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Gordon Hilton Fick

Non-Linear Models
We now relax some assumptions seen in all of the models presented so far in these sessions. The first

assumption is that the parameters seen on right hand side of the regression equation are in the form of a
linear combination of regression coefficients multiplied by explanatory variables :
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We have seen that such linear combinations can include a wealth of complex explanatory variables like
products of explanatory variables and squares [and powers | of measured measured explanatory
variables. The x, can be [in principle ] any function of a set of explanatory variables. Nevertheless,
the parameters [3, only appear in the linear combination form noted above. These models are called
'Linear Models'.

An additional set of assumptions needs to be mentioned. If the model has an explicit 'error' term, for a
model to be considered 'Linear', the error term € must add to the linear combination term as :
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Also, with conditional models, to be 'Linear', the subject specific term u must add to the expression :
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or

k
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if there is no explicit 'error' term [ like with Logistic Regression, for example ].

This additive feature extends to models that have more than one subject specific term or the 'multi-
level' type models.

There are huge collection of models available that do not require this linear combination form. These
models are referred to as Non-Linear Models' or 'Non-Linear Regressions'. This naming can be a bit
confusing since we have already devoted considerable attention to nonlinearity. The exposition so far
has considered nonlinearity of measured explanatory variables but within the linear combination
requirement noted; within the world of Linear Models.

The examples which follow should help to clarify these matters.

Michelis-Menten Model :

We will begin with a model usually called a Michelis-Menten model. In its simplest form, there is a



single measured positive explanatory variable x and the model has two parameters £, and 3, and the
right hand side of the equation has :
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This function can also be written as BOB so that, for large x, the function is tendingto 3, :a
1+
X
horizontal asymptote.
Now notice that when x is equal to 3, , the function equals %
X
%:B[?O? if and only if %: Blix if and only if §,+x=2x if and only if x=,

So B, and 3, will both be positive. This function ranges from0to f3, .

With a bit of calculus, it can be shown that the function is always concave down. It is the arc of a
hyperbola.

Here is an example with ,=5 and 3,=0.5
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We now consider this model with an additive error term :
Box
Py +x
This is the form of the Michelis-Menten model that can be fit in Stata or in R.

+e€

We can use our knowledge for comparing two groups by using an indicator variable G and then



considering a model like :

([30+|32G)x

(61+B3G)+x

An example from Marasovic[2017] :

list x y
+ _______
| X
I _______
1. | 25
2. | 50
3. | 100
4. | 250
5. | 500
I _______
6. | 1000
7. | 2500
8. | 5000
9. | 17500
10. | 10000
+ _______

nl (y={b0}*x/({bl}+x))

(obs = 10)

Iteration
Iteration
Iteration
Iteration
Iteration
Iteration
Iteration
Iteration
Iteration
Iteration
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Source

Model
Residual

residual
residual
residual
residual
residual
residual
residual
residual
residual
residual

SS
SS
SS
SS
SS
SS
SS
SS
SS
SS

.57270148
.00070662

.1672244
.0780477
.0262549
.0051114
.0009641
.0007095
.0007066
.0007066
.0007066
.0007066

.286350739
.000088328

Number of obs

10

0.9988
0.9985
.0093983
-67.19721

.0066251
40.90001

56.86
13.32

R-squared

Adj R-squared =

Root MSE =

Res. dev. =
P>|t]| [95% Conf
0.000 .3614386
0.000 450.6087

.3767161
544.9243

.3919936
639.2399

. predict yh
(option yhat

assumed; fitted values)

twoway (scatter y x) (line yh x)
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Fitting a line or a parabola or even a lowess smoother is unsuccessful [ not shown here ]. The fit with
the Michelis-Menten model [ above ] is very fine, indeed.

It is worth emphasizing that this model has an additive error term € . In the output, we get an
estimate of the standard deviation of € which is the Root MSE = .0093983

We can fit two Michelis-Menten models using the Puromycin data from Bates & Watts[1988]

nl (v=({b0}+{b2}*t)*c/(({bl}+{b3}*t)+c))

(obs = 23)
Iteration 0: residual SS = 44201.1
Iteration 1: residual SS = 12451.8
Iteration 2: residual SS = 3575.968
Iteration 3: residual SS = 2139.057
Iteration 4: residual SS = 2056.78
Iteration 5: residual SS = 2055.08
Iteration 6: residual SS = 2055.054
Iteration 7: residual SS = 2055.053
Iteration 8: residual SS = 2055.053
Iteration 9: residual SS = 2055.053
Iteration 10: residual SS = 2055.053
Source | SS df MS
------------- e Number of obs = 23
Model | 417561.95 4 104390.487 R-squared = 0.9951
Residual | 2055.0531 19 108.160691 Adj R-squared = 0.9941
————————————— o Root MSE = 10.40003
Total | 419617 23 18244.2174 Res. dev. = 168.6001
v | Coef Std. Err t P>|t]| [95% Conf. Interval]
_____________ +________________________________________________________________
/b0 | 160.28 6.896012 23.24 0.000 145.8465 174.7136



/b2 | 52.4037 9.551015 5.49 0.000 32.4132 72.3942
/bl | .0477082 .0082812 5.76 0.000 .0303755 .0650408
/b3 | .0164131 .011429 1.44 0.167 -.007508 .0403342

. nl (v=({b0}+{b2}*t)*c/ ({bl}+c))

(obs = 23)
Iteration 0: residual SS = 44201.1
Iteration 1: residual SS = 12573.7
Iteration 2: residual SS = 3767.496
Iteration 3: residual SS = 2328.525
Iteration 4: residual SS = 2242.811
Iteration 5: residual SS = 2240.92
Iteration 6: residual SS = 2240.892
Iteration 7: residual SS = 2240.891
Iteration 8: residual SS = 2240.891
Iteration 9: residual SS = 2240.891
Source | SS df MS
————————————— e Number of obs = 23
Model | 417376.11 3 139125.37 R-squared = 0.9947
Residual | 2240.8915 20 112.044574 Adj R-squared = 0.9939
————————————— e e Root MSE = 10.58511
Total | 419617 23 18244.2174 Res. dev. = 170.5913
v | Coef Std. Err t P>|t| [95% Conf. Interval]
_____________ +________________________________________________________________
/b0 | 166.6041 5.807425 28.69 0.000 154.49 178.7182
/b2 | 42.02597 6.272138 6.70 0.000 28.94252 55.10942
/bl | .0579718 .0059102 9.81 0.000 .0456434 .0703002

In addition to the t-tests, one could compare the two [nested] models with an F-test.

Many years ago and before these non-linear least squares methods were available, two [now obsolete]
methods were used. One was called the 'double reciprocal' method and sometimes noted as the
'Lineweaver-Burk' method. The other was called the 'Eadie-Hofstee' method.

For clarity, here is the rationale for the double reciprocal method :

. ax _(b+x)_l b
y_i(b+x) then 1/y_7(ax) —a+(a)*1/x

So 1/y is a line in 1/x. Sounds good, right? Can we then use linear least squares?

The crucial point is that the assumptions for the nonlinear least squares and this transformed least
squares are not the same. In Stata, nl assumes an additive error term that has constant variance.

A regression of 1/y versus 1/x assumes an additive error term with constant variance but for 1/y now.
The two sets of assumptions are very different.

If we fit the model :

1 1 . . . . . N .
—=a,+a,*—+e€ there is no simple relationship between the estimates ¢, and &, and the
X

estimates BO and Bl



The rationale for the 'Eadie-Hofstee' method is :

b+
ﬂ:( x):é+1 then a:b*l+y rearranging y=a—b*l
x X x X

So y versus y/x is a line. Notice, now that if we tried to model this, we would have the so-called
explanatory variable y/x being a function the response y. More troubles with any attempt to fit.

There is a [ now obsolete ] literature on so-called transformed Linear Models. Be careful out there !

Stata's nl command has a number of models pre-built.

y:[30+[31*[32x+€ called exp3 : shown below for f,=2 f,=3 and ,=0.5, 0.25, 0.1 and €=0

P,
H_e_ﬁz*(x_ﬁ3)
B,=1 B,=1 p,=0.5, 1, 3 B;=1 and €=0

=P+ +e called log4 : shown below for
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e(—ﬁz*(x_ﬁs))
y=PB,tP e +€ called gom4 : shown below for
B,=1 B,=1 B,=1, 2, 3 B,=1 and €=0
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See 'help nl' in Stata for lots of details.
Bates & Watts[1988] offers 18 different nonlinear models and various ways to extend these models.
The illustrations in Bates & Watts are recommended for study.

Further, there are a number of additional concepts in Bates & Watts.



The Nonlinear Models literature contains many more very different models.
There are multi-level nonlinear models available in Stata and in R.

Meddings, Scott and Fick [1989]



