under
question and may not be a series of lines. In the
context of logistic regression, a generalized
additive model [GAM] looks like:



log (p/(1=p))= 2 Bxt 2is(y))

: where the s functions are not specified but are
constructed using “smoothers” as part of the
model algorithm.

The graph of these “smooth” curves can be
assessed.

There are tests of significance associated with
nonlinearity in this setting as well.

Several software systems [including Splus and
R] have implemented GAM. Alas, Stata has not
[yet] taken on this implementation.



The purpose(s) for a model

1 . Attempts at Etiology ? -
Understanding the disease-exposure
relationship

ldentifying modifiers, confounders and other
Important explanatory variables

2 : Prediction ? Forecast ? The future ? -
Trying to predict a person's outcome based
on their explanatory variables



From estimates to prediction

Logistic regression gives estimates of log odds and
estimates of probabilities.

How do we get predictions from the estimates?
We establish a threshold.

If a probability estimate is above the threshold, we
'predict’ the presence of the outcome [disease,
CHD, ...]

If a probability estimate is below the threshold, we
'predict’ the absence of the outcome [no disease, no
CHD, ...]



Actual outcome compared with prediction

From the data used to build the model and
construct the fit, we now have 2 sets of
probability estimates: a set of estimates for
those with CHD and a set of estimates for those
without CHD.

We would hope for high estimates for those
with CHD and low estimates for those without
CHD.

The prevalence of CHD in this study population
provides a guidepost for such deliberations.




Prevalence of CHD

. ci chd

Variable | Obs Mean Std. Err. [95% Conf. Interval]

_____________ 4$--———————eeeerrrrr e -

chd | 3154 .0814838 .0048721 .071931 .0910367

Without knowledge of age and smoking status, one could

estimate the prevalence of CHD, from the data at hand, to be
0.0814838

From the model, estimates above 0.0814838 could suggest
CHD while estimates below 0.0814838 could suggest No CHD.

+if P >0.0814838 and —if P < 0.0814838

If we were to classify the study participants in this way and
compare with their actual CHD status, we would get:



estat class,cutoff (0.0814838)

Logistic model for chd

———————- True ----
Classified | D
___________ +____________________
+ | 163
- | 94
___________ +____________________
Total | 257

Classified + if predicted Pr (D)
True D defined as chd '= 0

Sensitivity
Specificity
Positive predictive value
Negative predictive value

False + rate for true ~D
False - rate for true D
False + rate for classified +
False - rate for classified -

~D |
—————— +
1158 |
1739 |
—————— +
2897 |

>= .0814838
Pr( +| D)
Pr( -|~D)
Pr( D| +)
Pr(~D| -)
Pr( +|~D)
Pr( -| D)
Pr(~D| +)
Pr( D| -)



Cutoff or Threshold

Here the cutoff (sometimes called the
threshold) determines the classification rule.
These classifications can be called predictions.

Based on this cutoff, we obtain estimates of
sensitivity and specificity:

. cii 257 163

-- Binomial Exact --
Variable | Obs Mean Std. Err. [95% Conf. Interval]

_____________ +_______________________________________________________________
| 257 .6342412 .030044 .5721294 .6932173

. cii 2897 1739

-- Binomial Exact --

Variable | Obs Mean Std. Err. [95% Conf. Interval]
_____________ +_______________________________________________________________
| 2897 .6002761 .0091008 .5821723 .6181772



Sensitivity and Specificity as functions of the
Cutoff

Alternatively, one can think of the sensitivity and
specificity as functions of the probability cutoff. One
can graph sensitivity and specificity estimates versus
the cutoff. When the cutoff is zero, the sensitivity
estimate is 1 and the specificity estimate is 0. If the
cutoff is one, the sensitivity estimate is 0 and the
specificity estimate is 1. As the cutoff rises, the
sensitivity estimate declines and the specificity
estimate rises. The graphs are “step” functions with a
step for every distinct fitted value. Steps down for
sensitivity and steps up for specificity.

. lsens,connect(stairstep stairstep) msize(tiny tiny) scheme (s2mono)
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Or one can think in terms of the false positive
rate = 1 — specificity. When the cutoff is zero,
the sensitivity is 1 and the false positive rate is
1. If the cutoff is one, the sensitivity is 0 and
false positive rate is 0. A graph of the sensitivity
estimates versus the false positive rate
estimates can be useful for assessment of a
logistic regression model. The more the plotted
values are in the 'upper left ' corner of the
display, the better. The “curve” obtained by
joining these points based on the ordered fitted
values is widely determined. This curve is
called a receiver operating characteristic curve
(ROC curve).

. lroc,msize(tiny) xline(0.3997,lpattern("-")) yline(0.6342,1lpattern("-"))
scheme (s1lmono)
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ROC, Sensitivity and Specificity

The graph shows the ROC for our candidate
model.

The dotted lines cross at the point on the curve
corresponding to the cutoff of 0.0814838 as
seen earlier.



Interpreting the ROC curve

Parts of this curve corresponding to very low
sensitivity indicate cutoffs of no use. Similarly,
the parts of the curve corresponding to very low
specificity indicate cutoffs of no use as well.

One would presumably view the central portion
of this curve with some credibility. The cutoff
discussed earlier surely falls in this range.

Nevertheless, some investigations focus on the
area under the (entire) curve.

T
a

ne area under the curve (AU

C)

Ka the c-statistic (history of t

nis label?)



AUC: Standard Errors & Confidence Intervals

AUC estimates are formed from sensitivity (Sn)
estimates and specificity (Sp) estimates.

Accordingly, the precision of AUC estimates is
materially dependent on the denominators of
the Sn and Sp estimates.

. quietly: logit chd s a sa a2 sa2
. predict phat2, p
. roctab chd phat2
ROC -Asymptotic Normal--
Obs Area Std. Err. [95% Conf. Interval]

3154 0.6546 0.0178 0.61971 0.68946



Comparing AUC

quietly: logit chd smoke#itage

. predict phatl,p

roccomp chd phatl phat2

-Asymptotic Normal--

[95% Conf.

Interval]

0.66991

0.61971

0.73286

0.68946

Ho: area(phatl)

chi2 (1) =

ROC
Obs Area
3154 0.7014
3154 0.6546
= area (phat2)
14.85 Prob>chi2

0.0001



Inside the workings of AUC

Lets take the example from Rabe-Hesketh:
Diagnosis of Heart Attacks on the use of serum
creatine kinase (CK) levels for the diagnosis of
myocardial infarction (Ml:heart attack).

As a start, let us suppose that we wish to
assess “a CK of more than 100” as a
discriminator.



table ck1l00, c(mean infct)

ckl00 | mean(infct)
__________ +____________
0 | .2694611

1 | .9585492

. quietly: logit infct ck100
. predict phatl,p

tab phatl
Pr (infct) | Freq. Percent Cum.
T aeeaer | 167 16.39 16.39
.9585493 | 193 53.61 100.00
""" rotal | 360 100.00



estat class

Logistic model for infct

———————— True - - -—————-

Classified | D ~D | Total
___________ +__________________________+___________
| 185 8 | 193
- | 45 122 | 167
___________ +__________________________+___________
Total | 230 130 | 360

Classified + if predicted Pr (D) >= .5

True D defined as infct '= 0

Sensitivity Pr( +| D) 80.43%
Specificity Pr( -|~D) 93.85%
Positive predictive wvalue Pr( D| +) 95.85%
Negative predictive value Pr (~D| -) 73.05%
False + rate for true ~D Pr( +|~D) 6.15%
False - rate for true D Pr( -| D) 19.57%
False + rate for classified + Pr(~D| +) 4.15%
False - rate for classified - Pr( D| -) 26.95%
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. quietly:logit infct ck
. predict phat2,p
. lsens,connect(stairstep stairstep) scheme (s2mono) lpattern( solid dash)
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roccomp infct phatl phat2,summary graph plotlopts (msize(tiny))
plot2opts (msize (tiny)) scheme (s2mono)

ROC -Asymptotic Normal--
Obs Area Std. Err. [95% Conf. Interval]
phatl 360 0.8714 0.0168 0.83839 0.90442
phat2 360 0.9593 0.0099 0.93991 0.97862
Ho: area(phatl) = area (phat2)
chi2 (1) = 59.72 Prob>chi2 = 0.0000

1.00

— =

Sensitivity
0.50 0.75

0.25

I I
0.00 0.25 0.50 0.75 1.00
1-Specificity

phat1 ROC area: 0.8714 ———— phat2 ROC area: 0.9593
Reference




Arbitration based on AUC

 The AUC estimate with actual CK levels is
0.9593 suggesting that the actual CK levels
(modeled with a linearity assumption) provide
“better prediction” than a simple threshold of
CK>100.

* This is a very simple example of a comparison
of 2 models where a Likelihood Ratio test is not
directly available. [One model is not nested
within the other model]

e The AUC estimate is not based on the models
per se... just their fitted values



AUC as a Probability

You may have noticed that the AUC is a number
between 0 and 1. It does, in fact, have an
interpretation as an estimate of a probability. Suppose
a case and a control are each randomly selected. If
the classification is based a rule that classifies the one
with the higher fitted value and hence the higher CK
value as the case, the one with the lower fitted value
and hence the lower CK value as the control, then
such a rule will correctly classify with a fixed
frequency estimated by the AUC. [This property can
be easily verified for the simple 2x2 table. (For this
interpretation, the classification rule requires
“guessing’ if the CK values are the same)]



Recent commentary

NR Cook (2008) 'Statistical Evaluation of
Prognostic versus Diagnostic Models: Beyond
the ROC Curve' Clinical Chemistry 54: 17-23,

2008.
http://www.clinchem.org/cgi/content/tull/54/1/17



Cross Validation

We are using our data twice here.

We are using the data to build a model and
then using the same data to assess the model.

'his process is called internal cross validation.

Really, we should have one data set for the

model building and then another data set for the
model assessment.

If done with 2 datasets, we call the process
external cross validation.



Goodness?

Goodness of Fit (GOF) tests simply will not go
away.

They are notoriously low power except with
huge datasets.

Criticisms of GOF tests abound.

If a journal requires such a test be included, be
aware that the result of this test has little
consequence.



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62

