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ABSTRACT. We performed a Monte Carlo study to evaluate the effect of the number of events per variable
(EPV) analyzed in logistic regression analysis. The simulations were based on data from a cardiac trial of
673 patients in which 252 deaths occurred and seven variables were cogent predictors of mortality; the
number of events per predictive variable was (252/7=) 36 for the full sample. For the simulations, at values
of EPV = 2, 5, 10, 15, 20, and 25, we randomly generated 500 samples of the 673 patients, chosen with
replacement, according to a logistic model derived from the full sample. Simulation results for the regression
coefficients for each variable in each group of 500 samples were compared for bias, precision, and significance
testing against the results of the model fitted to the original sample.

For EPV values of 10 or greater, no major problems occurred. For EPV values less than 10, however, the
regression coefficients were biased in both positive and negative directions; the large sample variance estimates
from the logistic model both overestimated and underestimated the sample variance of the regression coeffi-
cients; the 90% confidence limits about the estimated values did not have proper coverage; the Wald statistic
was conservative under the null hypothesis; and paradoxical associations (significance in the wrong direction)
were increased. Although other factors (such as the total number of events, or sample size) may influence
the validity of the logistic model, our findings indicate that low EPV can lead to major problems. Copyright
© 1996 Elsevier Science Inc. j cLIN EpipEMIOL 49;12:1373-1379, 1996.
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INTRODUCTION

Multivariable methods of analysis have been suspected of producing
problematic results if too few outcome events are available relative
to the number of independent variables analyzed in the model [1].
The main concerns have been accuracy and precision of the regres-
sion coefficients, and potentially misleading associations. Three
types of errors have been discussed: overfitting (Type I error) occurs
when too many variables, some of which may be “noise,” are se-
lected for retention in the final model; underfitting (Type 1l error)
occurs when important variables are omitted from the final model;
and paradoxical fitting (Type I1l error) is produced when a particular
factor is given an incorrect direction of association which is the
opposite of the true effect.

Because of these problems, general guidelines have been suggested
for the minimum number of events per variable (EPV) required in
multivariate analysis. On theoretical grounds, Harrell and colleagues
[2] advocated a criterion equivalent to a minimum of 10-20 EPV.
In a simulation study of forward stepwise multiple linear regression,
Freedman and Pee [3] demonstrated that the Type I error was in-
flated when the ratio of the number of variables to the number of
observations was greater than 0.25, corresponding to an EPV < 4,
In simulation studies of the effect of EPV on proportional hazards
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regression [4,5], we recently suggested that at least 10 events per
variable analyzed were desirable to maintain the validity of the
model.

Because the impact of EPV may not be the same for all multivari-
able methods, we conducted a Monte Carlo study for the effect in
logistic regression analysis. For the logistic model, the number of
outcome events is the smaller number of binary outcomes (e.g., alive
versus dead). Thus, a particular study may have many subjects, but
too few deaths for a valid analysis. To investigate this problem, we
conducted simulations using data from a cardiac trial having 252
deaths (events) among 673 patients. Seven known prognostic vari-
ables were selected for analysis, yielding an EPV of 252/7=) 36 for
the full sample. The simulations were conducted for selected values
of EPV ranging from 2 to 25. Results were compared with the model
fitted to the original sample to examine bias, precision, and signifi-
cance testing of the regression coefficients.

METHODS
Design of Simulation Study

Using sampling with replacement, 500 hundred simulations were
each conducted at individual settings of EPV = 2, 5, 10, 15, 20,
and 25. Deaths and survivors were separately sampled based on the
predicted probability of dying (P;) or surviving (Q; = 1 — P,) by
the logistic model, where P; = 1/{1 + exp[— (& + X/)I}; ais the
intercept term; X; = (Xj;, . . . ,Xi7) is the set of covariate values for
patient i; and § = (B, . . ., B), is the set of corresponding values
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of the regression coefficients estimated from the full sample with
EPV = 36. We wanted to draw a sample in which the associations
with the covariates, 5, was specified, while the number of events
was fixed in the simulation. This goal was accomplished by selecting
patient i, with probability S;(death) = P,/3};-; 6P, if we were se-
lecting a death, and S;(survival) = Q33 Q; for a survivor.

The algorithm for selecting deaths was based on cumulative death
and survival selection probabilities, Ci{(death) = ., ;S,(death)
and C;(survival) = 3., ;S (survival), respectively; and a generated
set of uniform random numbets, u = u,, . . ., u;, between 0 and 1,
where j = 7 X EPV. Patient i (1 to 673) was selected as a death if
Ci_i(death) < u = Ci(death). Selection of deaths continued, with
replacement, until the required number of 7 X EPV deaths was ob-
tained. For example, 2 EPV required 7 X 2 = 14 deaths. Selection
of the (673 — 7 X EPV) survivors was done in a similar manner
using the cumulative survival scores, C,(survival), and a generated
set of (673 — 7 X EPV) uniform random numbers. Thus, for each
EPV simulation, the same subject could be selected more than once
in a sample both as a death and as a survivor. The allocation of
deaths and survivors in a simulation was independent of the actual
outcome for each subject; that is, a subject who died in the study
population could be selected as a survivor and vice versa.

At each value of EPV, the process of selecting deaths and survi-
vors was repeated 500 times, generating 500 samples of 673 patients.
For each sample, a logistic regression model was fitted and the re-
sulting coefficients and their variances were saved in a data set for
the analyses described later. The simulations were performed in SAS
using an IBM RISC computer. A criterion of 10® was used for con-
vergence of the maximum likelihood estimates. Simulations in
which convergence was not obtained were excluded and not re-
placed.

The cited method of (retrospective) sampling was used to vary
EPV, while at the same time leaving the regression parameters, 5,
unchanged. This strategy can be justified by using well-known prop-
erties of log-linear models and multinomial sampling. By condition-
ing on the deaths, the score for patient i represents the probability
of observing the covariate pattern X, or P(X{death) = P/2- 65
P, = K\P;, and by conditioning on survivors we obtain P(X/survival)
= Qi =16 Q = KiQ.. The ratio of the death to survivor score
is proportional to exp(a* + X, 8), which is a log-linear model where
o = a + In (K|/K;). If we apply Bayes theorem, we obtain the
probability of death given the covariate pattern (as in prospective
sampling):

P(death|X;)
= P(death) P(X;|death)/{P(death) P(X;|death)
+ P(survival) P(X;|survival)}
= 1/{1 + exp[—In{K,P(death)/K;P(survival)} — « — X, A}
=1{1 + exp(—2’ — X, B)},
where
o = In {K,P(death)/K; P/(survival)} + a.

In a similar manner, we can show that P(survival|X;) is equal to 1/
{1 + exp(a’ + X,B)}, and is consistent with the logistic model.
Thus, by conditioning on the outcome (death or survival), sampling
retrospectively will yield the same estimates for B as sampling pro-
spectively conditional on the covariate patterns [6,7].
Retrospective sampling gives the distribution of estimates of the
regression coefficients in relation to the observed EPV, while pro-
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spective sampling considers estimates in relation to the expected
EPV. Our goal was to examine the behavior of the logistic model
with respect to the observed number of events per variable, which
is the quantity known in practice, and we follow the same strategy
used in our previous investigation of the proportional hazards model
[4,5]. The results of simulations using prospective sampling were vir-
tually identical to those obtained for retrospective sampling reported
here.

Statistics

The simulation results of EPV of 2, 5, 10, 15, 20, and 25 were evalu-
ated relative to the model fitted to the original (full) sample with
EPV = 36, using previously described measures of accuracy, preci-
sion, and significance testing [4]. We also examined the distribution
of the regression coefficients and tested for normality using the Kol-
mogorov D statistic {8]. All statistics were computed conditional on
obtaining convergence of the logistic regression model. Samples in
which the model did not converge were excluded from analysis. Al-
though these samples provide some information about the parameter
estimates (i.e., upper or lower bounds), they do not provide useful
estimates of the effect of covariates.

Accuracy of coefficients was assessed by calculating the average
percent relative bias for each of the k = 1, . . ., 7 regression coeffi-
cients, and each of the m = 1, .. ., M simulations that converged,
as 100* Zgn-1, (B — Biotme)/ (M* By e} Where i e Was the “true”
value of the coefficient obtained from the full sample. Another mea-
sure of accuracy was the proportion of simulations in which the bias
exceeded * 100%.

Precision of coefficients was determined by calculating and then
comparing the “sample” and “model” variance of each regression
coefficient. The sample variance was calculated in the usual manner
a8 Zinet My (Bim — B/ (M — 1). Model variance was determined as
the average of the variances from the logistic model for each coeffi-
cient over all M models that converged, that is, 3j,=, v Var(Bm)/
M. The ratio of model to sample variance was used to assess the
large sample properties of the model; ratios different from a value
of one indicated that these properties may not hold.

The statistical significance of the regression coefficients was eval-
uated in four ways. First, the coverage of 90% confidence intervals
was determined as the proportion of simulations in which the 90%
confidence interval about the estimated coefficient included the true
value. Second, power was calculated as the proportion of simulations
in which the coefficient divided by its standard error (Z-statistic)
exceeded normal deviate for a one-sided significance test at the 10%
level (1.28). Third, the proportion of simulations in which the Z-
statistic was less than —1.28 would indicate the chance of observing
significance in the wrong direction, described as “paradoxical fit-
ting” [4] or Type III error [9). Fourth, to assess the validity of the
Z-statistic, we conducted simulations under the null hypothesis, by
setting all the regression coefficients simultaneously equal to zero
(8 = 0) and using the same simulation strategy described above.
The distribution of the Z-statistics was then examined and Type 1
error evaluated.

DATA

The simulations used data from the Department of Veterans Affairs
Cooperative Study of Coronary Artery Surgery [10]. In this study,
686 patients with stable angina pectoris and angiographically
proven coronary artery disease were erirolled between the years 1972
and 1974 and followed thereafter for a minimum of 10 years. Seven
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TABLE 1. Summary statistics of baseline risk factors in original complete group
Multivariable logistic regression estimates
Standard Wald Odds

Factor Prevalence Coefhicient error p value ratio
Intercept —-1.86 0.24 <0.01
ST depression 0.25 0.46 0.19 0.02 1.59
History of hypertension 0.29 0.52 0.19 <0.01 1.67
NYHA Class Uil or IV 0.59 0.28 0.17 0.11 1.32
History of CHF 0.07 0.51 0.33 0.12 1.67
History of diabetes 0.13 0.56 0.25 0.02 1.75
Number of vessels diseased :

1 0.14 0.33 0.12 <0.01 1.39

2 0.32

3 0.54
Abnormal left ventricular contractility 0.50 0.61 0.17 <0.01 1.85

Global chi-square score statistic with 7 degrees of freedom = 56.7, p < 0.01.

known predictors of survival (with bivariate p values (2-sided)
<0.10 for each variable) were selected for the simulations: ST seg-
ment depression (STD) on the resting baseline ECG, history of hy-
pertension (HTN), New York Heart Association Functional Class
I or IV versus I or I (NYHA), history of congestive heart failure
(CHF), history of diabetes mellitus (DM), number of coronary arter-
ies with significant lesions (VES}), and the presence of a left ventric-
ular contraction abnormality (LVC). In the current analyses, all
variables were coded as 1 for presence of the factor and 0 for absence
of the factor, except the number of diseased vessels, coded as O for
1-vessel disease, 1 for 2-vessel disease, and 2 for 3-vessel disease.
Complete data for the 7 variables were available in 673 patients, of
whom 252 died during the first 10 years of follow-up, yielding an

EPV of (252/7=) 36 for the full sample. Table 1 summarizes the
results of the multivariate logistic regression model applied to the
full sample.

RESULTS

Although all 500 sample models converged for EPV = 10 and 497
models converged for EPV = 5, only 377 (77%) models converged
for EPV = 2. Thus, the logistic model did not always achieve con-
vergence at low EPV.

Figure 1 shows the effect of EPV on the frequency distribution
of the values of the regression coefficients for the variable CHF. As
EPV decreased, the distributions became more dispersed and “flat-
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FIGURE 1. Number of events per variable, and frequency distribution of estimated regression coefficients for congestive heart
failure (CHF). The vertical (dashed) line is the true value for the regression coefficient.
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FIGURE 2. Number of events per variable, and average per-
cent relative bias. Abbreviations for variables are: VES =
number of coronary arteries with significant lesions; CHF =
history of congestive heart failure; NYHA = New York Heart
Association Functional Class Il or IV; LVC = presence of a
left ventricular contraction abnormality; STD = ST depres-
sion on the resting baseline electrocardiogram; DM = history
of diabetes mellitus; and HTN = history of hypertension.

ter,” particularly for EPV < 10. For example, the minimum and
maximum values of the regression coefficient were —0.67 and 1.71
at 25 EPV compared with —0.85 and 2.75 at 2 EPV. Thus, inaccu-
rate estimation of the actual regression coefficient value was more
likely at low EPV. Similar patterns were observed for the other 6
variables (data not shown).

The normality of the distribution of the regression coefficients
was tested with the Kolmogorov D statistic (data not shown). De-
partures from normality (p < 0.05), with “flattened” distributions
and long “tails” in both directions, were more common as EPV de-
creased. The frequency of “not normal” distributions was 7 at 2 EPV,
3 at 5 EPV, 2 at 10 EPV, 1 at both 15 EPV and 20 EPV, and 0 at
25 EPV.

Percent relative bias of coefficients, as graphically displayed in
Figure 2, increased with decreasing EPV. The average bias was
within * 10% of the true value for EPV > 10. At 2 EPV, however,
the bias increased dramatically, so that regression coefficients were
overestimated by an average of 30% for CHF and by 40% for VES.
This problem is further described in Figure 3, which shows the pro-
portion of simulations in which the absolute error exceeded *
100%. The proportions increased substantially below 10 EPV, and
exceeded 0.35 for all factors at 2 EPV. The proportions for NYHA
and CHF were still greater than 0.20 at 25 EPV, apparently due to
the relatively small impact of NYHA on outcome, and the relatively
large standard error for CHF which arises because of low prevalence.

The sample variance of the regression coefficients, displayed in
Figure 4, showed the expected increase as the EPV decreased. The
corresponding effect on model variance is shown in Figure 5 for the
ratio of model to sample variance. Marked departures from the ex-
pected value of 1 occurred at 2 EPV, where the ratio was overesti-
mated by nearly 100% for CHF and by 25% for DM, and underesti-
mated by 20% for VES and LVC and by 10% for STD and HTN.

Figure 6 shows the proportion of simulations in which the 90%
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FIGURE 3. Number of events per variable, and proportion of
simulations in which percent relative bias exceeded £ 100%.
Abbreviations are as indicated in Figure 2.

confidence limits about the estimated value included the true value.
Both overcoverage and undercoverage occurred, with greatest vari-
ability in coverage at low EPV. The median proportion of coverage
among the 7 variables was 0.92 at 2 EPV, 0.91 at 5 EPV and 0.90
for EPV = 10.

Figure 7 shows the proportion of simulations in which the Z-sta-
tistic (square root of Wald statistic) exceeded the standard normal
deviate of 1.28 which gives the power for a 10% significance test.
The power for all variables decreased slowly with decreasing number
of events up to 10 EPV, and thereafter dropped sharply. The propor-
tion of simulations in which the Z-statistic was paradoxically re-
versed to values less than —1.28 was low (data not shown). For four
of the factors the proportions for paradoxical associations increase
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FIGURE 4. Number of events per variable, and sample vari-
ance of the estimated regression coefficients. Abbreviations
are as indicated in Figure 2.
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FIGURE 5. Number of events per variable, and ratio of model
to sample variance. Abbreviations are as indicated in Figure
2.

at low EPV: at 2 EPV, the proportions were 0.03 for NYHA, 0.02
for STD and HTN, and 0.01 for VES.

The normality of the distributions of the Z-statistic were tested
under the null hypothesis of no covariate effects (f = 0). Departures
from normality were common below 10 EPV; the distributions were
skewed to the left. At 5 EPV the distributions of four variables were
not normal (p < .05) and the data suggest that none of the distribu-
tions was normal at 2 EPV. These phenomena are illustrated for
one variable (CHF) in Figure 8. For example, the minimum and
maximum values of the Z-statistic were —2.44 and 2.85 at 25 EPV
compared with —3.48 and 0.88 at 2 EPV.

Finally, Table 2 displays the number of simulations that con-
verged, and the overall percentage of occasions in which each vari-
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FIGURE 6. Proportion of Simulations in which the 90% con-
fidence interval about the estimated regression coefficient
included the true value. Abbreviations are as indicated in
Figure 2.
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FIGURE 7. Proportion of simulations in which the Z-statistic
(coefficient/standard error) Exceeded the standard normal de-
viate of 1.28 for 90% power. Abbreviations are as indicated

in Figure 2.

able was significant at the 10% level under the null hypothesis
(B = 0) of no covariate effects. The global Type I error for each
EPV was determined as the total number of variables found to be
significant in all simulations divided by the total number of variables
that were evaluated (i.e., seven times the number of simulations that
converged). The global Type I error decreased from 10.3% for 25
EPV to 8.5% for 2 EPV, indicating that the Z-statistic became exces-
sively conservative with decreasing EPV. ‘

DISCUSSION

These simulation studies demonstrate the problems that can occur
when a logistic model contains few events relative to the number
of independent variables being evaluated. As EPV decreased, the
bias of the regression coefficients increased, often yielding extreme
values for the maximum likelihood estimates. For example, at 2
EPV, more than one-third of the estimated regression coefficients
were either twice as large or half as small as the true value. Even
at 25 EPV, bias of the regression coefficient exceeded * 100% in
20% of the estimates for CHF and NYHA. This finding cannot be
explained solely by low prevalence of a variable: although CHF was
uncommon (7%) in the population, NYHA had the highest preva-
lence (59%) of any variable. Similarly, the finding cannot be attrib-
uted only to low impact of a variable: although NYHA had low
impact (odds ratio = 1.37), CHF had a greater impact {odds ratio
= 1.67) than several other variables. A likely explanation is that
either low prevalence or low impact can magnify the effects of a
“too small” EPV.

The effect of decreasing EPV on estimates of power and variance
was expected, because these two statistics are directly related to the
number of events. At low EPV, however, an additional problem is
that the large sample properties of the logistic model variance may
not hold. It was overestimated (up to 100%) and underestimated
(up to 20%), although a consistent pattern was not apparent. Para-
doxical fitting (i.e., associations in the wrong direction) also showed
an increased occurrence at low EPV, but the relative frequencies
were small.
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FIGURE 8. Distribution of the Z-statistic for congestive heart failure under the null hypothesis that the covariate has no effect
with outcome.

TABLE 2. Number (n) and percent (%) of occasions in which variable was significant (p < 0.10) under null hypothesis of
no covariate effects

EPV = 25 EPV = 20 EPV =15 EPV = 10 EPV =5 EPV = 2
(500)* (500)° (500)* (497)* (471)* (282):
Variable n % n % n % n % n % n %
STD 47 9.4 60 12.0 56 11.2 60 12.1 53 113 19 6.7
HTN 63 12.6 46 9.2 30 6.0 43 8.7 47 10.0 19 6.7
NYHA 51 10.2 57 114 61 12.2 61 12.3 50 10.6 28 9.9
CHF 50 10.0 45 9.0 45 9.0 32 6.4 37 7.9 29 10.2
DM 49 9.8 44 8.8 44 8.8 45 9.1 36 7.6 19 6.7
VES 48 9.6 47 9.4 41 8.2 52 10.5 41 8.7 25 8.9
LVC 51 102 48 94 59 18 53 107 48 102 29 103
Total® 359 10.3 346 9.9 336 9.6 346 9.9 312 95 168 8.5

Abbreviations are as indicated in Figure 2.

“Number of logistic regression analyses (in parentheses) that converged out of 500 samples.

bTotal percent (or global p value) was calculated as the number of significant variables divided by total number of variables evaluated (=7 X number
of samples that converged).

Another problematic finding was the effect of EPV on signifi- EPV. Other problems with inference based on the Wald statistic in
cance testing. The 90% confidence intervals about the simulated the current research have been previously noted in logistic regres-
values exceeded 90% coverage for most variables at EPV = 5, indi-  sion analysis [11,12]. We did not, however, evaluate the effects of
cating that the intervals were too wide. For the simulations under EPV for the score and likelihood ratio statistics.
the null hypothesis that the seven covariates had no relation with An additional concern at low EPV involves the convergence of
outcome, however, the Z-statistic was excessively conservative at maximum likelihood estimates when the logistic regression coeffi-
low EPV, rejecting less frequently than the stated significance level.  cients are calculated. Convergence was obtained in less than 80%
The simulations also offered strong evidence that the distribution  of the samples at 2 EPV. For the simulations under the null hypothe-
of the Z-statistic was not normal and was skewed to the left at 2 sis, the convergence rate was only 60% at 2 EPV. The lower rate
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of convergence may be attributed to variables with low prevalence
rates, in that the chance of having the event when the risk factor
was present was small under the null hypothesis. This problem may
also occur in studies that evaluate variables with low prevalence
rates and small effect sizes.

In an earlier simulation study of the logistic model [13], problems
were noted with respect to the accuracy and precision of the regres-
sion estimates and associated tests of significance based on the Z-
statistic. The simulations were based on a hypothetical population
of 10,000 individuals and a single risk factor, and evaluated the ef-
fect of sample size on the validity from the model, but EPV was not
examined. Regression coefficients were found to be both inaccurate
and unreliable compared with the “true” population values, over a
range of sample size from 1,000 to 7,500. Problems with the validity
of the Z-statistic were observed under the null hypothesis, similar
to the current study, in that the Type I error was either greater or
less than the nominal value of 5%.

Our Monte Catlo study has several limitations. The simulations
were based on the mortality rate in a single set of “real” dara. The
variables examined were all discrete and had only a moderate range
of prevalence rates and associations (all positive) with outcome. No
continuous measures ot interactions between variables were in-
cluded. Exact logistic regression [14] was not compared, and the per-
formance of the likelihood ratio and score statistics was not evalu-
ated. In addition, we checked one index (EPV) in our study, but
others (such as the total number of events or sample size) may also
affect the validity of the model.

In summary, the validity of the logistic model becomes problem-
atic when the ratio of the numbers of events per variable analyzed
becomes small. The parameter estimates may be biased and the usual
tests of significance may not be valid. These results offer insight into
problems of low EPV, and can guide the design of future Monte
Carlo studies that include different indexes evaluated under a wider
range of conditions.
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