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Session 10 : Issues When Modeling

This session provides an introduction to a number of different issues. These issues can appear quite
often when using models.

Linearly Dependent Columns

All of regression is about linear combinations (or weighted sums ) of columns of data: Z B,x;, The
weights are the B,’s while the columns are the x;’s You may recall that such columns can be
thought of as vectors. [column vectors!] All of the basics from linear algebra may come rushing back to
you just now. [maybe not...]. The Z B,x, provides us with a 'log of odds' in the context of logistic
regression. It turns out that no subset of these vectors can form what is called a linearly dependent set.

To motivate linear dependency, let us suppose that we have a potential confounder/modifier that is
characterized by levels. For example, age group with 3 'levels': young, middle aged and old with codes
1, 2 and 3 respectively. Think now of the indicator variable for each of these levels: «;,a,,a; where

a; is 1 if the participant is in group i and is 0 otherwise. Now notice that a,+a,+a;=1 Check out
what this means for a particular participant. If a,=0 and a,=0 |, then we know that a; must be
one. Meaning: if we know a participant is not young and not middle aged, then, we know they are old.
Here, we are assuming that the characteristic 'age group' is made up of a mutually exclusive and
exhaustive set of levels. Each participant is described by 'age group' in one and only one of these levels.
Knowing any 2 of the a; values determines the third. [For sure]. We then have four columns
[vectors] that are said to be linearly dependent.

The actual definition is a little technical:

A set of p+1 vectors a,,a,,a,...,a, form a linearly dependent set if there are ¢,;’s [scalars not all

p

equal to zero] so that Zio c,a,=0 .Ifthere are nosuch ¢;'s ,then we say that these vectors are

linearly independent.

For our example above, p=3, a,=1 and so we can pick c¢,=—1, ¢,=1, ¢,=1 and ¢;=1 which
then givesus a,+a,+a,=1 . Since there are non-zero ¢;'s ,weknowthat 1, a,, a, and a,
are linearly dependent. We will see that if we exclude any one of 1, a,, a, and a; , then the
remaining three form a linearly independent set. Indeed, such a step makes sense once we interpret the
coefficients that result.

Lets consider, as a starting place: log(p/(1—p))=B,+B, E+B,a,+B;a; As always, one should
interpret the coefficients. [In particular, interpret f, ]

Now, if we were to attempt to fit:

log(p/(1—p))=Bo+B, E+B,a,+Bsas+B,a, ,all software will exclaim 'warning' and delete one of
the a; from the equation list. Usually the last in the equation is deleted. In this illustration, a,
would be removed, but, in fact, any one of the three could have been selected. This type of variable



deletion does not necessarily mean that a; 1s not needed in such a model construct but, rather, that

you, as the thinking part of all of this must now think: “I have a problem with my logic” “I need to

trace through all the steps that have led me to this model”. In this case, we can see that knowledge of

any 2 of the levels of age group determines the third and so the 'estimation’ process cannot be managed

without a change on your part. Usually, you want to make a choice. In this example, such a choice will

determine which level of age group becomes the 'baseline' level and provides an interpretation to our
B,'s as differences relative to the chosen baseline level.

Lets make this example a little more elaborate. Consider:
[Model 1]

log(p/(1—p))=By+B, E+Bra,+Bsas+B,Ea,+BsEa,
Write out this equation for the young, the middle aged and the old. Interpret the coefficients.

Now consider:
[Model 2]
10g<p/(1 _p>):|31a1+ Bra,+Bsa;+B,Ea+BsEa,+BsE a;

Write out this equation for the young, the middle aged and the old. Interpret the coefficients.

In Stata, to try Model 2, you include the explanatory variables as always but now you add the option,
noconstant. For example:

logit dis al a2 a3 Eal Ea2 Ea3, noconstant

After the above command, you could still consider a comparison with the 'lincon' command. For
example, to estimate the log odds ratio for the middle-aged minus the log odds ratio for the young you
would enter:

lincon Ea2-Eal

Both models 1 and 2 accomplish exactly the same task. The fitted values from Models 1 and 2 are
identical. The regression coefficients in Model 2 can be used to compute the regression coefficients in
Model 1 by identifying their corresponding interpretations and vice versa.

In these situations, you always have choices. In our example, we could choose either one of the young,
the middle-aged or the old as baseline. For a fourth option, we could choose not to have a baseline
group and the construct the models using the noconstant option. It is always a good idea to check that
you are making the right moves by constructing the fitted values for each alternative model and
checking that the fitted values from each of the alternatives are the same.

“Nearly” Linearly Dependent Columns
The above example refers to exact linear dependent sets. In health research, we can have a set that is
“close to being” a linearly dependent set. Sometimes, software will spit out one [or more] of the
members from such a set [for removal] while in other circumstances, we may receive a fit with no

deletions and not get a clear clue to trouble brewing. An example, may help to display the issue here.

Lets consider a study of diabetics in which the outcome is retinopathy [an eye disease that can lead to



blindness]. Lets suppose that we have recorded a patient's age A[in years], how long they have had

diabetes D [in years] and their type of diabetes T [coding Type I =0 and Type II =1] For illustration

only, lets us suppose we construct a model for the log of the odds of retinopathy using, say:
log(p/(1=p))=By+ B A+B,D+B,T

Notice that if T=0, then A and D are typically nearly the same. Type I diabetics are diagnosed at a

young age so that here, D may be just a little less than A. While if T=1, we can see that A and D are

typically different. In fact, if T=1, A and D are rarely close.

Notice that knowledge of T and A for a given participant, tells us 'a lot about' D. Certainly not exactly
what D is but maybe 'a narrowing down' of the possible values for D.

This sort of phenomena is now usually called the 'multicollinearity' of A, D and T, in that knowledge
of any 2 of A, D or T at least partially determines the third. [I have tried a search for history of the term
'multicollinearity’. We say points on a graph are collinear if they lie on a line. The shortest distance
between 2 points is ....] [The term may go back to the mid 1960's when a researcher noticed that his
data, using [an early algorithm of ] SPSS, would give very different results with the same data run on
different computers! The term 'ill-conditioned' was used then... maybe still is]

In practice, how do we avoid or detect multicollinearity?

Your content area literature may have such matters identified.

Even though a fit has been determined, some of the standard errors of the estimates may be far larger
than one expects.

A coefficient may be in the wrong direction. For example, a negative value for the estimate of the
coefficient for age may be a strong clue of trouble since we may know that the log odds of disease
cannot decline with age.

Attempting to interpret a coefficient, may lead to an unrealistic scenario. In our example, if we attempt
to interpret the coefficient of duration, we are 'fixing' type and age and then conceptualizing a rate of
change of log of odds of disease per year of duration. This may be fantasy. For when, for example, we
think of a group of patients in which type=1 and age is fixed , it makes little sense to think of this
group of patients with varying duration. [age, and hence duration, are fixed]

Stepwise Methods

By stepwise methods, we discussing methods in which the choice of variables is carried out by an
automatic procedure [algorithm]. Usually, the automated procedure takes the form of a sequence of
tests with preassigned decision rules. These automatic procedures provide for statistical model
selection in cases where there are a large number of potential models, and where the investigator has no
clue [how proceed with the model selection]. There have been many techniques and criteria proposed
over the years. One might be tempted to consider elaborate strategies based on hypothesis tests or so
called “adjusted” R-square or the Akaike information criterion or various Bayesian information
criterion or Mallows' Cp, or the false discovery rate or area under the curve... the list goes on. The 'false
discovery rate' seems to be garnering attention these days.

A 'stepwise' algorithm may involve many 'stages' and may include:

a) Forward selection: which involves starting with no variables in the model or perhaps starting with a
preassigned set of worthy variables, trying out the variables one by one and including them if the
criteria above deems them 'worthy'.

b) Backward elimination, which involves starting with all candidate variables and considering them one
by one based on the criteria and then deleting any that are not 'worthy'.



¢) Methods that are a combination of forward selection and backward elimination, considering at each
stage for variables to be included or excluded.

The algorithm stops 'searching' when the criteria used is deemed 'best'. Then a model (or a*short™ list
of models) is output along with the measure of the model's goodness.

The first widely used algorithm appears to have been proposed by Efroymson (1960).

Any method that “automates” the process of model construction is be viewed with cynicism. Criticisms
of stepwise methods generate a lengthy and colourful list of articles/emails/blogs by very prestigious
statisticians, biostatisticians and others. A brief set of highlights from some of these articles can be

found at:

www.stata.com/support/fags/stat/stepwise.html

...or for that matter, if you 'google' 'stepwise regression', you will get an avalanche of discussion about
the problems and issues.

In the world of 'data mining', automated procedures have been returning to the attention of analysts.
The whole topic of so called 'expert systems' can generate considerable debate.

The process of model construction is very time consuming, difficult and far from a simple set of rules
and regulations. It is, perhaps, tempting to think that this very laborious and demanding step in research
can somehow be passed over. This is, in part, due to the fact that, for many [novice] scientists, most of
statistics is magic coming out of a very powerful 'black box' and that somehow such a black box must
be better at model construction than, say, a clear thinking group of researchers agonizing and debating
over the merits and demerits of a candidate model after extended time taken to review and interpret
such a model's implications and then to consider another model (or models) and how such a model may
better add to knowledge in the research area.

Gatekeeping
It was with the advent of fast computers in the 1960s, that regression analyses could be done with
relative ease. Before computers, considerable effort was given to trying to find methods to bypass or
minimize the calculations. Much of that effort can be studied with considerable advantage to get a clear
understanding of the issues, but, alas, most (nearly all) of that work is not considered part of the
mainstream anymore.

At the time, many statisticians claimed that regression analysis was being abused and misunderstood.
[There was plenty of abuse... some would say there still is...] The statisticians were no longer the gate
keepers of this 'technology'.

“Independent” Factors
The language of regression was in its infancy in some ways back in the 1960's. Some authors referred
to the outcome variable as the 'dependent variable' in so far as the outcome was dependent [conditioned
on] a collection of predictor variables. Unfortunately, at this time, some authors then referred to the
predictors as the independent variables [because they weren't the dependent variable]. Many
statisticians protested the use of 'independent' here and attempted to develop other namings like
predictor variables or selector variables. There remains a considerable inertia to this day regarding this
naming. It gets worse. The literature is now filled with phrases like 'independent factors' and/or


http://www.stata.com/support/faqs/stat/stepwise.html

'independent predictors' and more and more muddle...

It would seem that 'most' of the time, when a researcher refers to the 'independent factors', they usually
mean that such factors have been presented in an additive way (i.e. No interactions). However, there
does not seem to be clear guidance on these matters and the cynical reviewer needs to dig deep these
days to determine what is actually intended.

“Continuous”

Continuity has a precise mathematical definition. [have a look in your favourite calculus text]
Informally, a continuous variable is one for which, within the limits the variable ranges, any value is
possible.

Age, weight, height and duration of illness are examples of continuous variables.

A 7 point “Likert” variable is not a continuous variable. The number of return visits during a study is
not a continuous variable.

A variable that is not continuous is called “discrete”.

The adjective “continuous” has crept into constant usage in regression analysis. Often, there is a
decision to be made as to whether to use an actual variable as a predictor variable or to use a version of
this variable with 2 or more levels based on cutoffs/thresholds. The real issue is whether the actual real
variable affects the response in the linear way. If this is a plausible assumption, then such a use of the
actual variable may be warranted. If the effect is not linear, then one option is to set up a set of
indicator variables based on sensible thresholds and to then study the nature of the variable-response
relationship. Unfortunately, authors now speak of the use of a 'continuous' variable if the actual values
of a variable are used. The continuity of the variable is in fact irrelevant to the issue at hand. The real
issue is the nature of the variable-response relationship. Indeed, it is certainly possible and reasonable
that a predictor variable can clearly have only a discrete set of values and yet for the purposes of the
assessment of conditional log odds has the linear effect on the response. Such a predictor variable can,
then, with advantage, be included in the linear predictor even though the variable is most clearly not
'continuous'. It is far more helpful to refer to the possible linearity of a such variable rather than to
merely to say it is 'in the model' as a continuous variable. The continuity or discreteness of a variable is
relevant when such a variable is being considered as a 'dependent' variable however. More on this when
we discuss linear regression and conditional means.

Logarithms
These days, all uses of logarithms are as 'base €' logarithms. It can be noted that such a choice of the
base for logarithms has no real impact of any interpretation or description of log odds [or log
anything] . Apart from a possible rescaling if, for example, an investigator wished to report logarithms
to base 10, then all results would be rescaled by this same fixed quantity.

The use of the notation: In(x)=1log,(x) is not widely seen in epidemiology or biostatistics. For us,
log(x) means log,(x)

1
log,,(x)=log,(e) log(x):mlog(x)mo.% log(x) or log(x)=log(10)log,,(x)~2.3log,(x)



The Implications Of Centring

Consider a single variable x to be considered as the 'right hand side' of a regression model. A fit gives:
Y=bx A line through (0,0) with slope b.

If instead one considers x with a centred version x-c, then one gets a different fit: Y =5b'(x—c) A

line through (c,0) with different slope b'.

The fitted values will be different for all x except when bx=b'(x-c) i.e when x= - b'c/(b-b'")
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The example above shows 2 lines: Y=3x and Y= 6(x-1). The first line is forced through (0,0) while the
second line is forced through (1,0). The lines can have but one common fitted value at (2,6). So, with
this simple model, centring changes the fitted values.

Now consider a model with both a constant 1 and the variable x. A fit gives Y =b,1+b,x . Now
consider the same model with 1 and x but again x is as centred x-c. Now the fit would be
Y =(by+b,c)14+b,(x—c) . This is the same line. Both versions give us the same set of fitted values.

a) Now, let us consider a model that may include many variables but the variable x appears in the
model without any other forms of x such a quadratic or an interaction. If one wishes to ensure that the
fitted values do not change when x is centred, then: B x must be replacedby Bcl+B(x—c) In
other words, if x is to be replaced with x-c, then one must have the constant term 1 in the model.

b) Now suppose we are considering models that may include 2 variables x, and x, We wish to

consider the centring of x; but we will not be centring x, . Now suppose we wish to include the

term x,x, . Then PBx,x, mustbe replaced by Bc,x,+B(x,—c,)x, Inother words,if x, isto

be replaced with x,—c¢, , then one must have x, in the model to ensure the fitted values are

invariant to the centring. Notice that ensuring invariance here does not necessarily require either 1 or
x, be included in the model.



¢) Now suppose we consider the centring of both x, and x, and suppose we wish to include the
term x,;x, .Then Bx,x, mustbereplacedby Bc,c,1—Bc,x,—Bc,x,+B(x,—¢,)(x,—¢,) In
other words, if x, isto bereplaced with x,—c, and x, istobereplaced with x,—c, ,then
one musthave 1 and x, and x, inthe model to ensure the fitted values are invariant to the
centring. This principle for the contents of such models goes by many names including 'well-formed'
and 'hierarchically well formulated' . A related but not identical principle is often cited for the
construction of analysis of variance tables.

d) Next, suppose that x, isto be centred but x, and x; are not to be centred and suppose we
wish to include the term  x,x,x; .Then Bx,x,x; mustbe replaced by Bc,x,x;+B(x,—c,)x,x;
In other words, if x, is to be replaced with x,—c, , then one must have x,x; in the model.

As a first 'real' example, consider dichotomous exposure E, gender G and actual age A. It makes no
sense to consider the centring of the indicators E and G while age A could be conceptualized centred.

We could start from :

log p/((1=p))=Boy1+B,G+B, A+B,GA+B, E+B;GE +B;AE+B,GAE
If we to include GAE, then above discussion requires the model to include GE. If we are to include GA
we must include G. If we are to include AE, we must include E. If we are to include A, we must
include '1".
Reconsider this model and let us suppose that previous research indicates that, for the unexposed, the
log odds of disease relationship with age does not depend on gender. This suggests the consideration of
the model:

log p/((1=p))=Bo1+B,G+B, A+B,E+BsGE+ B AE+B,GAE
If the previous research is reasonable here, we may have a clearer opportunity to see if age
modification depends on gender and other forms of modification and then possibly confounding.
Further, if we decide to centre age A at A=A, ,say, we obtain the model:

log p/((1=p))=Bo1+B,G+B,(A—A4y)+B, E+BsGE+Bs(A—A) E+B,G(A—A)E
One needs to reinterpret the regression coefficients for '1', E, and GE as they are now specific to

A=A, . The fitted values will not change from the fitted values from the model with age A not
centred. Indeed, re-expressing this last version gives:

log p/((1=p))=(Bo—B,4y) 1+B, G+ B, A+(B4—Bs4y) E+(Bs—B,4)) GE+Bs AE+B,GAE
With this writing, the coefficients for 'l', E and GE are again specific to A=0
Notice that the consideration of the inclusion or exclusion of GA from the model need not based on the
consideration of age centring, per se.

¢) Now let us suppose that x, and x, are to be centred but x; is notto be centred and suppose
again that we wish to include x,x,x; . Then

B x,x,x; mustbereplaced by Bc,c,x;—Bc,x, x;— B¢ x,x;+B (x,—¢;)(x,—¢,) x5 . So, here, we
need Xx;, x,x;and x,x; inthe model.

f)If x,, x, and x; are to be centred and x,x,x; isto be included, then:

B x,x,x, mustbe replaced by —Bc,c,c;+ six more terms +B(x,—c¢,)(x,—¢,)(x;—¢;) and you
can check that 1, x,,x,,x;,x,x,, x;x;and x,x; are all needed in the model. Another restatement
of the 'hierarchically well formulated' [et al] principle.



g) One more... let us suppose that x, is to be centred and we wish to include x; in the model.

Then: B x; must be replaced with —Bcj+2B¢,x,+B(x,—¢,)* andso 1 and x, mustin the
model.

h) and on... There are many further extensions... cubics... more than one quadratic and so on...

There are, however, numerous circumstances in which centring would not be warranted. For example,
the micro assay.... [next]

Micro Assay

Sometimes researchers will develop a study to compare 2 drugs [say]: a standard version and a test
version. [E = 0 (standard) and E = 1 (test)] Both versions are being considered at very low dosages (D)
and maybe a zero dose [or placebo] is also considered. In such a scenario, a starting point for analysis
might involve an assumption of linearity at these low doses:

log(p/(1—p))=Bo+ B E+B,D+B;ED
The assessment of B, might come first. This is sometimes called a 'validity' test because surely we
need to have that a zero dose of the standard version of the drug is the same as a zero dose of the test
version of the drug. If the validity test is not significant [ or, if it is known that f, must be zero] then
one considers a model like:

log(p/(1=p))=Bo+B, D+B;ED
This model provides for 2 straight lines emanating from the same point B, . The lines have different
slopes: B,andf,+B; for the standard and test respectively.
Further, there may be advantage to recasting the model as:

log(p/(1—p))=B,+B, D for the standard

log(p/(1—p))=By+B,k D for the test
or

log(p/(1—p))=By+B,D+B,(k—1) ED

With this recasting, k is called the relative potency of the test relative to the standard. A dose of x units
of the test has an outcome that is the same as kx units of the standard. There are methods available for
estimating the relative potency. Such methods use a result called Fieller's theorem. Further
development of these techniques will take us too far afield.

Mutually Exclusive and Exhaustive Indicators

In our very first model based example, we considered:
p=Pr(E)

log(75-)=Bo+6, D
where D is an indicator for disease status. All participants are classified as have disease (D=1) or not
having disease (D=0). The classification gives responses that are exhaustive. Everyone is either D=0 or
D=1. The classification gives responses that are mutually exclusive. No one is both D=0 and D=1.

Now consider a case-control cancer study. E=1 (alternating) E=0 (sequential) Suppose participants are
classified as:

R=1 (progression) R=2 (no change) R=3 (partial remission) or R=4 (complete remission). Each
participant receives one and only one classification. Accordingly, R provides for mutually exclusive



and exhaustive options. Now let us define R, as the indicator for R=i and consider the model:

log(l—l_’p)=30+|31R1+B3R3+B4R

4

it is important to note that Z R.,=1 and further, the R, are functionally related in that for a
i-1

given participant if R;=1 , say, then the other3 R,, R,;, R, mustbe zero.

Andif R,=1 thentheother3 R;, R;, R, must be zero.

So, for participants with  R;=1 we have that:
log(1 p) Bo+By1+B30+B,0=Po+B, 1=Bo+B,
And for participants with R,=1 we have that:
log(1 p) Bo+B10+B30+p,0=Po+B, 0=,

Accordingly, we see that B, is the difference between the log of the odds of exposure for those with
progression minus log of the odds of exposure for those with no change.

Similarly for B; and B,

One must take care when considering the removal of any one term in a set of indicator variables as
above. For example, if one considers B;=0 and then assesses:

109(1 p) BotBsR;+B, R

The baseline group is now those with either R;=1 or R,=1 and so, for example, we see that
B5 is now the difference between the log of the odds of exposure for those with partial remission
minus log of the odds of exposure for those with either progression or no change.

Non Mutually Exclusive Indicators

When a set of indicators provides for a set of mutually exclusive and exhaustive groupings, we obtain a
special form of interpretation of the associated coefficients. This arguably simple interpretation is not
available when the indicators are not mutually exclusive. We have already seen many examples of this
matter. Take for example a case-control study with age group (old A=1 young A=0) and a model like:

log(1 p) Bo+B,D+B,A

Here, P, is the 'assumed common' difference between the log of the odds of exposure for those with
disease minus the log of the odds of exposure for those without disease. By 'assumed common' we
mean that the difference applies to both the young and the old. Of course, if possible, the investigator
would assess the assumption (that age is not a modifier) before consideration of the additive model.

It is important to be aware of the implications of the inclusion of non-mutually exclusive indicators in
model assessment and interpretation. A rather extreme illustration should serve to make this issue clear.

Consider a database that contains an outcome of interest, say, myocardial infraction (MI) and an
extended list of comorbidities. A real example came to my attention a while back that included more
than 30 such comorbidities. For a start to this discussion, let us suppose the list was hypertension (H),
diabetes (D), smoking (S) and obesity (O) and further we will suppose that each was coded as an



indicator (1=presence of the comorbidity; O=absence of the comorbidity). Let us consider a model for
p=Pr(MI).

log(l—fp)zﬁoﬂsl H+B,D+p,5+8,0
In typical applications, Stata will carry out such a fit without objection. Such models might also include
'adjustment' for age and gender. We need not add age and gender to the mix to make the point to come.
In any case, investigators may speak of the success of such models without regard to interpretation of
the terms in such a model. A common error in interpretation would be to say that coefficients relate to a
baseline group without such comorbidities.
To attempt an interpretation, take P5 , for example. We must conceptualize 2 sets of individuals.
Both sets have the same value for H, D and O. One set has S=1 and the other set has S=0. We then
consider the difference in the log odds of MI between the set with S=1 and the set with S=0 and we
require that this difference must be the same for each of the 8 combinations of H, D and O. Here
'assumed common' difference applies to all 8 of these combinations.
Imagine another model with all 30 comorbidities. Call them C,; C, ... C,, and now imagine
fitting:

30

log (—2-)=,+" 8,C,
1-p i-1

Again, Stata will fit such a model without objection (possibly deleting some terms... the least of our

concerns here). Now the interpretation of any coefficient (say smoking: C; ) requires a

conceptualization of 2 sets, one with smokers C;=1 and one with nonsmokers C;=0 and now

there are 22° combinations of the other 29 comorbidities. The 'assumed common' difference now

applies to all  22° pairs of 2 sets. Fantasy, indeed.

Such models have an illusion of simplicity in that some authors might think that the terms surely must

have an simple (and realistic!) interpretation. Far from the case here.

Now, it is clear that even large databases cannot contain all of these combinations. So one might then

think that since the 'assumed common' assumption cannot be assessed, then proceeding with such

models has some scientific merit. Inevitably, the investigator is faced with a vastly more complex

problem and simple expediency cannot be the driver.

One option of some potential would be to consider the commonly occurring sets of comorbidities and

to construct a set of mutually exclusive combinations.

Models for Rate Ratios and Rate Differences

We have given most of our time so far to logistic regression. Modeling the log of the odds leads us to
direct analogues with stratified analyses which are based on odds ratios. It can be argued that the poster
child for logistic regression is the case-control study. But what of the [mighty] cohort study and of
course, lest we forget the [gold coated] clinical trial. We have considered rate ratios and rate
differences in standard ways via stratified analysis but we have ducked the option of models to handle
rate ratios and rate differences. There are some good reasons why model based methods for rate ratios
and rate differences have not reached the same attention as logistic regression.

Perhaps the biggest reason may not seem that important to epidemiologists but that biggest reason is
that a log odds can be any number: positive or negative. No boundaries, as the mathematicians [and
more importantly, the numerical analysts] say. We will see that modeling a rate ratio or a rate
difference involves certain challenges we have not faced as of yet.



Whither Logistic Regression?
Sometimes we can compute Rate Differences or Rate Ratios from a Logistic Regression. When? Well,
it depends...
Lets look at an example to illustrate the challenges here.
Suppose we model the log odds using:
log(p/(1=p))=By+B, E+PB, 4
and we get B =1 so that the OR =2.71 What can we say about RR or RD? It turns out that
we can determine the RR or the RD once we know the log odds with exposure.
The graphs below illustrate the issues:
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From the upper left hand graph, we can see that the rate ratio estimate and the odds ratio estimate are
the same when the log odds of disease without exposure is “small”. ( log odds of disease in the absence
of exposure less than -5)

The rate difference estimate depends on the log odds of disease in the absence of exposure and in more
complex ways. For log odds of disease in the absence of exposure between -2 and 2, the rate difference
estimate is varies between about 0.1 and 0.25

For this illustration at least, we see that if we wish to make inferences about RD or RR we get useful
information from logistic regression in very limited settings.

We are then directed to the direct modeling methods.

Log-Binomial Regression
Let p=Pr(Disease) and consider: log(p)=>. B.x,
As an example, let us return to the NASCET project with p=Pr(Stroke), D: stroke E: stenosis group
(Elevated=1; Not elevated=0), Age Group (Young=0; Old=1) and Gender (F=0; F=1) as potential
confounders/modifiers. As an illustration only, consider:

log(p)=By+BE+B,A+B;G+ B, AG+Bs EA+ B EG+ B, EAG

then all of the coefficients are now interpreted in terms of log of probability of disease [here; log of risk
of stroke] For example, B, is, for the young females, the log of the risk of stroke for those with



elevated stenosis minus the log of the risk of stroke for those without elevated stenosis. Just like before,
using that fact that the exponent of a difference is the ratios of the exponents, then:

eB' =the relative risk for the young females

As so we can have exponents of coefficients yielding rate ratios and, like before, we can have ratios of
rate ratios [and ratios of ratios of ratios....]

Identity-Binomial Regression:
Now we have: pzz B, X,
Now continuing with the last example, consider:
p=Bo+B E+B,A+BG+B,AG+BsEA+B, EG+B,EAG
For this model, B, is now the risk difference for young females. No exponentiating here.
So the coefficients here will be risk differences or differences between risk differences [and differences
of differences of differences....]

In principle, models based on the log link will reproduce stratified analysis components based on rate
ratios while models based on the identity link will reproduce stratified analysis components based on
rate differences. The same qualifications as with logistic regression apply here since such models are fit
via likelihood methodology while the Mantel-Haentzel methodology has slightly different
approximations in their development.

The big catch [22?] with these models is the inherent boundaries of log(p) and p. Probabilities (p) must
be between 0 and 1 and so all the fitting of rate differences must obey this “constraint”. The same
matter applies to log(p) which must be negative. With “large” sample samples sizes and fitting
algorithms carried out away from boundaries, these constraints have little impact but with “modest”
studies and with the 'inevitable' [good thing!] small probabilities/rates/risk, the algorithms can bump
into boundaries and then the “search” for a maximum [of a likelihood] can fail. This matter has been
receiving serious attention [ notably TW, ME & GHF(2014) and GS & GHF(2019) ].

In the last few years, major strides have been made with log-binomial models. Such advances have
been implemented in R:

https://cran.r-project.org/package=Ibreg

Such advances have not [yet] been implemented in Stata. One can try binreg in Stata but there can be
serious problems.
[from 'help binreg' in Stata]

binreg fits generalized linear models for the binomial family. It
estimates odds ratios, risk ratios, health ratios, and risk differences.
The available links are

Option Implied link Parameter
or logit odds ratios = exp(b)
rr log risk ratios = exp(b)
hr log complement health ratios = exp(b)
rd identity risk differences = b

Note that estimates of odds, risk, and health ratios are obtained by

exponentiating the appropriate coefficients. The option or produces the
same results as Stata's logistic command, and or coefficients yields the
same results as the logit command. When no link is specified or implied,



or is assumed.

The 'link' g is a function of the probability — p. Generally, then,
g(p)=Bo+B I E+B,A+B;G+B, AG+PBs EA+B, EG+B,EAG
when g(p) = log(p/(1-p)), we have binomial regression with a logit link (logistic regression)
when g(p)= log(p), we have binomial regression with a log link (rate ratio regression)
and when g(p)=p, we have binomial regression with an identity link (rate difference regression).

Anytime Stata gives an 'note' or a 'warning' message, you need to take heed. The matters leading to
notes and warnings can occur more often with the (non-logit link based ) binomial regressions.

Lets take a brief look at a part of a NASCET dataset ( courtesy M.E.) and a start at an analysis based on
risk ratios (risk of stroke for those with elevated stenosis over the risk of stroke for those without
elevated stenosis)

. gen sten=(stengrp>1l)
. gen stro=stroke-1
. egen genage=group (sex agegp)

. cs stro sten,by(sex agegp)

sex agegp | RR [95% Conf. Interval] M-H Weight
_________________ +_________________________________________________
11| .4720497 .1493356 1.492149 3.833333
12| .8939394 .2683331 2.978118 2.563107
13| 1.403509 .3951443 4.985108 1.628571
21 | 1.468421 .7497855 2.875837 6.06383
2 2 | 2.509804 1.362044 4.624751 6.181818
2 3 | 1.501235 .7506118 3.002491 4.879518
_________________ +_________________________________________________
Crude | 1.559672 1.126613 2.159194
M-H combined | 1.516141 1.095846 2.097634
Test of homogeneity (M-H) chi2 (5) = 7.325 Pr>chi2 = 0.1976

. cs stro sten,by(genage)

group (sex agegp) | RR [95% Conf. Interval] M-H Weight
_________________ +_________________________________________________
1| .4720497 .1493356 1.492149 3.833333
2 | .8939394 .2683331 2.978118 2.563107
3| 1.403509 .3951443 4.985108 1.628571
4 | 1.468421 .7497855 2.875837 6.06383
5 | 2.509804 1.362044 4.624751 6.181818
6 | 1.501235 .7506118 3.002491 4.879518
_________________ +_________________________________________________
Crude | 1.559672 1.126613 2.159194
M-H combined | 1.516141 1.095846 2.097634
Test of homogeneity (M-H) chi2 (5) = 7.325 Pr>chi2 = 0.1976

log(p):BO+BlE+BZ G, +B3G3+B, G4 +BsGs+PBs Go+ B, EG,+Bs EG3+Bo EG4+B 1o EGs+ By EGy

binreg stro i.sten#i.genage,rr

i.sten _Isten 0-1 (naturally coded; _Isten 0 omitted)
i.genage _Igenage_ 1-6 (naturally coded; _Igenage 1 omitted)
i.sten*i.genage _IsteXgen # # (coded as above)
Generalized linear models No. of obs = 724
Optimization : MQL Fisher scoring Residual df = 712
(IRLS EIM) Scale parameter = 1
Deviance = 645.2029024 (1/df) Deviance = .9061839
Pearson = 723.9978177 (1/df) Pearson = 1.016851

Variance function: V(u) = u*(l-u) [Bernoulli]



Link function : g(u) = 1ln(u) [Log]

BIC = -4043.169

| EIM
stro | Risk Ratio Std. Err. z P>|z| [95% Conf. Interval]
_____________ +________________________________________________________________
_Isten 1 | .4720497 .2771857 -1.28 0.201 .1493364 1.492141
_Igenage 2 | .5520581 .2848628 -1.15 0.250 .2007999 1.517771
_Igenage 3 | 1.017857 .6335083 0.03 0.977 .3005412 3.447225
_Igenage_ 4 | .7004608 .3046172 -0.82 0.413 .2986842 1.642689
_Igenage 5 | .5816327 .2541579 -1.24 0.215 .2469998 1.369623
_Igenage 6 | 1.285714 .576907 0.56 0.575 .5335876 3.098013
_IsteXgen ~2 | 1.89374 1.608883 0.75 0.452 .3582258 10.01115
_IsteXgen ~3 | 2.973223 2.597107 1.25 0.212 .5366655 16.47218
_IsteXgen_ ~4 | 3.110734 2.115319 1.67 0.095 .8204279 11.79466
_IsteXgen ~5 | 5.316821 3.534987 2.51 0.012 1.444492 19.56992
_IsteXgen ~6 | 3.180247 2.179971 1.69 0.091 .8298237 12.1881

Some parts of this output use slightly different namings. Deviance is -2*log-likelihood. So that the iteration
sequence showing deviance going down is analogous to log-likelihood going up.

The red highlighted rows in the above table show the estimated risk ratio for young females of 0.4720 as
obtained from the stratified analysis. The number 5.3168 is in fact an estimated ratio of risk ratios. The we get
that the estimated RR for middle aged males is 0.4720%5.3168 = 2.5098 which the estimated RR for middle aged
males in the stratified analysis.

Here is a similar analysis of risk differences:

P=Bo+B I E+B,Gr+B3G3+B,G4+BsGs+Bs G+ B EG,+Bs EG3+ By EG,+B 1 EGs+ By EG

binreg stro i.sten#i.genage,rd

i.sten _Isten 0-1 (naturally coded; _Isten 0 omitted)
i.genage _Igenage 1-6 (naturally coded; _Igenage 1 omitted)
i.sten*i.genage _IsteXgen #_# (coded as above)
Generalized linear models No. of obs = 724
Optimization : MQL Fisher scoring Residual df = 712
(IRLS EIM) Scale parameter = 1
Deviance = 645.2029024 (1/df) Deviance = .9061839
Pearson = 724 (1/df) Pearson = 1.016854
Variance function: V(u) = u*(l-u) [Bernoulli]
Link function : g(u) =u [Identity]
BIC = -4043.169
| EIM
stro | Risk Diff. Std. Err. z P>|z| [95% Conf. Interval]
_____________ +________________________________________________________________
_Isten 1 | -.097254 .07537 -1.29 0.197 -.2449765 .0504685
_Igenage 2 | -.0825156 .0741823 -1.11 0.266 -.2279103 .062879
_Igenage 3 | .0032895 .1160868 0.03 0.977 -.2242365 .2308154
_Igenage 4 | -.0551783 .0718546 -0.77 0.443 -.1960106 .0856541
_Igenage 5 | -.0770677 .0693455 -1.11 0.266 -.2129823 .058847
_Igenage 6 | .0526316 .0933337 0.56 0.573 -.1302991 .2355623
_IsteXgen ~2 | .0864682 .0954321 0.91 0.365 -.1005753 .2735116
_IsteXgen ~3 | .1729119 .1593979 1.08 0.278 -.1395023 .4853261
_IsteXgen ~4 | .1576954 .0922259 1.71 0.087 -.023064 .3384549
_IsteXgen ~5 | .2590187 .0904812 2.86 0.004 .0816789 .4363586
_IsteXgen ~6 | .2159675 .1246157 1.73 0.083 -.0282748 .4602097
| .1842105 .0628861 2.93 0.003 .0609561 .307465

cons

Notice that we are seeing a very similar finding. The estimated risk difference for middle aged males is:
-0.0972+0.2590=0.1617



which is the same as the stratified analysis:

cs stro sten if genage==

Risk di
Ri

Cases
Noncases

fference
sk ratio

Attr. frac. ex.
Attr. frac. pop

sten
Exposed Unexposed

.1617647
2.509804
.6015625

.4375

.1904762

[95% Conf. Interval]
.0636449 .2598845
1.362044 4.624751
.2658095 .7837721

chi2 (1) =

disp -0.097254+0.2590187

.1617647

9.79 Pr>chi2 = 0.0018



