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Assessment of the Proportional Hazards Assumption
Graphical : The Log Log Plot

We know that proportional hazards means models like:
logh(t)=logh,(t —I-Z B;x; orequivalently logH (t)=logH (¢ +Z Bx;

If the hazard functions are proportional, then the cumulative hazard functions are proportional and vice
versa.

We can recall that H (z)=—log S(¢) and so:

log[—log S ()]=log[~log So<r>]+§ B,x,

Let us consider a [crude] model for a dichotomous exposure which then gives us:
log[—log S,(¢)]+B, E

If we graph  log[—logS,(#)] versus [analysis] time and log[—logS,(¢)]+B, versus [analysis] time
on the same graph, we can see that the two curves are the same apart from the vertical shift B, . We
call this graphing on the log log scale. So graphing the logarithm of the negative of the logarithm of the
modelled survival curves has this simple form of a one curve and a vertically shifted version of the
curve. Such a visual is an implication of the model.

Now consider the construction of such curves without the proportional hazards assumption. One could,
for this example, construct separate Nelson Allen estimates of the 2 curves:
—logS,(¢) and —log S,(#) and then graph log[—logS,(¢)] versus [analysis] time along with
log[—log S, ()] versus [analysis] time. If these curves cannot be viewed as merely vertically shifted
versions of each other, then we [visual] evidence against the proportional hazards assumption.

We can extend this approach to models with

a) more than two exposure groups

b) a dichotomous exposure and a small set of other explanatory variables analogous to a stratified
analysis

In principle, one then views each of the estimated curves [on the log log scale as above] and attempts to
see trouble.

One can consider models that include a measured variable like [centred actual] age A included
additively like those that imply:



log[—logS,(?)]+B, E+B, 4
Choosing A=0 and then graphing the two curves on the log log scale again gives the vertical shift.

We can separately fit log[—logS;(#)]+B,A4 for each exposure group [a model allowing for
exposure specific baseline hazard] and then graph the two estimated curves [on the log log scale] for
each exposure group [and set at say A = 0]. We then get a visual assessment of proportional hazards for
the two exposure groups after 'adjusting' for age A. Unfortunately, this approach does not assess
whether proportional hazards applies to age. Rather, this approach still assumes the assumption applies
to age.

Again, in principle, we can extend this approach to:

a) more than two exposure groups

b) more than one additive measured variable

¢) combinations of exposure groups, other groups and additive measure variables

We are then assessing whether the proportional hazards assumption applies to the groups with additive
'adjustment’ but not whether the assumption applies to the 'adjustment' variables.

We can explore some of these ideas:

use drugtr

stcox drug age,nohr

stcox age,strata(drug) nohr
stphplot, by (drug) adjust(age)
streg drug age, dist(weib) nohr

Stata's default is to graph the negative of the log of the negative of the log of estimated survivor
functions versus the log of time. You can choose options [noneg, nolnt] to change from the defaults.
In this example, the two 'curves' are quite straight. This suggests not just proportional hazards but
Weibull hazards as well.

log H (¢t)=log\+ plog (¢)+B,E+B, 4
These two curves then have approximately the same slope [which would estimates of negative p |.

Log Log plots need not be lines. We are looking for the vertical shifts of one baseline cumulative
hazard on the log scale.

Graphical: Residuals

Schoenfeld [1980, 1982] developed sets of residuals that provide a graphical assessment of the
proportional hazards assumption. Each set of residuals can be considered for each time fixed
explanatory variable. If there are 'trends' in these residuals when graphed versus analysis time, we
obtain graphical evidence against proportional hazards for that variable. Grambsch and Therneau
[1994] provided a quite unified view for these graphical assessments. Scatterplots smoothers and
transformations of the analysis time axis provide incisive tools to aid in this assessment.

use drugtr

stcox drug age,nohr
estat phtest, plot(drug)
estat phtest, plot(age)



estat phtest, log plot(age)
estat phtest, rank plot(age)

Tests of Significance

In order to assess the trends, we can consider a regression of each of these sets of residuals [discussed
above] on [possibly transformed] analysis time. For each time fixed variable and [possibly] a range of
transformations of analysis time, we can obtain a p-value. So there can be many p-values in play here.
Some authors propose considering just a single omnibus test for each transformation of analysis time.
Inevitably, there are assumptions for these tests. These assumptions allow the use of an estimated
overall (pooled) variance—covariance matrix in the equations. These tests have been shown to be fairly
robust to departures from these assumptions. Nevertheless, some authors recommend such assessments
with [suitably] stratified models. Again, one can be faced with many p-values, many graphs and
sometimes mixed messages.

estat phtest, detail
estat phtest, rank detail
estat phtest, log detail

use leukemia

sts test treatment2

sts graph, by (treatment2)

stphplot, by (treatment2) adj(wbc2 wbc3)
stcox treatment2 wbc2 wbc3,nohr

estat phtest,detail

Assessment in Discrete Time

Since analysis is Logistic regression or CLoglLog Regression, one can, in principle, use the usual model
fitting process methods with either individual Wald tests or LR tests.

Returning to the study of Wheaton et al, we could consider a model which retains the time varying 'pd'
but assesses a gender specific baseline hazard.

use wheaton_pp.dta

gen af=age_1l8*female

gen a2f=age_l8sqg*female

gen a3f=age l8cub*female

logit event age_18 af age_18sq a2f age_18cub a3f pd female



