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Multi Level Models

When there are [say] subjects within hospitals and [say] hospitals within regions, one can argue for
several 'new' variances [and maybe covariances] .

Now, let us consider a multi level model with more than two levels. The right hand side of the model
equation will be of the form:

XB+Z(4) u(4)+Z(3) u(3)+Z(2) u(z)
where provides for the region components where u® provides for the hospital components
and 5? provides for the subject components. It is anticipated that a correct formulation of such
models will enable the estimates [and standard errors] of the primary regression coefficients [the vector
B ] to have the desired properties. The estimates can then be interpreted as being 'adjusted' for
regions, hospitals and subjects. Intermediate models with some components missing will have
interpretations reflecting 'partial' adjustment or 'crude' description.

For this example, we would want the regression coefficients that are 'between region' comparisons to
reflect region differences in their estimates and standard errors, 'between hospital' comparisons that are
'within regions' comparisons to reflect the such differences, 'between subjects' comparisons that are
'within hospitals' to reflect such differences and lastly 'within subjects' comparisons to be handled
correctly.

The predictions of components will satisfy additional constraints [to ensure identifiability of all
concerned] and the interpretations will change [as always]. We will have two more variances to

estimate and interpret. oim and 034) . Normality assumptions for [ 5® and ul® ] are in play

here too. Components for slopes [and more elaborate] are also available. All of these matters will
require assessments [in principle] with inference methods and graphical displays.

Lets try out a study of conditional means [assuming normality of the errors]
y=XB+Z(3)u(3)+Z(2)u(2)+€
We will illustrate with a study of math achievement scores (Anderson et al 2009 from West et al):
1,190 first-grade students from 312 classrooms in 107 schools are used for this example. The outcome
of interest is mathgain which measures change in student math achievement scores from the spring of
kindergarten to the spring of first grade. Students (Level 1) are nested within classrooms (Level 2), and
classrooms are nested within schools (Level 3). We can see that mathprep is the same for all students in
the same classroom and hence mathprep is a part of between classrooms. The value of housepov is the
same for all classrooms within a given school and hence is a part of between schools. mathgain and
sex are specific to each student and so they are within classrooms. The data is in classroom.dta



. mixed mathgain mathkind sex minority ses housepov || schoolid: || classid:

Mixed-effects ML regression Number of obs = 1,190
| No. of Observations per Group
Group Variable | Groups Minimum Average Maximum
________________ +____________________________________________
schoolid | 107 2 11.1 31
classid | 312 1 3.8 10
Wald chi2 (5) = 451.39
Log likelihood = -5694.8221 Prob > chi2 = 0.0000
mathgain | Coef Std. Err 4 P>|z| [95% Conf. Interval]
_____________ +________________________________________________________________
mathkind | -.4706098 .0222209 -21.18 0.000 -.514162 -.4270576
sex | -1.230705 1.654031 -0.74 0.457 -4.472547 2.011137
minority | -7.745651 2.372263 -3.27 0.001 -12.3952 -3.096101
ses | 5.232545 1.241811 4.21 0.000 2.798641 7.666449
housepov | -11.30137 9.822189 -1.15 0.250 -30.55251 7.949768
_cons | 284.9108 10.98678 25.93 0.000 263.3771 306.4445
Random-effects Parameters | Estimate Std. Err [95% Conf. Interval]
_____________________________ +________________________________________________
schoolid: Identity |
var (_cons) | 73.7545 25.13606 37.81751 143.8415
_____________________________ +________________________________________________
classid: Identity |
var (_cons) | 81.3245 28.93938 40.48748 163.3511
_____________________________ +________________________________________________
var (Residual) | 732.0155 34.50772 667.412 802.8723
LR test vs. linear model: chi2(2) = 62.78 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

The same R analysis

classroom <- read.csv("classroom.csv")

summary (1lmer (mathgain ~ mathkind + sex + minority + ses + housepov + (1|schoolid) + (1]
classid), classroom, na.action = "na.omit", REML = FALSE))

Now let us consider a logistic regression with three levels:
logit( p)=Xp+ 794+ 224 where p=Pr(y=1)

Consider a study of patient, physician and hospital and how they are related to whether a patient's lung
cancer goes into remission after treatment. Part of a larger study of treatment outcomes and quality of
life in patients with lung cancer. [remission.dta] [from ats.ucla.edu]

Here is the analysis of a three level logistic regression with components for doctors [level 2] and for
hospitals [level 3]. Patients are level 1. In this example, doctors are nested within hospitals, meaning
that each doctor belongs to one and only one hospital and patients are nested within doctors so each
patient has only one doctor.

For this illustration, we will consider the following explanatory variables :

1) between patient: age - age in years, los - length of stay in hospital [days], famhx - family history,
canst - cancer stage, 116 - Interleukin 6

2) between doctor: experience - years of doctor's experience



3) between hospital: medicaid
did - doctor ID hid - hospital ID

. melogit remission age los i.famhx il6é i.canst experience medicaid || hid: ||
did: ,intpoints (25)

Mixed-effects logistic regression Number of obs = 8,525
| No. of Observations per Group
Group Variable | Groups Minimum Average Maximum
________________ +____________________________________________
hid | 35 134 243.6 377
did | 407 2 20.9 40
Integration method: mvaghermite Integration pts. = 25
Wald chi2 (9) = 532.18
Log likelihood = -3582.1085 Prob > chi2 = 0.0000
remission | Coef Std. Err z P>|z| [95% Conf. Interval]
_____________ +________________________________________________________________
age | -.0159199 .0060628 -2.63 0.009 -.0278027 -.004037
los | -.0440304 .0364266 -1.21 0.227 -.1154253 .0273644
I
famhx |
yes | -1.30622 .0954458 -13.69 0.000 -1.493291 -1.11915
ilé | -.0585866 .0117307 -4.99 0.000 -.0815784 -.0355947
I
canst |
II | -.3224089 .0785303 -4.11 0.000 -.4763255 -.1684923
IITI | -.8614403 .1026131 -8.40 0.000 -1.062558 -.6603224
IV | -2.160296 .1655747 -13.05 0.000 -2.484817 -1.835776
I
experience | .125612 .0277104 4.53 0.000 .0713005 .1799234
medicaid | 1.009479 .6618775 1.53 0.127 -.2877774 2.306735
_cons | -2.239379 .6752311 -3.32 0.001 -3.562808 -.9159503
_____________ +________________________________________________________________
hid |
var (_cons) | .2324021 1578259 .061402 .8796242
_____________ +________________________________________________________________
hid>did |
var (_cons) | 3.995935 4213358 3.249876 4.913263
LR test vs. logistic model: chi2(2) = 2470.00 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.
Attempted R analysis. glmer does not enable nAGQ>1 with more than 2 levels.

remission <- read.csv("remission.csv")

summary (glmer (remission ~ age + los + famhx + il6 + factor (canst) + experience +
medicaid+(1|hid) +(1]|did), data=remission, family=binomial,glmerControl (optimizer="bobyqga",
optCtrl = list(maxfun = 100000))))

The next example will enable us consider logistic regression again and also proportion odds.

The Television School and Family Smoking Prevention and Cessation Project (TVSFP) study [Flay et
al., 1988].
The study involved seventh-grade students from 135 classrooms from 28 schools, where the schools



were randomized to one of four study conditions: (a) a social-resistance classroom curriculum, (b) a
media (television) intervention, (c) a social- resistance classroom curriculum combined with a mass-
media intervention, and (d) a no- treatment control group. These conditions enable the assessment of
the interaction of social-resistance classroom curriculum (resist = yes(1) or no(0) ) by mass-media
intervention (tele = yes(1) or no(0) ). A tobacco and health knowledge scale (THKS) was used in
classifying subjects as knowledgeable or not. Data from 1600 students with pre and post-intervention
data were available. [in flay.dta] Here, 'level 3' would be the school and 'level 2' will be the classroom
within the school.

use flay.dta
gen tr=tel e*resi st
table post resist tele,row

tele and resist

|
| ====- 0 --- ————1 ---
post | 0 1 0 1
__________ +_________________________
0 | 20 11 25 11
1] 97 51 85 55
2 | 129 78 105 86
3| 89 106 91 114
4 | 62 83 71 80
5 | 21 35 32 31
6 | 2 16 5 5
7 1 1 2 1
|
Total | 421 380 416 383

gen fail=(post<=2)
table fail resist tele,row

tele and resist

I
| =-—— 0 --- -—-=1 ---
fail | 0 1 0 1
__________ +———_—_— e = =
0| 175 240 201 231
1| 246 140 215 152
I
Total | 421 380 416 383
. melogit fail pre resist tele tr || school: || class:
Mixed-effects logistic regression Number of obs = 1600
| No. of Observations per Group
Group Variable | Groups Minimum Average Maximum
________________ +-—-—————————ee e = =
school | 28 18 57.1 137
class | 135 1 11.9 28
Integration method: mvaghermite Integration points = 7
Wald chi2 (4) = 91.42
Log likelihood = -1027.851 Prob > chi2 = 0.0000
fail | Coef Std. Err. 4 P>|z| [95% Conf. Interval]
_____________ +________________________________________________________________

pre | -.395364 .0463324 -8.53 0.000 -.4861738 -.3045541



school>class
var (_cons)

resist | -1.038282 .2447573

tele | -.3325112 .235739

tr | .4643693 .3426676

cons | 1.246478 .1956927
_____________ +
school |

var (_cons) | .0628837 0616755
_____________ +
I
I

.1649057 .0813311

0.000 -1.517998
0.158 -.7945512
0.175 -.2072469
0.000 .8629273
.009198
.0627227

-.5585667
.1295289
1.135986
1.630029

.4335572

LR test vs. logistic regression:

chi2 (2)

17.61 Prob > chi2

Note: LR test is conservative and provided only for reference.

Compare the 3 level analysis with a 'naive' analysis:

logit fail pre resist tele tr
Logistic regression

Log likelihood = -1036.6576

Number of obs

= 0.0001

1600
139.23
0.0000
0.0629

fail Coef. Std. Err
pre -.3996965 .0440785
resist -.9725355 .1499846
tele -.3155662 .1434481
tr .4127295 .2098317
cons 1.217092 .1411995

LR chi2 (4)

Prob > chi2 =

Pseudo R2 =
P>|z| [95% Conf
0.000 -.4860887
0.000 -1.2665
0.028 -.5967192
0.049 .0014668
0.000 .9403458

-.3133043
-.678571
-.0344132
.8239921
1.493838

Here is an example of proportional odds with three levels.

gen post2=post
replace post2=5 if post2>5

meologit post2 resist tele tr || school:

Mixed-effects ologit regression

class:

Number of obs

1600

1.302913
.7041073
.2698296

-2.463918
-.5839314
.6400661
1.798325
3.196722

| No. of Observations per Group
Group Variable | Groups Minimum Average Maximum
________________ +__________________________________________
school | 28 18 57. 137
class | 135 1 11.9 28
Integration method: mvaghermite Integration points
Wald chi2 (3)
Log likelihood = -2626.5587 Prob > chi2
post2 | Coef. Std. Err z P>|z| [95% Conf
_____________ +________________________________________________________________
resist | .8127511 .250087 3.25 0.001 .3225896
tele | .2231896 .2453706 0.91 0.363 -.257728
tr | -.4179726 .3509259 -1.19 0.234 -1.105775
_____________ +________________________________________________________________
/cutl | -2.873268 .2088559 -13.76 0.000 -3.282618
/cut2 | -.9323697 1777779 -5.24 0.000 -1.280808
/cut3 | .2949082 .1761042 1.67 0.094 -.0502497
/cutd | 1.445256 .1801406 8.02 0.000 1.092186
/cut5 | 2.817702 .1933811 14.57 0.000 2.438682
_____________ +________________________________________________________________



school |

var (_cons) | .1018239 .0575867 .0336087 .3084951
_____________ +________________________________________________________________
school>class |

var (_cons) | .1632315 .0667987 .073193 .3640312
LR test vs. ologit regression: chi2 (2) = 39.52 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

Again, we can compare the 3 level analysis with a 'naive' analysis:
ologit post2 resist tele tr

Ordered logistic regression Number of obs = 1600
LR chi2(3) = 48.60

Prob > chi2 = 0.0000

Log likelihood = -2646.3178 Pseudo R2 = 0.0091
post2 | Coef Std. Err z P>|z| [95% Conf. Interval]
_____________ +________________________________________________________________
resist | .7820853 .1263871 6.19 0.000 .534371 1.0298

tele | .2201797 .1235115 1.78 0.075 -.0218984 .4622577

tr | -.3844389 .1776945 -2.16 0.031 -.7327137 -.0361641
_____________ +________________________________________________________________
/cutl | -2.783793 .1419802 -3.062069 -2.505517

/cut2 | -.8922774 .0922024 -1.072991 -.711564

/cut3 | .2720694 .0892523 .0971381 .4470007

/cutd | 1.36275 .0956417 1.175296 1.550205

/cut5 | 2.691513 .1171768 2.46185 2.921175

Now, let us consider a(nother dental) longitudinal study with 3 levels. The study [veneer.dta] was
investigating the impact of veneer placement on subsequent gingival (gum) health among adult patients
(Ocampo, 2005). Ceramic veneers were applied to selected teeth to hide discoloration. The treatment
process involved removing some of the surface of each treated tooth, and then attaching the veneer to
the tooth with an adhesive. The veneer was placed to match the original contour of the tooth as closely
as possible. The investigators were interested in studying whether varying amounts of contour
difference (CDA) due to placement of the veneer might affect gingival health in the treated teeth over
time. One measure of gingival health was the amount of GCF in pockets of the gum adjacent to the
treated teeth. GCF was measured for each tooth at visits 3 months and 6 months post- treatment. Each
patient could have different numbers of treated teeth, and the particular teeth that were treated could
differ by patient.

Patient (Level 3) : patient = Patient ID variable (Level 3 ID)

age = Age of patient when veneer was placed; constant for all observations on the same patient Tooth
(Level 2) : tooth = Tooth number (Level 2 ID) base cgf= Baseline measure of cgf for the tooth;
constant for all observations on the same tooth

cda = Average contour difference in the tooth after veneer placement; constant for all observations on
the same tooth Time-Varying (Level 1) : time = Time points of longitudinal measures (3 = 3 Months, 6
= 6 Months)

outcome: cgf = Gingival crevicular fluid adjacent to the tooth, collected at each time point

. mixed gcf time base gcf cda age tbg tc ta || patient: time, cov(unstruct) || tooth:
Mixed-effects ML regression Number of obs = 110
| No. of Observations per Group
Group Variable | Groups Minimum Average Maximum
________________ +____________________________________________
patient | 12 2 9.2 12



Wald chi2(7) = 11.24

Log likelihood = -421.82522 Prob > chi2 = 0.1283

gcf | Coef. Std. Err z P>|z| [95% Conf. Interval]

_____________ +________________________________________________________________

time | -6.105889 6.831365 -0.89 0.371 -19.49512 7.283341

base gcf | -.3176078 .2834754 -1.12 0.263 -.8732095 .2379938

cda | -.8844184 1.04596 -0.85 0.398 -2.934463 1.165626

age | -.9792811 .5524562 -1.77 0.076 -2.062075 .1035132

tbg | .0673982 .056224 1.20 0.231 -.0427988 .1775953

tc | .1298332 .2122767 0.61 0.541 -.2862215 .5458879

ta | .1105614 .1511103 0.73 0.464 -.18560093 .4067321

cons | 70.47211 26.10902 2.70 0.007 19.29937 121.6449

Random-effects Parameters | Estimate Std. Err [95% Conf. Interval]

_____________________________ +________________________________________________
patient: Unstructured |

var (time) | 36.70701 15.97778 15.64008 86.15072

var (_cons) | 447.1178 209.3122 178.6255 1119.181

cov(time, cons) | -122.2297 56.09959 -232.1829 -12.27657

_____________________________ +________________________________________________
tooth: Identity |

var (_cons) | 45.14037 15.68253 22.84774 89.18402

_____________________________ +________________________________________________

var (Residual) | 47.48507 10.21156 31.15359 72.37792

LR test vs. linear model: chi2(4) = 86.33 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

R handles nested and crossed components differently from Stata. For the correct R nested analysis, one

needs a unique code for each tooth.

veneer <- read.csv("veneer.csv")

veneer$tooth2 <- as.numeric (paste (factor (veneer$patient), factor (veneer$tooth),h sep=""))
summary (lmer (gcf ~ time + base _gcf + cda + age + tbg + tc + ta +(time | patient) + (1 |
tooth2) , data = veneer, REML = F))

One more example from West et al [2015] to illustrate crossed [student and teacher] components. See
sdf.dta

For crossed components, you have to fool Stata [which is set up for nested components]
use sdf.dta
mixed math year || _all: R.studid || _all: R.tchrid

The R code looks the 'same' as for nested components. Imer uses the codes to determine which is
which.

sdf <- read.csv("sdf.csv")
summary (lmer (math ~ year + (1|studid) + (1|tchrid), school_data final,REML = F))

Further on nested and crossed [adapted from Ime4 manual : Bates(2012)]

"Consider an investigation [penicillin.csv] to assess the variability between samples of penicillin by the
B. subtilis method. In this test method a bulk-innoculated nutrient agar medium is poured into a Petri
dish of approximately 90 mm. diameter, known as a plate. When the medium has set, six small hollow
cylinders or pots (about 4 mm. in diameter) are cemented onto the surface at equally spaced intervals.
A few drops of the penicillin solutions to be compared are placed in the respective cylinders, and the



whole plate is placed in an incubator for a given time. Penicillin diffuses from the pots into the agar,
and this produces a clear circular zone of inhibition of growth of the organisms, which can be readily
measured. The diameter of the zone is related in a known way to the concentration of penicillin in the
solution.

The variation in the diameter is associated with the plates and with the samples. Because each plate is
used only for the six samples we are not interested in the contributions of specific plates as much as we
are interested in the variation due to plates and in assessing the potency of the samples after accounting
for this variation. Thus, we will condition on the plates. Also, we are more interested in the sample-to-
sample variability in the penicillin samples than in the potency of a particular sample. Thus, we wish to
condition on samples. In this experiment, each sample is used on each plate. We say that the sample
and plate are crossed, as opposed to nested. By itself, the designation “crossed” just means that the
factors are not nested. If we wish to be more specific, we could describe these factors as being
completely crossed, which means that we have at least one observation for each combination of a level
of sample and a level of plate.

lmer (diameter ~ 1 + (1|plate) + (1|sample), Penicillin)

The conditional distribution for a particular sample, say sample F, has less variability than the
conditional distribution for a particular plate, say plate m.

Some presentations/texts leave the impression that one can only define components with respect to
factors that are nested. This is the origin of the terms “multilevel”, referring to multiple, nested levels
of variability, and “hierarchical”, also invoking the concept of a hierarchy of levels. Some references

do describe the use of models with non-nested conditioning, but such models tend to be treated as a
special case. The blurring of "mixed-effects" models with the concept of multiple, hierarchical levels of
variation results in an unwarranted emphasis on “levels” when defining a model and leads to
considerable confusion. It is perfectly legitimate to define models having random effects associated
with non-nested factors. In the Ime4 package, there is nothing special done for models with

components that are nested. The same computational methods are used whether the factors form a
nested sequence or are partially crossed or are completely crossed. A case of a nested sequence of
“grouping factors” for the random effects (including the trivial case of only one such factor) is detected
but this information does not change the course of the computation. It is available to be used as a
diagnostic check. When the user knows that the grouping factors should be nested, the user can check if
they are indeed nested."



