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A famous cohort study

In a famous age-specific study of coronary
disease deaths among male British doctors,
Doll and Hill (1966) reported the following data
             Smokers                   Nonsmokers

Age    Deaths Person-years        Deaths Person-years

35–44     32   52,407               2       18,790

45–54    104   43,248               12      10,673

55–64    206   28,612               28       5,710

65–74    186   12,663               28       2,585

75–84    102    5,317               31       1,462

Stratifying on age, the estimates of the incidence rate ratios
(IRR) would be:



  

. list

     +-----------------------------------+
     | agecat   smokes   deaths   pyears |
     |-----------------------------------|
  1. |      1        1       32   52,407 |
  2. |      2        1      104   43,248 |
  3. |      3        1      206   28,612 |
  4. |      4        1      186   12,663 |
  5. |      5        1      102    5,317 |
     |-----------------------------------|
  6. |      1        0        2   18,790 |
  7. |      2        0       12   10,673 |
  8. |      3        0       28    5,710 |
  9. |      4        0       28    2,585 |
 10. |      5        0       31    1,462 |
     +-----------------------------------+

. ir deaths smokes pyears, by(agecat)

          agecat |      IRR       [95% Conf. Interval]   M-H Weight
-----------------+-------------------------------------------------
               1 |   5.736638      1.463557   49.40468     1.472169 (exact)
               2 |   2.138812      1.173714   4.272545     9.624747 (exact)
               3 |    1.46824      .9863624   2.264107     23.34176 (exact)
               4 |    1.35606      .9081925   2.096412     23.25315 (exact)
               5 |   .9047304      .6000757   1.399687     24.31435 (exact)
-----------------+-------------------------------------------------
           Crude |   1.719823      1.391992    2.14353              (exact)
    M-H combined |   1.424682      1.154703   1.757784
  Test of homogeneity (M-H)    chi2(4) =     10.41  Pr>chi2 = 0.0340



  

The 'classical' analysis...

.... suggests that age [category] modifies the
incidence rate - smoking relationship. Indeed,
the highest estimated incidence rate ratio
estimate is with the youngest age category. The
incidence rate ratio estimates decline with age
category.

The [omnibus] test for homogeneity of
incidence rate ratios has p-value of 0.0340 also
indicating evidence of modification



  

Model based method

If y is the number of deaths and PY is the
corresponding person-years, then the incidence
rate is: 

One can model

with:
log E  y−log PY =∑

i=0
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i x i
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Offset

Notice the addition of the term log(PY) on the
right hand side of the equation.

This term does not have a regression
coefficient in front of it. Such terms appear in
many other situations and are typically called
'offsets'.

Stata adds the offset using the “exposure'
option. Using this option, one does not take the
logarithm of PY (Stata does this for you)



  

Log of Expected Number of Deaths

The regression coefficients, here, now involve
the log of the incidence rate and accordingly a
difference between 2 log incidence rates is the
log of the incidence rate ratio.

The distribution for the counts (the deaths,
here) is 'typically' taken as the Poisson
distribution:

f  y =e−  y

y !
   where E  y =



  

The Poisson assumption

Consider the Binomial distribution with a large
number trials (n) and small probability (p) with
success on any trial. Let the expected value be:

so that 

=np   so that p=/n
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gets close to  e−   when n is large ¿



  

Mean linked to Variance

From the Binomial distribution, we know that

So that, for the Poisson distribution, E(y)=Var(y)

Using this distribution to fit a model in E(y)
completely determines the distribution. 

Var  y =np 1− p=n

n
1−


n
=1−


n


   which will be    for large n.



  

. gen ageg=6-agecat

. poisson deaths smokes##i.ageg, exposure(pyears) irr

Poisson regression                                Number of obs   =         10
                                                  LR chi2(9)      =     935.07
                                                  Prob > chi2     =     0.0000
Log likelihood =  -27.53397                       Pseudo R2       =     0.9444

------------------------------------------------------------------------------
      deaths |        IRR   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
    1.smokes |   .9047304   .1855513    -0.49   0.625     .6052658     1.35236
             |
        ageg |
          2  |    .510838   .1331832    -2.58   0.010     .3064517    .8515384
          3  |   .2312638    .060294    -5.62   0.000     .1387352    .3855038
          4  |    .053025   .0180278    -8.64   0.000     .0272322    .1032472
          5  |   .0050198   .0036623    -7.26   0.000     .0012014    .0209745
             |
 smokes#ageg |
        1 2  |   1.498855   .4322128     1.40   0.160      .851737     2.63763
        1 3  |   1.622848   .4664966     1.68   0.092      .923837    2.850758
        1 4  |   2.364032   .8686353     2.34   0.019     1.150508    4.857549
        1 5  |   6.340714   4.801021     2.44   0.015     1.437576    27.96698
      pyears | (exposure)
------------------------------------------------------------------------------

. disp 6.340714*0.9047304
5.7366367



  

The Modeling Process

All of the techniques developed for modeling
can be used here.

Adding the option 'irr' takes the exponent of the
coefficients enabling the direct viewing of
estimates of incidence rate ratios (and as
always) ratios of incidence rate ratios.

A likelihood ratio test is the model based
equivalent for the test for homogeneity. The
procedure is the same as always.



  

More distributions for counts

Fitting with the poisson distribution, forces the
Variance to be the same as the Mean.

In health research contexts, this often turns out
to be a poor distribution choice.

A much more flexible distribution is now seeing
considerable use in health research.

The Negative Binomial (or sometimes called the
Polya) distribution is now quite easily used.



  

Negative Binomial

The Negative Binomial distribution comes from
the focus of attention on the distribution of the
number of failures needed to achieve r
successes.

Allowing r to take on any positive number, one
will see this distribution called the Polya
distribution.

E  y =r q
p

  and  Var  y = rq
p2



  

Dispersion

Dispersion is the ratio of the variance to the
mean:

For the Poisson distributions, the dispersion is
always one.

For the Negative Binomial distributions, the
dispersion is always greater than one. 

Var  y 
E  y



  

Constant Dispersion: These models allow for varying
(conditional) means but fixed estimable dispersion 

E  y =   and  Var  y = 1

then   r=



  and  p= 1
1

or  =r  1
p
−1  and  = 1

p
−1

With this approach, using nbreg, one models   

log =∑
i=0

k

i x i   and estimates     where 1  is the dispersion

A test for 'overdispersion' is enabled with testing0



  

Mean Dispersion: These models allow for varying means
and varying dispersion dependent on the mean 

With this approach, using nbreg, we model:

Notice here that:  

E  y =   and  Var  y = 1

then   r= 1


  and  p= 1
1

or  =r  1
p
−1  and  =1

r

log =−log r 

log =∑
i=0

k

i x i   and estimate    where  1   is the dispersion

Now,  testing  0   is testing for 'overdispersion' 



  

Generalized Mean Dispersion

For this approach, using gnbreg, one models both:

Here, the varying dispersion may be modelled by a
(possibly different) set of 'covariates'.

At this time, there is no test for overdispersion
available with gnbreg

log =∑
i=0

k

i x i   and  log =∑
j=0

l

 j z j

  where  1   is the dispersion



  

It is not uncommon to posit a Poisson regression model and
observe a lack of model fit. The following data appeared in
Rodrıguez (1993):

. use http://www.statapress.com/data/r11/rod93

http://www.statapress.com/data/r11/rod93


  

. list

     +--------------------------------------+
     | cohort   age_mos   deaths   exposure |
     |--------------------------------------|
  1. |      1       0.5      168      278.4 |
  2. |      1       2.0       48      538.8 |
  3. |      1       4.5       63      794.4 |
  4. |      1       9.0       89    1,550.8 |
  5. |      1      18.0      102    3,006.0 |
     |--------------------------------------|
  6. |      1      42.0       81    8,743.5 |
  7. |      1      90.0       40   14,270.0 |
  8. |      2       0.5      197      403.2 |
  9. |      2       2.0       48      786.0 |
 10. |      2       4.5       62    1,165.3 |
     |--------------------------------------|
 11. |      2       9.0       81    2,294.8 |
 12. |      2      18.0       97    4,500.5 |
 13. |      2      42.0      103   13,201.5 |
 14. |      2      90.0       39   19,525.0 |
 15. |      3       0.5      195      495.3 |
     |--------------------------------------|
 16. |      3       2.0       55      956.7 |
 17. |      3       4.5       58    1,381.4 |
 18. |      3       9.0       85    2,604.5 |
 19. |      3      18.0       87    4,618.5 |
 20. |      3      42.0       70    9,814.5 |
     |--------------------------------------|
 21. |      3      90.0       10    5,802.5 |
     +--------------------------------------+



  

Very briefly, to start out: Stata examples :

. poisson deaths i.cohort, exposure(exposure)

. estat gof

. nbreg deaths i.cohort,exposure(exposure)

. nbreg deaths i.cohort,exposure(exposure) dispersion(constant)

. gnbreg deaths age_mos, lnalpha(i.cohort) exposure(exposure)

. test 2.cohort 3.cohort



  

UCLA Website

Another example with annotation can be found at:

http://www.ats.ucla.edu/stat/stata/output/stata_nbreg_output.htm

Caveat: The terminology used here is based on the conventions
adopted by Stata. Other software systems, notably R and SAS, use
different conventions and definitions for negative binomial modelling

http://www.ats.ucla.edu/stat/stata/output/stata_nbreg_output.htm


  

Zero Counts :
Inflation or Truncation

Sometimes the zero counts need special
consideration

Inflation: There can be two regimes : one
regime that contributes only zeroes and another
regime that may be handled by the Poisson or
the Negative Binomial  [number of surfaces with
tooth decay]

Truncation: A zero count may be excluded
[days in the ICU]



  

Zero Inflation

We can model each regime with explanatory
variables [with commands : zip or zinb]

We can assess whether there is zero inflation
[with the Vuong test]

Indications of zero inflation can be seen with:

   plausible regimes from the context

   very high zero counts and sometimes
overdispersion



  

Prenatal visit data

the data is in bw5k.dta

the rate of visits per week is to be modelled
with: 

white : mother's race (0=no , 1=yes)

mage_28 : mother's age [centred at 28 yrs)

tbo_1 : parity (0=1st , 1=2nd ... )

mother's education



  

use bw5k.dta
// from www.cdc.gov/nchs
gen mage_28=mage-28
gen tbo_1=tbo-1
gen white=(mrace_c3==2)
spikeplot previs
// notice the 'bump' at zero visits
zinb  previs white mage_28 tbo_1 i.meduc_c4, inflate(i.meduc_c4) exposure(gest) vuong
// following Dohoo, Martin & Stryhn



  



  

Zero-inflated negative binomial regression        Number of obs   =       5000
                                                  Nonzero obs     =       4953
                                                  Zero obs        =         47

Inflation model = logit                           LR chi2(6)      =     103.49
Log likelihood  = -13560.19                       Prob > chi2     =     0.0000

------------------------------------------------------------------------------
      previs |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
previs       |
       white |    .031533   .0095333     3.31   0.001      .012848     .050218
     mage_28 |   .0037196   .0009207     4.04   0.000     .0019151     .005524
       tbo_1 |  -.0120256   .0034051    -3.53   0.000    -.0186995   -.0053517
             |
    meduc_c4 |
     hs dip  |   .0440167   .0141647     3.11   0.002     .0162544     .071779
   some col  |   .0632298   .0150188     4.21   0.000     .0337936    .0926661
   univ deg  |   .0618504   .0150638     4.11   0.000      .032326    .0913748
             |
       _cons |  -1.265611   .0130318   -97.12   0.000    -1.291153   -1.240069
    ln(gest) |          1  (exposure)
-------------+----------------------------------------------------------------
inflate      |
    meduc_c4 |
     hs dip  |  -1.097442   .4259315    -2.58   0.010    -1.932252   -.2626317
   some col  |  -1.048664   .4458699    -2.35   0.019    -1.922553   -.1747748
   univ deg  |   -1.04811   .3650916    -2.87   0.004    -1.763676   -.3325433
             |
       _cons |  -3.909495   .2323357   -16.83   0.000    -4.364865   -3.454125
-------------+----------------------------------------------------------------
    /lnalpha |  -4.700879   .2119302   -22.18   0.000    -5.116254   -4.285503
-------------+----------------------------------------------------------------
       alpha |   .0090873   .0019259                      .0059984    .0137667
------------------------------------------------------------------------------
Vuong test of zinb vs. standard negative binomial: z =     5.77  Pr>z = 0.0000



  

A recent use of Zero Inflated methods

Measuring the short-term impact of fluoridation
cessation on dental caries in Grade 2 children

using tooth surface indices [2016]

    Lindsay McLaren et al

Community Dentistry and Oral Epidemiology



  

Truncation

If a zero count for the outcome [y] is not
possible, then one analysis option is to subtract
one from the outcome

Then, y-1 might be assumed Poisson or
Negative Binomial [poisson or nbreg]

You could then add one back to the confidence
intervals for E(y) = E(y-1)+1

You can use tpoisson or ztnb to analyze y
directly [the distributional assumption is not the
same]



  

use hospital_stay.dta
tab stay
gen staym1=stay-1
nbreg staym1 age hmo died
ztnb stay age hmo died

A study of length of hospital stay

The analyses are quite similar here. The choice
might be dictated by your literature review.
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