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Session 3: Linking Stratified Analysis to Logistic
Regression

Recall:

That a log(odds) is called a logit

Odds can be any positive number

log(odds) can be any number

If odds = 1, the log(odds) = 0

If odds < 1, then log(odds) < 0

If odds > 1, then log(odds) > 0



Odds Ratios in the Analysis of Case Control
Studies

E – exposure   D – disease

Disease and Exposure Coding: (same name may be
used for both labels and codes)

0= absence :  label has a “bar” 

1= presence : label has no “bar”   E or D

Strata: (can be more than 2 levels) 0, 1, 2, ....

Maybe more than one stratum variables:

Age: Young (A=0) Old (A=1)

Gender: Male (G=0) Female (G=1)

E or D



2 Probabilities : 2 Odds

                     Exposed         Unexposed
Cases
Controls

      

p1 1− p1

p0 1− p0

p1 = P(E |  D) = probability of exposure given case status

p0 = P(E | D̄ ) = probability of exposure given control status
p1

1− p1

= the odds of exposure given case status

p0

1− p0

= the odds of exposure given control status



A logit (log (odds)) in an equation
[ Model 1 ]

   = a conditional probability of exposure
               = a conditional odds of exposure
This odds is conditional on disease status
We write:
So that:
And:
We call                  the regression
coefficients.    

p
p /(1− p)

log  p /1− p=01D

log  p0/1− p0=0

log  p1/1− p1=01

0  and 1



Taking the difference

       is the difference between 2 log odds
The log of the odds of exposure for those with
disease minus the log of the odds of exposure for
those without disease

1=log  p1/1− p1−log  p0 /1− p0
β1



The odds ratio appears

Lets take the exponent of

This is the odds ratio: the odds of exposure for
those with disease divided by the odds of
exposure for those without disease

1=log  p1/1− p1−log  p0 /1− p0

1 = log
p1/1− p1
p0/1− p0

e
1=exp 1=

p1/1− p1
p0 /1− p0

1



Now let us consider smoking
status 

We now have 4 probabilities ( 4 odds )
...and 2 odds ratios: 
an OR for the smokers (strata = S = 1 ) 
an OR for the non-smokers (strata = S = 0)
                       S=1                  S=0
                 E=1     E=0       E=1    E=0
D=1
D=0

p11        1- p11         p10      1- p10

p01        1- p01         p00      1- p00

OR1                   OR0



Modeling the conditional odds

Consider:
So that: 
Nonsmoking controls
Nonsmoking cases
Smoking controls
Smoking cases

log  p /1− p=01D2 S3DSlog  p /1− p=01D2 S3DS

log  p00 /1− p00=0

log  p10/1− p10=01

log  p01 /1− p01=02

log  p11/1− p11=0123



Differences and Ratios

So for nonsmokers:

So for smokers:

log  p10 /1− p10−log  p00/1− p00=01−0=1

log  p11 /1− p11−log  p01/1− p01
= 0123−02=13

log
p10/1− p10
p00/1− p00

=1

log
p11/1− p11
p01/1− p01

=13



Stratified analysis via logistic regression
[ Model 2 ]

Now consider:

For S=0 
For S=1

For S=0, we see that       is the log odds ratio as
before.

Now notice that for S=1,              is the log odds
ratio.

Lets check this:

log  p /1− p=01D2 S3DS

log  p /1− p=01D

log  p /1− p=0213D
1

13



Checking:

For S=1, we have:

So for D=0, we have:

So for D=1, we have:

So             is the difference.

log  p /1− p=0213D

log  p /1− p=02

log  p /1− p=0213

13



Ratio of Odds Ratios

So the OR for strata 0 (        ) is 
the OR for strata 1  (         ) is

             is the ratio of the 2 ORs : 
     is the difference between the 2 log ORs

exp 13
exp 1

exp 3
3

OR0

OR1

OR1/OR0



Ratio of Odds Ratios

We are again taking differences 

We are again taking ratios

log
p11 /1− p11
p01/1− p01

−log
p10/1− p10
p00/1− p00

=13−1=3


p11 /1− p11
p01 /1− p01

/
p10 /1− p10
p00 /1− p00

=exp 3



Assessing Modification

What if
Then
So that smoking is not a modifier.

What if
Then
So smoking is a modifier 

3=0?

OR0=OR1

3≠0?
OR0≠OR1



If smoking is a modifier...

...then we need to report that the stratum specific odds ratios
are different. Both odds ratios need interpretation with
separate estimates [confidence intervals and tests]

...it would misleading to attempt to report a single odds ratio

...remember the DeLury quote about “statistical decency”

...any attempt at finding a single odds ratio is inevitably a
“combination” of 2 different odds ratios



If smoking is not a modifier...

...then a “combination” of the two odds ratios
may make sense

...and we may be able to report a “crude”
odds ratio as well

This part of the analysis process is the same
as stratified analysis only now we can
compare corresponding coefficients directly
or we can compare the exponents of these
coefficients



Lets assess a “simpler” model [Model 3]

Lets try:
Now specialize this equation ->
If S=0,
If S=1,
For S=0, we see that       is the log odds ratio

as before.
Now notice that for S=1, again       is the log

odds ratio.
Lets check this:

log p /1− p=01 D2S

log  p /1− p=01 D

log  p /1− p=021 D
1

1



Checking:

For S=1, we have:

So for D=0, we have:

So for D=1, we have:

So      is again the difference.

log  p /1− p=021 D

log  p /1− p=02

log  p /1− p=021

1



Assumed Common Odds Ratio

We can then see that     is the log odds ratio
for both strata.

Now             is the “assumed common” OR
This model “forces” the stratum specific odds

ratios to be the same.
Now you compare this “adjusted” OR with the

“crude” OR from model 1 just like with a
stratified analysis.

exp 1

1



Notice that..

..the meaning of the coefficients changes as soon
we change the model by adding terms or deleting
terms.

For example,      in model 1:

means something very different from       in model 2:

 

The meaning of the coefficients must be
reconsidered every time we change the model.

1

1

log  p /1− p=01D

log  p /1− p=01D2 S3DS



Interaction

With models like:

we see terms involving a product of two
variables (here D times S)
We saw that including such a term enabled
a specific set of interpretations for the
coefficients
Some authors call           an 'interaction'
term. 

log  p /1− p=01D2 S3DS

3DS



Interaction terms have several uses

We saw that in Model 2:

including such a term enabled us to assess
modification.

In future sessions, we will see other uses of
interaction terms that include more elaborate
assessments of confounding and the
consideration of one than one exposure or
disease status in a model.

In this way, referring to 'interaction' is generic and
we will try to be more specific in our
interpretations and descriptions.

log  p /1− p=01D2 S3DS



Interpreting all the coefficients

In principle, all the coefficients in a model
can be interpreted.
Sometimes, the inclusion of certain terms in
a model is to enable an important
interpretation for a key coefficient.
For example, with Model 2, we can find
useful interpretations for
It is instructive to provide an interpretation
for      and to understand why it is included
in this model.  Try it.

0  , 1  and 3

2



R.A. Fisher



Background: The Likelihood Function

R.A. Fisher wrote the first published paper on
likelihood in 1922

Fisher R.A. (1922) On the mathematical foundations of theoretical
statistics. Phil. Trans., A, 222: 309-368.

The best introductions to this subject are:
Kalbfleisch J.G. (1985) Probability and Statistical Inference Vol 2.

Springer Verlag

Fraser D.A.S. (1976) Probability and Statistics: Theory and Applications.
Duxbury (GHF wrote the solutions manual!)

The Likelihood is a function that is proportional to
the probability of the observed.



How Likelihood enables the estimation of the
unknowns 

An observed likelihood function (of the unknowns)
is determined from the data and the model.

This function is maximized. The maximum value
(M) of this function and the values of the
unknowns that give this maximum (the maximum
likelihood estimates (mle's) ) are computed.

Other characteristics are determined that give us
standard errors for the estimates and confidence
intervals. These other characteristics are based
on an approximating parabolic curve that is
supposedly “close” to the actual log likelihood
curve.



A brief introduction to likelihood by example:

Consider the estimation of a prevalence: p or
equivalently a log odds: log(p/(1-p)) using the
binomial probability function  [undergrad stats]

[calculus needed] There is an approximating
parabola to log(L):

L =c p y (1-p)n− yor log L= y log pn− y  log 1-pa

log(L)≈M −0.5logodds - mle
    se(mle)


2



Suppose we have a sample of size n=5 and there were y=3
with disease

Then, we can coerce Stata to provide the “analysis”

. list suc cons
     +------------+
     | suc   cons |
     |------------|
  1. |   1      1 |
  2. |   1      1 |
  3. |   1      1 |
  4. |   0      1 |
  5. |   0      1 |
     +------------+

. logit suc cons,nocons
Iteration 0:   log likelihood = -3.4657359
Iteration 1:   log likelihood = -3.3650763
Iteration 2:   log likelihood = -3.3650583

Logistic regression                               Number of obs   =          5
                                                  LR chi2(1)      =          .
Log likelihood = -3.3650583                       Prob > chi2     =          .

------------------------------------------------------------------------------
         suc |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
        cons |   .4054651   .9128707     0.44   0.657    -1.383729    2.194659
------------------------------------------------------------------------------



The equations look like:

log(L) = 5*log(p) + 2*log(1-p)

Notice that the mle is 0.4055 = log(1.5) = log(3/2)

and the maximum of the log likelihood is  -3.365 =
5*log(0.6) + 2*log(0.4)

The formula for se(mle) turns out [calculus needed] to be

= sqrt(1/(np(1-p))) = sqrt(5/6) = 0.9129

A picture “helps” to put all the pieces together

log(L)≈-3.365 −0.5logodds - 0.4055
      0.9129


2





The logistic model and the fit

Model:

Fit:

or: 

log ( p
1− p

)=∑
i=0

k

βi xi=β0 x0+β1 x1+...+βk xk

log( p̂
1−p̂

)=∑
i=0

k

β̂i x i=∑
i=0

k

bi x i=b0 x0+b1 x1 ...bk xk

β̂i=bi=[maximum likelihood] estimate of βi

p̂= 1

1+e
−∑
i=0

k

bi xi



More on interpretation

Interpreting the fit: Given any sensible set of
values for the x's, the fit gives an estimate
of the [conditional] log odds

Take the exponent to get an estimate of the
[conditional] odds or “solve” the equation to
get an estimate of a [conditional] probability

Interpreting a coefficient from a fit: Add “an
estimate of” to the description of the model
coefficient 



Estimation and confidence intervals via
maximum likelihood

The odds ratio estimates in models 1 and 2
yield the familiar estimates from stratified
analysis.
Model 3 does not give the exact same odds
ratio estimate as the Mantel-Haentzel
estimate. If they are meaningfully different,
you will need to understand “why”
Confidence intervals can be different. The
formulae used are not quite the same.



The Likelihood Ratio Test

Testing nested hypothesis can be accomplished
using a Likelihood Ratio (LR) test.

This test is based on the fitting of 2 models. The
likelihood function is maximized with each fit. The
maximum values are compared in a ratio (actually
a difference on a logarithmic scale)

The distribution theory is based on an
approximating        distribution. The degrees of
freedom is the difference in the number of
unknowns.

2



The Wald test

The “familiar” z-test based on the ratio of estimate
to standard error is called the Wald test in this
setting.

This test is dependent on the approximating
parabolic curve and the suitability of the
computed se(mle). As such, it is typically inferior
to the LR test. Both the LR test and the Wald test
are “approximate”.

Approximate confidence intervals can be obtained
from the estimate and standard error.
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