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Matching

Lets consider a study of cancer patients
designed to compare 5 year survival rates with
2 treatments: chemotherapy (C) and surgery
(S). The patients were grouped into pairs based
on characteristics thought to be possible
confounders: age, gender and clinical condition.
hen, within each pair, one patient receives C
and one receives S; this assignment made at
random.




Comparing within pairs: Intra-pair comparisons

Then, after 5 years, the survival of each patient is determined.
We will assume there was no censoring and no loss to follow up
and, further, we will assume that just whether or not a patient
has died is of interest.

Then, for each pair, we will know whether the C patient lived or
died and whether the S patient lived or died.

For a given pair, age, gender and condition are the same.

For a given pair, if both patients lived, we learn nothing about
the difference in survival rates for 2 patients with the same age,
gender and condition. Similiarly for a pair in which both patients
died. Pairs of these types are called concordant pairs.

If, for a given pair, one patient lived and other patient died, then

we have a [so-called] discordant pair.
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Discordant pairs

If there is a higher proportion of discordant pairs where S died
and C lived compared the pairs where S lived and C died, then
we would judge C to have a better survival rate than S.

For every discordant pair, the comparison is based entirely on 2
patients with the same age, gender and condition. In a real
way, we have “adjusted” for age, gender and condition as
[potential] confounders by a design method as opposed to an
analysis method.

We then count up the number of pairs where S lived and C died
and compare this number to the number of pairs where S died
and C lived



Independence and correlation

It is then assumed that the set of
determinations for every discordant pair of
patients is like a collection of independent
“trials™. One trial for each discordant pair.

While, since we matched on age, gender and
condition, the 2 outcomes in a given pair are
most likely correlated, this correlation has no
bearing on the assessment of whether a pair is
discordant of one form or the other.




An example

Consider a study where 621 pairs of patients
were followed for 5 years.

If we were to incorrectly ignore the matching
process in the design , we would get...



...an incorrect unmatched analysis

Survival survival rate

Y N
A 106 515 106/621 =0.171
B 95 526 95/621 = 0.153

p-value: 2 sided Fisher's exact test = 0.441
OR =1.14; ClforORis [0.83, 1.57]

[The odds of survival for those receiving chemotherapy is

estimated to be only 1.14 times the odds of survival for those
receiving surgery]



...but the correct analysis is to construct:

Survival for Patient S
Y N
Survival Y 90 16
for Patient C N 5 510

The number of [independent] trials is 21.
The estimated odds ratio is 16/5 = 3.2
The p-value is from the binomial distribution.




Correct p-value and correct Cl for OR

p-value = 2* P(16 or more successes | n=21 p=0.5)

where p= P(discordant pair has C surviving and S dying)

. bitesti 21 16 0.5
N Observed k Expected k Assumed p Observed p
21 16 10.5 0.50000 0.76190

Pr(k <= 5 or k >= 16) = 0.026604 (two-sided test)

. cii 21 16
Variable | Obs Mean Std. Err. [95% Conf. Interval]
| 21 .7619048 .0929429 .5283402 .9178241
. disp .7619048/(1-.7619048)= 3.20000
. disp .5283402/(1-.5283402)= 1.12017

. disp .9178241/(1-.9178241)= 11.1690

OAR:3.2 and Cl for OR is [1.12, 11.17]



Reshaping a data set

Datasets for studies with matching can be
configured 2 distinct ways.

If each row contains the data for an individual, we
call the dataset long.

If each row contains the data for a [matched] pair,
we call the dataset wide.

Long datasets require a variable to determine the
pair while wide datasets require an exposure for
each member of the pair.
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Row

1
2
3
4

1242

Long dataset : One row per person

pair chemo surv

1 0 0
1 1 0
2 0 1
2 1 0

621
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Wide Dataset : One row per matched set

Row pair  survO0 surv1
1 1 0 0

2 2 1 0

3 3

621 621
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Choice depends on analyst's requirements

Both wide and long formats contain the same
information.

The wide format has data in which each row is
a matched set

The long format retains to “usual” approach of
having one row for each member of a set.

The long/wide format option is also seen in
longitudinal studies, studies with clustering
and , indeed, the entire group of study types
with repeated outcomes
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Switching from long to wide
and switching from wide to long

In Stata, if we have a long format file as
Illustrated, then:

reshape wide surv, i(pair) j(chemo)

changes the dataset to wide format.

i(pair) identifies the pair

j(chemo) instructs Stata to replace the variable
surv with survO [surv for those with chemo=0]
and with surv1 [surv for those with chemo=1]
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If the dataset is in long format, we can carry out
the incorrect analysis

. cc surv chemo,exact

Proportion
| Exposed Unexposed | Total Exposed
Cases | 106 95 | 201 0.5274
Controls | 515 526 | 1041 0.4947
Total | 621 621 | 1242 0.5000
I I
| Point estimate | [95% Conf. Interval]
Odds ratio | 1.139622 | .8327338 1.560771 (exact)

2-sided Fisher's exact P = 0.4411

The mcc command [part of the epitab group of Stata commands]
wants the dataset in wide format so...
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...we reshape the dataset

. reshape wide surv,i(pair) j(chemo)

(note: j = 0 1)

Data long -> wide
Number of obs. 1242 -> 621
Number of wvariables 3 -> 3
j variable (2 wvalues) chemo -> (dropped)

xij variables:

surv -> surv0 survl

surv0O -> survival for those receiving surgery [chemo=0]

surv1 -> survival for those receiving chemo [chemo=1]
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...then try the mcc command

. mcc survl surv0

| Controls |

Cases | Exposed Unexposed | Total
_________________ o
Exposed | 90 16 | 106
Unexposed | 5 510 | 515
_________________ T SO
Total | 95 526 | 621

McNemar's chi2 (1) = 5.76 Prob > chi2 = 0.0164 ** chi2 is approx **

0.0266 ** exact is Binomial **

Exact McNemar significance probability
** some rows deleted**

odds ratio 3.2 1.120172 11.16902 (exact)
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Decoding the output from mcc

The table from mcc is generic:

Notice that, here,

those 'exposed' are those that survived
while those 'not exposed' did not survive.

The 'cases' are those receiving chemo

while the 'controls’ are those receiving surgery.
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Approximation to binomial ?

The normal approximation to the binomial is: z= p—Ap
which, for this data, is: o2 _~2.4 se(p)
| ' 12«12%1/21

P(|z| > 2.4)~0.0164
which is the same as:  p(y?>(2.4)°=5.76)~0.0164

Keep in mind that the exact [and correct] p-value is based on the
binomial distribution.

Stata calls this exact p-value the “exact McNemar significance
probability”

The so-called McNemar ~~ is nothing more than the square of the

uncorrected normal approximation to the binomial distribution.
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A matched case-control study: 4 controls per case

A study of endometrial cancer was designed with 63 sets
of 5 participants. Each set of 5 had 1 case [with
endometrial cancer] and 4 matched controls [each
without this cancer]. Then, the researchers determined
the presence or absence of a number of different
exposures by looking at records from the past including
'use of estrogens’, hypertension, obesity and others...
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cc cc est,exact

Cases
Controls

Odds ratio
Attr. frac. ex.
Attr. frac. pop

Incorrect analysis

Proportion
Exposed Unexposed | Total Exposed
______________________ +______________________
56 7 | 63 0.8889
127 125 | 252 0.5040
______________________ +______________________
183 132 | 315 0.5810
I
Point estimate | [95% Conf. Interval]
______________________ +______________________
7.874016 | 3.38601 21.15736
.873 | .7046671 .9527351
.776 |

l-sided Fisher's exact P = 0.0000
2-sided Fisher's exact P = 0.0000

(exact)
(exact)
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Classical analysis

drop row
sort quint cc
. by quint: gen otf= n

reshape wide cc age gbd hyp obe est conj dur ned , i(quint) j(otf)
(note: j =1 2 3 4 5)

Data long -> wide

Number of obs. 315 -> 63

Number of variables 11 -> 46

j variable (5 wvalues) otf -> (dropped)

xij wvariables:

cc -> ccl cc2 ... cc5

age -> agel age2 ... age5
gbd -> gbdl gbd2 ... gbd5
hyp -> hypl hyp2 ... hyp5
obe -> obel obe2 ... obe5
est -> estl est2 ... estS
conj -> conjl conj2 ... conj5
dur -> durl dur2 ... dur5

ned -> nedl ned2 ... ned5



A new table

gen sumcon=estl+est2+est3+estd

gen sumcas=estbH
table sumcas sumcon

There are 5 concordant matched sets. [ sumcas=1 and sumcon=4 |
Exact p-values are based on the Binomial p= 1/5, 2/5, and
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. bitesti 7

Pr (k >= 3)
Pr(k <= 3)
Pr (k >= 3)

Components to the p-value

3 .2

Observed k Expected k Assumed p Observed p

3 1.4 0.20000 0.42857

0.148032 (one-sided test)
0.966656 (one-sided test)
0.148032 (two-sided test)

note: lower tail of two-sided p-value is empty

. bitesti 18 17 .4

Pr(k >= 17)
Pr(k <= 17)

Observed k Expected k Assumed p Observed p

17 7.2 0.40000 0.94444

0.000002 (one-sided test)
1.000000 (one-sided test)

Pr(k >= 17) = 0.000002 (two-sided test)

note: lower tail of two-sided p-value is empty

return list
scalars:

r(p) = 1.92414534861e-06
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Next 2 p-values

. bitesti 17 16 .6

N Observed k Expected k Assumed p Observed p

17 le 10.2 0.60000 0.94118

Pr(k >= 16)
Pr(k <= 16)
Pr(k <= 3 or k >= 16)

0.002088 (one-sided test)
0.999831 (one-sided test)
0.002539 (two-sided test)

. bitesti 16 15 .8

N Observed k Expected k Assumed p Observed p

16 15 12.8 0.80000 0.93750
Pr(k >= 15) = 0.140737 (one-sided test)
Pr(k <= 15) = 0.971853 (one-sided test)

Pr(k <= 10 or k >= 15) = 0.222425 (two-sided test)



Correct p-value

TITLE
STB-49 sbe28. Meta-analysis of p values.

DESCRIPTION/AUTHOR(S)

STB insert by Aurelio Tobias, Statistical Consultant, Madrid, Spain.
Support: bledatobias@ctv.es
After installation, see help metap.

INSTALLATION FILES (click here to install)
sbe28/metap.ado
sbe28/metap.hlp

ANCILLARY FILES (click here to get)
sbe28/fleiss.dta

26



An unweighted combining
of p-values

. input pvar

pvar
0.148032
1.92414534861e-06
0.002539

0.222425

. end

b wWwdhPR

. metap pvar

Meta-analysis of p values
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Estimating the Odds Ratio

The tables:

Number of Controls Exposed:
Number 0 1 2 3 4 5 6
of Cases O f01 foz f03 f04 f05 f06
Exposed: 1 £y, t, f; t, t ty

fOi Is the number of matched sets where the control is exposed
and the number exposed is exactly i
f

li is the number of matched sets where the case is exposed and
the number exposed is exactly |
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If there are M matched controls and exactly i are exposed
iIn the matched set, then

Null Probabilities and Odds:

M 1 2 3 4
i 1 1 2 1 2 3 1 2 3 4

112 1/3 213 1/4 2/4 3/4 1/5 2/5 3/5 4/5
o/1-p) 1 12 2 13 1 3 1/4 2/3 324

M 3) 6
i 1 2 3 4 5 1 2 3 4 5 6

P 1/6 2/6 3/6 4/6 5/6  1/7 2/7 3/7 4/7 5/7 6/7
p/(1-p) 1/5 2/3 1 3/2 5 116 2/5 3/4 4/3 5/2 6
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The logarithm of the conditional likelihood

So if p=i/(M+1) and p/(1-p)=i/(M+1-i) = W, And if we let
a=1/(M+1-i)

It can then be shown that the log likelihood is:

M .eB
I(B):Z { filog(

a.

)+ f i log( l )}

(w.e’+1) (w,e’+1)

l

This looks kinda complicated but the likelihood can be easily
graphed in this case (there is only one B , here the log(OR) ).
See the graph later....
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For 4 to 1 matched design we get:

In general, with: ;= ,F

[(B)=f1og(a/ a+4))+f0110g<1/(a+4)>
+ f,log(al(2a+3))+ f,log(1/(2a+3))
+ fslog(al(3a+2))+ f;log(1/(3a+2))
+ f,dog(al(4a+1))+ f,log(1/(4a+1))

e~ N~ N

...and, for the endometrial cancer study, we get

[(B)=3log(al(a+4))+4log(1/(a+4))
+17log(al/(2a+3))+log(1/(2a+3))
+16log(al/(3a+2))+log(1/(3a+2))
+15log(al(4a+1))+log(1/(4a+1))
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The equation

The maximum of the conditional likelihood is the solution to this
equation

>

fm"'fh) f1i1=0

w.da —|—1
For a 4 to 1 design, we get:
1 2 3 4
ZCl g(l Ea TCI
1 (f01+f11)_f11+2—(foz+f12)_f12+3—<f03+f13)_f13+4—<f04+f14)_f14:()
—a+1 —a+1 —a+l1 —a+1
4 3 2 1
For the example, we get:
1 2 3 4
—d —d Ea TCI
2 (7)-3+ 3 (18)—17+ (17)— 16+ (16)=15=0
—a+1 —a+1 —a+1 —a+1

4 3 2 1
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How about logistic regression?
thinking..

.. that you could try a model like:

log(p/(1—-p)) Bo“'“z X; 0
where Z X;0; iS a sum over (aI

You might be

+B,D

but one of) the

621 matched sets. The 0, being the indicator

for the ith matched set.

It turns out (math excluded!) that there are WAY
too many parameters (unknowns) and further, it
has been shown (more math!) that the estimate

of B, Is biased.
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You will recall that, in order to carry out the 'correct analysis', we
constructed 'discordant sets' and then made calculations based on
conditional probabilities [conditional on being discordant]

A correct model based approach requires a [rather complicated]
conditioning process.

We, then, obtain something called a 'conditional’ likelihood and the
process returns us to the 'familiar' territory in so far as we can
then maximize this likelihood, use LR tests, use Wald tests,
confidence intervals and much of the related paraphernalia.

Guess who was the innovator of this conditioning argument?
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RA Fisher
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Conditional Logistic Regression...

.... requires special type of conditional likelihood.

A related [but actually quite different] like
was developed for survival analysis by D
[1975]. In fact, algorithms for conditional

iIhood
R Cox
ogistic

regression were initially developed from the Cox

approach. But | digress....
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One more digression

At about the same time [mid 1970s], the
econometricians [McFadden] were developing a
model for an apparently unrelated topic.

The model McFadden developed and applied was
the same (!) as the conditional logistic model.

Enough of this history. Lets now see the
substance.
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Conditional logistic regression version of the

correct classical analysis

clogit exp cc,group (pair)
note: multiple positive outcomes within groups encountered.
note: 600 groups (1200 obs) dropped due to all positive or
all negative outcomes.

Conditional (fixed-effects) logistic regression Number of obs = 42
LR chi2 (1) = 6.06

exp | Coef. Std. Err. z P>|z| [95% Conf. Interval]
_____________ +________________________________________________________________
cc | 1.163151 .5123475 2.27 0.023 .1589681 2.167334

clogit exp cc,group(pair) or
note: multiple positive outcomes within groups encountered.
note:

Conditional (fixed-effects) logistic regression Number of obs = 42
LR chi2 (1) = 6.06

exp | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
_____________ +________________________________________________________________
cc | 3.2 1.639512 2.27 0.023 1.172301 8.734961

P-values / Cls are based on the normal approximation to the binomial.
600 concordant pairs are correctly ‘dropped’
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4 matching controls per case

Now let us return to the study of endometrial cancer.
We found that, for a crude disease/exposure
relationship, the classical analysis provided us with a
test, a maximum likelihood estimate but not a direct
strategy for analysis beyond the simplest of
situations.

More elaborate classical analyses were developed.
They are clearly [but technically] explained in Breslow
& Day [Volume 1]
Conditional logistic regression now provides all of the
analyses.
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Conditional logistic regression

clogit est cc,group(quint)
note: multiple positive outcomes within groups encountered.
note: 5 groups (25 obs) dropped due to all positive or
all negative outcomes.

Conditional (fixed-effects) logistic regression Number of obs = 290
LR chi2 (1) = 35.35

est | Coef. Std. Err. z P>|z| [95% Conf. Interval]
_____________ +________________________________________________________________
cc | 2.07376 .4208244 4.93 0.000 1.248959 2.898561

clogit est cc,group(quint) or
note: multiple positive outcomes within groups encountered.
note: 5 groups (25 obs) dropped due to all positive or
all negative outcomes.

Conditional (fixed-effects) logistic regression Number of obs = 290
LR chi2 (1) = 35.35

Prob > chi2 = 0.0000

Log likelihood = -99.934552 Pseudo R2 = 0.1503
est | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
_____________ +________________________________________________________________
cc | 7.954675 3.347522 4.93 0.000 3.486712 18.148
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The conditional likelihood and the parabolic
approximation

In Stata, we can create the actual conditional likelihood and the
approximation:

. set obs 1001

. range beta 1 3

. gen loglike=3*log (exp (beta)/ (exp(beta)+4))+4*1log(l/ (exp (beta)+4))+17*1log (exp (beta)/
(2*exp (beta) +3) ) +log(1l/ (2*exp (beta) +3) ) +16*1log (exp (beta) / (3*exp (beta) +2) ) +1log (1/
(3*exp (beta) +2) ) +15*1log (exp (beta) / (4*exp (beta) +1) ) +1log(1l/ (4*exp (beta) +1))

. gen approx= -75.6744- (beta-2.07376)72 /(2*0.4208244"2)

. twoway (line loglike beta) (line approx beta) ,xline(2.07376) xline(1.2489442)
x1ine (2.8985758) yline(-75.6744) scheme (s2 mono)
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Assessment of potential confounder

clogit est hyp cc,group(quint) or
note: multiple positive outcomes within groups encountered.
note: 5 groups (25 obs) dropped due to all positive or
all negative outcomes.

Iteration O: log likelihood = -93.816541
Iteration 1: log likelihood = -93.775297
Iteration 2: log likelihood = -93.775233
Iteration 3: log likelihood = -93.775233
Conditional (fixed-effects) logistic regression Number of obs = 290
LR chi2 (2) = 47.66
Prob > chi2 = 0.0000
Log likelihood = -93.775233 Pseudo R2 = 0.2026
est | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
_____________ +________________________________________________________________
hyp | 3.175014 1.099597 3.34 0.001 1.610462 6.259518
cc | 7.423919 3.149142 4.73 0.000 3.232684 17.04917
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Assessment of age as a potential modifier (even though

age was a part of the matching criteria)

. gen ac=age*cc

. clogit est cc hyp ac,group(quint)

note: multiple positive outcomes within groups encountered.

note: 5 groups (25 obs) dropped because of all positive or
all negative outcomes.

Conditional (fixed-effects) logistic regression

Number of obs = 290

LR chi2 (3) = 47.67

Prob > chi2 = 0.0000

Log likelihood = -93.774338 Pseudo R2 = 0.2027
est | Coef. Std. Err. z P>|z| [95% Conf. Interval]
_____________ +________________________________________________________________
cc | 1.805899 4.715429 0.38 0.702 -7.436171 11.04797

hyp | 1.154741 .3466582 3.33 0.001 .4753032 1.834178

ac | .0027714 .0655007 0.04 0.966 -.1256076 .1311505
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Notice...

...that age*cc is included in the model even
though age is not included.

This is one of the special cases where we
CAN interpret a model with a 'product’ term
even though one of the constituents of this
product is not included in the model.

Matching enables a design-based way to
address confounding, but not modification.
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