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Session 10 : Issues When Modeling

This session provides an introduction to a number of different issues.  These issues can appear quite 
often when using models.

Linearly Dependent Columns

All of regression is about linear combinations (or weighted sums ) of columns of data: ∑  i xi The 
weights are the  i ' s while the columns are the x i ' s You may recall that such columns can be 
thought of as vectors. [column vectors!] All of the basics from linear algebra may come rushing back to
you just now. [maybe not...]. The ∑ i x i provides us with a 'log of odds' in the context of logistic 
regression. It turns out that no subset of these vectors can form what is called a linearly dependent set.

To motivate linear dependency, let us suppose that we have a potential confounder/modifier that is 
characterized by levels. For example, age group with 3 'levels': young, middle aged and old with codes 
1, 2 and 3 respectively. Think now of the indicator variable for each of these levels: a1 , a2 , a3 where
ai is 1 if the participant is in group i and is 0 otherwise. Now notice that a1a2a3=1 Check out 

what this means for a particular participant. If a1=0  and a2=0 , then we know that a3 must be 
one. Meaning: if we know a participant is not young and not middle aged, then, we know they are old. 
Here, we are assuming that the characteristic 'age group' is made up of a mutually exclusive and 
exhaustive set of levels. Each participant is described by 'age group' in one and only one of these levels.
Knowing any 2 of the ai values determines the third. [For sure]. We then have four columns 
[vectors] that are said to be linearly dependent. 

The actual definition is a little technical:

A set of p+1 vectors a0 , a1 , a2 ... , a p  form a linearly dependent set if there are ci ' s [scalars not all

equal to zero] so that ∑i=0

p
c i a i=0 . If there are no such ci ' s , then we say that these vectors are 

linearly independent.

For our example above,  p=3, a0=1 and so we can pick c0=−1,  c1=1,  c2=1 and c3=1 which 
then gives us a1a2a3=1 . Since there are non-zero ci ' s  , we know that 1,  a1 ,  a2  and a3

are linearly dependent. We will see that if we exclude any one of 1,  a1 ,  a2  and a3 , then the 
remaining three form a linearly independent set. Indeed, such a step makes sense once we interpret the 
coefficients that result.

Lets consider, as a starting place: log  p /1−p =01 E2a23a3 As always, one should 
interpret the coefficients. [In particular, interpret 1 ]

Now, if we were to attempt to fit:
log  p/ 1− p=01 E2a23a34a1 , all software will exclaim 'warning' and delete one of 

the ai  from the equation list. Usually the last in the equation is deleted. In this illustration, a1

would be removed, but, in fact, any one of the three could have been selected. This type of variable 



deletion does not necessarily mean that a1 is not needed in such a model construct but, rather, that 
you, as the thinking part of all of this must now think: “I have a problem with my logic” “I need to 
trace through all the steps that have led me to this model”. In this case, we can see that knowledge of 
any 2 of the levels of age group determines the third and so the 'estimation' process cannot be managed 
without a change on your part. Usually, you want to make a choice. In this example, such a choice will 
determine which level of age group becomes the 'baseline' level and provides an interpretation to our
 i ' s as differences relative to the chosen baseline level.

Lets make this example a little more elaborate. Consider:
[Model 1]

log  p /1−p =01 E2a23a3 4E a25E a3

Write out this equation for the young, the middle aged and the old. Interpret the coefficients.

Now consider:
[Model 2]

log  p /1−p =1a12a23a34 E a15E a26E a3 .

Write out this equation for the young, the middle aged and the old. Interpret the coefficients.

In Stata, to try Model 2, you include the explanatory variables as always but now you add the option, 
noconstant. For example:

logit dis a1 a2 a3 Ea1 Ea2 Ea3, noconstant

After the above command, you could still consider a comparison with the 'lincon' command. For 
example, to estimate the log odds ratio for the middle-aged minus the log odds ratio for the young you 
would enter:

lincon Ea2-Ea1

Both models 1 and 2 accomplish exactly the same task. The fitted values from Models 1 and 2 are 
identical. The regression coefficients in Model 2 can be used to compute the regression coefficients in 
Model 1 by identifying their corresponding interpretations and vice versa.

In these situations, you always have choices. In our example, we could choose either one of the young, 
the middle-aged or the old as baseline. For a fourth option, we could choose not to have a baseline 
group and the construct the models using the noconstant option. It is always a good idea to check that 
you are making the right moves by constructing the fitted values for each alternative model and 
checking that the fitted values from each of the alternatives are the same.

“Nearly” Linearly Dependent Columns

The above example refers to exact linear dependent sets. In health research, we can have a set that is 
“close to being” a linearly dependent set. Sometimes, software will spit out one [or more] of the 
members from such a set [for removal] while in other circumstances, we may receive a fit with no 
deletions and not get a clear clue to trouble brewing. An example, may help to display the issue here.

Lets consider a study of diabetics in which the outcome is retinopathy [an eye disease that can lead to 



blindness].  Lets suppose that we have recorded a patient's age  A[in years], how long they have had 
diabetes D [in years] and their type of diabetes T [coding Type I =0 and Type II =1] For illustration 
only, lets us suppose we construct a model for the log of the odds of retinopathy using, say:

log  p/1−p=01 A2 D3T
Notice that if T=0, then A and D are typically nearly the same. Type I diabetics are diagnosed at a 
young age so that here, D may be just a little less than A. While if T=1, we can see that A and D are 
typically different. In fact, if T=1, A and D are rarely close.

Notice that knowledge of T and A for a given participant, tells us 'a lot about' D. Certainly not exactly 
what D is but maybe 'a narrowing down' of the possible values for D.

This sort of phenomena is now usually called the  'multicollinearity' of A, D and T, in that knowledge 
of any 2 of A, D or T at least partially determines the third. [I have tried a search for history of the term
'multicollinearity'. We say points on a graph are collinear if they lie on a line. The shortest distance 
between 2 points is ....] [The term may go back to the mid 1960's when a researcher noticed that his 
data, using [an early algorithm of ] SPSS,  would give very different results with the same data run on 
different computers! The term 'ill-conditioned' was used then... maybe still is]

In practice, how do we avoid or detect multicollinearity?
Your content area literature may have such matters identified.
Even though a fit has been determined, some of the standard errors of the estimates may be far larger 
than one expects.
A coefficient may be in the wrong direction. For example, a negative value for the estimate of the 
coefficient for age may be a strong clue of trouble since we may know that the log odds of disease 
cannot decline with age.
Attempting to interpret a coefficient, may lead to an unrealistic scenario. In our example, if we attempt 
to interpret the coefficient of duration, we are 'fixing' type and  age and then conceptualizing a rate of 
change of log of odds of disease per year of duration. This may be fantasy. For when, for example, we 
think of a group of patients in which  type=1 and age is fixed , it makes little sense to think of this 
group of patients with varying duration. [age, and hence duration, are fixed]

Stepwise Methods

By stepwise methods, we discussing methods in which the choice of variables is carried out by an 
automatic procedure [algorithm]. Usually, the automated procedure takes the form of a sequence of 
tests with preassigned decision rules. These automatic procedures provide for statistical model 
selection in cases where there are a large number of potential models, and where the investigator has no
clue [how proceed with the model selection]. There have been many techniques and criteria proposed 
over the years. One might be tempted to consider elaborate strategies based on hypothesis tests or so 
called “adjusted” R-square or the Akaike information criterion or various Bayesian information 
criterion or Mallows' Cp, or the false discovery rate or area under the curve... the list goes on. The 'false
discovery rate' seems to be garnering attention these days. 

A 'stepwise' algorithm may involve many 'stages' and may include:
a) Forward selection: which involves starting with no variables in the model or perhaps starting with a 
preassigned set of worthy variables, trying out the variables one by one and including them if the 
criteria above deems them 'worthy'.
b) Backward elimination, which involves starting with all candidate variables and considering them one
by one based on the criteria and then deleting any that are not 'worthy'.



c) Methods that are a combination of forward selection and backward elimination, considering  at each 
stage for variables to be included or excluded.

The algorithm stops 'searching' when the criteria used is deemed 'best'. Then a model (or a*short* list 
of models) is output along with the measure of the model's goodness.

The first widely used algorithm appears to have been proposed by Efroymson (1960).  
 
Any method that “automates” the process of model construction is be viewed with cynicism. Criticisms
of stepwise methods generate a lengthy and colourful list of articles/emails/blogs by very prestigious 
statisticians, biostatisticians and others. A brief set of highlights from some of these articles can be 
found at:

www.stata.com/support/faqs/stat/stepwise.html

...or for that matter, if you 'google'  'stepwise regression', you will get an avalanche of discussion about 
the problems and issues.

In the world of 'data mining', automated procedures have been returning to the attention of analysts. 
The whole topic of so called 'expert systems' can generate considerable debate.

The process of model construction is very time consuming, difficult and far from a simple set of rules 
and regulations. It is, perhaps, tempting to think that this very laborious and demanding step in research
can somehow be passed over. This is, in part, due to the fact that, for many [novice] scientists, most of 
statistics is magic coming out of a very powerful 'black box' and that somehow such a black box must 
be better at model construction than, say, a clear thinking group of researchers agonizing and debating 
over the merits and demerits of a candidate model after extended time taken to review and interpret 
such a model's implications and then to consider another model (or models) and how such a model may
better add to knowledge in the research area.

Gatekeeping
It was with the advent of fast computers in the 1960s, that regression analyses could be done with 
relative ease. Before computers, considerable effort was given to trying to find methods to bypass or 
minimize the calculations. Much of that effort can be studied with considerable advantage to get a clear
understanding of the issues, but, alas, most (nearly all) of that work is not considered part of the 
mainstream anymore.

At the time, many statisticians claimed that regression analysis was being abused and misunderstood.  
[There was plenty of abuse... some would say there still is...] The statisticians were no longer the gate 
keepers of this 'technology'.

 “Independent” Factors
The language of regression was in its infancy in some ways back in the 1960's. Some authors referred 
to the outcome variable as the 'dependent variable' in so far as the outcome was dependent [conditioned
on] a collection of predictor variables. Unfortunately, at this time, some authors then referred to the 
predictors as the independent variables [because they weren't the dependent variable]. Many 
statisticians protested the use of 'independent' here and attempted to develop other namings like 
predictor variables or selector variables. There remains a considerable inertia to this day regarding this 
naming. It gets worse. The literature is now filled with phrases like 'independent factors' and/or 

http://www.stata.com/support/faqs/stat/stepwise.html


'independent predictors' and more and more muddle...

It would seem that 'most' of the time, when a researcher refers to the 'independent factors', they usually 
mean that such factors have been presented in an additive way (i.e. No interactions). However, there 
does not seem to be clear guidance on these matters and the cynical reviewer needs to dig deep these 
days to determine what is actually intended.

“Continuous”

Continuity has a precise mathematical definition. [have a look in your favourite calculus text]
Informally,  a continuous variable is one for which, within the limits the variable ranges, any value is 
possible. 
Age, weight, height and duration of illness are examples of continuous variables. 
A 7 point “Likert” variable is not a continuous variable. The number of return visits during a study is 
not a continuous variable. 
A variable that is not continuous is called “discrete”.

The adjective “continuous” has crept into constant usage in regression analysis. Often, there is a 
decision to be made as to whether to use an actual variable as a predictor variable or to use a version of 
this variable  with 2 or more levels based on cutoffs/thresholds. The real issue is whether the actual real
variable affects the response in the linear way. If this is a plausible assumption, then such a use of the 
actual variable may be warranted. If the effect is not linear, then one option is to set up a set of 
indicator variables based on sensible thresholds and to then study the nature of the variable-response 
relationship. Unfortunately, authors now speak of the use of a 'continuous' variable if the actual values 
of a variable are used. The continuity of the variable is in fact irrelevant to the issue at hand. The real 
issue is the nature of the variable-response relationship. Indeed, it is certainly possible and reasonable 
that a predictor variable can clearly have only a discrete set of values and yet for the purposes of the 
assessment of conditional log odds has the linear effect on the response. Such a predictor variable can, 
then, with advantage, be included in the linear predictor even though the variable is most clearly not 
'continuous'. It is far more helpful to refer to the possible linearity of a such variable rather than to 
merely to say it is 'in the model' as a continuous variable. The continuity or discreteness of a variable is 
relevant when such a variable is being considered as a 'dependent' variable however. More on this when
we discuss linear regression and conditional means.

Logarithms
These days, all uses of logarithms are as 'base e' logarithms. It can be noted that such a choice of the 
base for logarithms has no real impact of any interpretation or description of log odds [or log 
anything] . Apart from a possible rescaling if, for example, an investigator wished to report logarithms 
to base 10, then all results would be rescaled by this same fixed quantity.

The use of the notation: ln x=loge x is not widely seen in epidemiology or biostatistics.  For us,
log x  means logex 

log10 x =log10 e log x = 1
log 10

log  x≈0.43 log x    or   log x =log 10 log10 x ≈2.3 log10 x 



The Implications Of Centring

Consider a single variable x to be considered as the 'right hand side' of a regression model. A fit gives:
Y=b x A line through (0,0) with slope b. 

If instead one considers x with a centred version x-c, then one gets a different fit: Y=b '  x−c  A 
line through (c,0) with different slope b'. 
The fitted values will be different for all x except when bx=b'(x-c) i.e when x= - b'c/(b-b')

The example above shows 2 lines: Y=3x and Y= 6(x-1). The first line is forced through (0,0) while the 
second line is forced through (1,0). The lines can have but one common fitted value at (2,6). So, with 
this simple model, centring changes the fitted values.

Now consider a model with both a constant 1 and the variable x. A fit gives Y=b01b1 x . Now 
consider the same model with 1 and x but again x is as centred x-c. Now the fit would be
Y=b0b1 c1b1 x−c  . This is the same line. Both versions give us the same set of fitted values.

a) Now, let us consider a model that may include many variables but the variable x appears in the 
model without any other forms of x such a quadratic or an interaction. If one wishes to ensure that the 
fitted values do not change when x is centred, then:  x   must be replaced by    c1 x−c  In 
other words, if x is to be replaced with x-c, then one must have the constant term 1 in the model. 

b) Now suppose we are considering models that may include 2 variables x1   and  x 2 We wish to 
consider the centring of x1  but we will not be centring x2 . Now suppose we wish to include the 
term x1 x2 .  Then  x1 x2   must be replaced by    c1 x2 x1−c1x 2 In other words, if x1  is to
be replaced with x1−c1 , then one must have x2  in the model to ensure the fitted values are 
invariant to the centring. Notice that ensuring invariance here does not necessarily require either 1 or
x1 be included in the model.



c) Now suppose we consider the centring of both x1   and   x2 and suppose we wish to include the 
term x1 x2 . Then  x1 x2   must be replaced by    c1 c21− c2 x1− c1 x 2x1−c1x2−c2 In 
other words, if x1  is to be replaced with x1−c1 and  x2  is to be replaced with x2−c2 , then 
one must have 1  and  x1   and   x2  in the model to ensure the fitted values are invariant to the 
centring. This principle for the contents of such models goes by many names including 'well-formed' 
and  ' hierarchically well formulated' . A related but not identical principle is often cited for the 
construction of analysis of variance tables.

d) Next, suppose that x1 is to be centred but x2   and   x3 are not to be centred and suppose we 
wish to include the term x1 x2 x3 . Then  x1 x2 x3   must be replaced by    c1 x 2 x3 x1−c1 x2 x3

In other words, if x1  is to be replaced with x1−c1 , then one must have x2 x3 in the model.

As a first 'real' example, consider dichotomous exposure E, gender G and actual age A. It makes no 
sense to consider the centring of the indicators E and G while age A could be conceptualized centred.

We could start from :
log p /1− p=011G2 A3GA4 E5GE6 AE7GAE

If we to include GAE, then above discussion requires the model to include GE. If we are to include GA
we must include G. If we are to include AE, we must include E. If we are to include A, we must 
include '1'.
Reconsider this model and let us suppose that previous research indicates that, for the unexposed, the 
log odds of disease relationship with age does not depend on gender. This suggests the consideration of
the model:

log p /1− p=011G2 A4E5GE6 AE7GAE
If the previous research is reasonable here, we may have a clearer opportunity to see if age 
modification depends on gender and other forms of modification and then possibly confounding.
Further, if we decide to centre age A at A=A0 ,say, we obtain the model:

log p /1− p=011G2 A−A0 4 E5GE6 A−A0E7G A−A0E
One needs to reinterpret the regression coefficients for '1', E, and GE as they are now specific to
A=A0 . The fitted values will not change from the fitted values from the model with age A not 

centred. Indeed, re-expressing this last version gives:
log p /1− p=0− 2 A011G2 A4−6 A0E5−7 A0GE6 AE7GAE

With this writing, the coefficients for '1', E and GE are again specific to A=0
Notice that the consideration of the inclusion or exclusion of GA from the model need not based on the 
consideration of age centring, per se.

e) Now let us suppose that x1   and   x2 are to be centred but x3 is not to be centred and suppose 
again that we wish to include x1x2 x3 . Then

 x1 x2 x3   must be replaced by    c1c2 x3− c2 x1 x3− c1 x2 x3 x1−c1 x2−c2 x3 . So, here, we 
need x3 ,  x1 x3  and  x2 x3 in the model.

f) If x1 ,  x2  and x3 are to be centred and x1 x2 x3 is to be included, then:
 x1 x2 x3   must be replaced by   − c1 c2 c3 six more terms x1−c1x2−c2x3−c3  and you 

can check that 1,  x1 , x 2 , x3 , x1 x 2 ,  x1 x3  and  x2 x3 are all needed in the model. Another restatement 
of the 'hierarchically well formulated' [et al] principle.



g) One more... let us suppose that x1 is to be centred and we wish to include x1
2 in the model. 

Then:  x1
2  must be replaced with  − c1

22 c1 x1x1−c1
2 and so 1 and x1 must in the 

model.

h) and on... There are many further extensions... cubics... more than one quadratic and so on...

There are, however, numerous circumstances in which centring would not be warranted. For example, 
the micro assay.... [next]

Micro Assay
Sometimes researchers will develop a study to compare 2 drugs [say]: a standard version and a test 
version. [E = 0 (standard) and E = 1 (test)] Both versions are being considered at very low dosages (D) 
and maybe a zero dose [or placebo] is also considered. In such a scenario, a starting point for analysis 
might involve an assumption of linearity at these low doses:

log  p/1−p=01 E2D3ED
The assessment of 1 might come first. This is sometimes called a  'validity' test because surely we 
need to have that a zero dose of the standard version of the drug is the same as a zero dose of the test 
version of the drug. If the validity test is not significant [ or, if it is known that 1 must be zero] then 
one considers a model like:

log  p/ 1− p=02D3ED
This model provides for 2 straight lines emanating from the same point 0 . The lines have different 
slopes: 2 and 23 for the standard and test respectively. 
Further, there may be advantage to recasting the model as:

log  p/ 1− p=02D for the standard
log  p/ 1− p=02 k D for the test

or 
log  p/ 1− p=02D2k−1 ED

With this recasting, k is called the relative potency of the test relative to the standard. A dose of x units 
of the test has an outcome that is the same as kx units of the standard. There are methods available for 
estimating the relative potency. Such methods use a result called  Fieller's theorem. Further 
development of these techniques will take us too far afield.

Mutually Exclusive and Exhaustive Indicators

In our very first model based example, we considered:
p=Pr(E)

log  p
1−p

=01D

where D is an indicator for disease status. All participants are classified as have disease (D=1) or not 
having disease (D=0). The classification gives responses that are exhaustive. Everyone is either D=0 or 
D=1. The classification gives responses that are mutually exclusive. No one is both D=0 and D=1.

Now consider a case-control cancer study. E=1 (alternating) E=0 (sequential) Suppose participants are 
classified as:
R=1 (progression) R=2 (no change) R=3 (partial remission) or R=4 (complete remission). Each 
participant receives one and only one classification. Accordingly, R provides for mutually exclusive 



and exhaustive options. Now let us define Ri as the indicator  for R=i and consider the model:

log  p
1−p

=01R13R34R4

it is important to note that ∑
i=1

4

Ri=1  and further, the Ri are functionally related in that for a 

given participant if R1=1 ,  say, then the other 3 R2 ,  R3 ,  R4 must be zero. 
And if R2=1  then the other 3 R1 ,  R3 ,  R4 must be zero.
So, for participants with R1=1  we have that:

log  p
1−p

=0113040=011=01

And for participants with R2=1  we have that:

log  p
1−p

=0103040=010=0

Accordingly, we see that 1 is the difference between the log of the odds of exposure for those with 
progression minus log of the odds of exposure for those with no change. 
Similarly for 3  and 4

One must take care when considering the removal of any one term in a set of indicator variables as 
above. For example, if one considers 1=0 and then assesses:

log  p
1−p

=03R34R4

The baseline group is now those with either R1=1 or R2=1 and so, for example, we see that
3 is now the difference between the log of the odds of exposure for those with partial remission 

minus log of the odds of exposure for those with either progression or no change. 

Non Mutually Exclusive Indicators

When a set of indicators provides for a set of mutually exclusive and exhaustive groupings, we obtain a
special form of interpretation of the associated coefficients. This arguably simple interpretation is not 
available when the indicators are not mutually exclusive. We have already seen many examples of this 
matter. Take for example a case-control study  with age group (old A=1 young A=0) and a model like:

log  p
1−p

=01D2A

Here, 1 is the 'assumed common' difference between the log of the odds of exposure for those with 
disease minus the log of the odds of exposure for those without disease. By 'assumed common' we 
mean that the difference applies to both the young and the old. Of course, if possible, the investigator 
would assess the assumption (that age is not a modifier) before consideration of the additive model.

It is important to be aware of the implications of the inclusion of non-mutually exclusive indicators in 
model assessment and interpretation. A rather extreme illustration should serve to make this issue clear.

Consider a database that contains an outcome of interest, say, myocardial infraction (MI) and an 
extended list of comorbidities. A real example came to my attention a while back that included more 
than 30 such comorbidities. For a start to this discussion, let us suppose the list was hypertension (H), 
diabetes (D), smoking (S) and obesity (O) and further we will suppose that each was coded as an 



indicator (1=presence of the comorbidity; 0=absence of the comorbidity). Let us consider a model for 
p=Pr(MI).

log  p
1−p

=01H2D3S4O

In typical applications, Stata will carry out such a fit without objection. Such models might also include
'adjustment' for age and gender. We need not add age and gender to the mix to make the point to come.
In any case, investigators may speak of the success of such models without regard to interpretation of 
the terms in such a model. A common error in interpretation would be to say that coefficients relate to a
baseline group without such comorbidities. 
To attempt an interpretation, take 3 , for example. We must conceptualize 2 sets of individuals. 
Both sets have the same value for H, D and O. One set has S=1 and the other set has S=0. We then 
consider the difference in the log odds of MI between the set with S=1 and the set with S=0 and we 
require that this difference must be the same for each of the 8 combinations of H, D and O. Here 
'assumed common' difference applies to all 8 of these combinations.
Imagine another model with all 30 comorbidities. Call them C1  C2  ...  C30 and now imagine 
fitting:

log  p
1−p

=0∑
i=1

30

iCi

Again, Stata will fit such a model without objection (possibly deleting some terms... the least of our 
concerns here). Now the interpretation of any coefficient (say smoking: C1 ) requires a 
conceptualization of 2 sets, one with smokers C1=1  and one with nonsmokers C1=0  and now 
there are 229 combinations of the other 29 comorbidities. The 'assumed common' difference now 
applies to all 229 pairs of 2 sets.  Fantasy, indeed.
Such models have an illusion of simplicity in that some authors might think that the terms surely must 
have an simple (and realistic!) interpretation. Far from the case here.
Now, it is clear that even large databases cannot contain all of these combinations. So one might then 
think that since the 'assumed common' assumption cannot be assessed, then proceeding with such 
models has some scientific merit. Inevitably, the investigator is faced with a vastly more complex 
problem and simple expediency cannot be the driver.
One option of some potential would be to consider the commonly occurring sets of comorbidities and 
to construct a set of mutually exclusive combinations.

Models for Rate Ratios and Rate Differences

We have given most of our time so far to logistic regression. Modeling the log of the odds leads us to 
direct analogues with stratified analyses which are based on odds ratios. It can be argued that the poster
child for logistic regression is the case-control study. But what of the [mighty] cohort study and of 
course, lest we forget the [gold coated] clinical trial. We have considered rate ratios and rate 
differences in standard ways via stratified analysis but we have ducked the option of models to handle 
rate ratios and rate differences. There are some good reasons why model based methods for rate ratios 
and rate differences have not reached the same attention as logistic regression.

Perhaps the biggest reason may not seem that important to epidemiologists but that biggest reason is 
that a log odds can be any number: positive or negative. No boundaries, as the mathematicians [and 
more importantly, the numerical analysts] say. We will see that modeling a rate ratio or a rate 
difference involves certain challenges we have not faced as of yet.



Whither Logistic Regression?
Sometimes we can compute Rate Differences or Rate Ratios from a Logistic Regression. When? Well, 
it depends...
Lets look at an example to illustrate the challenges here.
Suppose we model the log odds using:

log  p/ 1−p =01 E2 A
and we get 1=1 so that the OR=2.71 What can we say about RR   or  RD? It turns out that 
we can determine the RR  or the RD once we know the log odds with exposure.
The graphs below illustrate the issues:

From the upper left hand graph, we can see that the rate ratio estimate and the odds ratio estimate are 
the same when the log odds of disease without exposure is “small”. ( log odds of disease in the absence
of exposure less than -5)
The rate difference estimate depends on the log odds of disease in the absence of exposure and in more 
complex ways. For  log odds of disease in the absence of exposure between -2 and 2, the rate difference
estimate is varies between about 0.1 and 0.25 
For this illustration at least, we see that if we wish to make inferences about RD or RR we get useful 
information from logistic regression in very limited settings.

We are then directed to the direct modeling methods.

Log-Binomial Regression
Let p=Pr(Disease) and consider: log  p=∑ i x i
As an example, let us return to the NASCET project with p=Pr(Stroke), D: stroke E: stenosis group 
(Elevated=1; Not elevated=0), Age Group (Young=0; Old=1) and Gender (F=0; F=1) as potential 
confounders/modifiers. As an illustration only, consider:

log  p=01E 2A3G4 AG5 EA6EG7EAG

then all of the coefficients are now interpreted in terms of log of probability of disease [here; log of risk
of stroke] For example, 1 is, for the young females,  the log of the risk of stroke for those with 



elevated stenosis minus the log of the risk of stroke for those without elevated stenosis. Just like before,
using that fact that the exponent of a difference is the ratios of the exponents, then:

e
1=the relative risk for the young females

As so we can have exponents of coefficients yielding rate ratios and, like before, we can have ratios of 
rate ratios [and ratios of ratios of ratios....]

Identity-Binomial Regression: 
Now we have: p=∑  i xi
Now continuing with the last example, consider:
p=01 E2 A3G 4 AG5EA6 EG7EAG

For this model, 1 is now the risk difference for young females. No exponentiating here.
So the coefficients here will be risk differences or differences between risk differences [and differences
of differences of differences....]

In principle, models based on the log link will reproduce stratified analysis components based on rate 
ratios while models based on the identity link will reproduce stratified analysis components based on 
rate differences. The same qualifications as with logistic regression apply here since such models are fit
via likelihood methodology while the Mantel-Haentzel methodology has slightly different 
approximations in their development.

The big catch [22?] with these models is the inherent boundaries of log(p) and p. Probabilities (p) must 
be between 0 and 1 and so all the fitting of rate differences must obey this “constraint”. The same 
matter applies to log(p) which must be negative. With “large” sample samples sizes and fitting 
algorithms carried out away from boundaries, these constraints have little impact but with “modest” 
studies and with the 'inevitable' [good thing!] small probabilities/rates/risk, the algorithms can bump 
into boundaries and then the “search” for a maximum [of a likelihood] can fail. This matter has been 
receiving serious attention [ notably TW, ME & GHF(2014) and GS & GHF(2019)_] .

In the last few years, major strides have been made with log-binomial models. Such advances have 
been implemented in R:

https://cran.r-project.org/package=lbreg

Such advances have not [yet] been implemented in Stata. One can try binreg in Stata but there can be 
serious problems.
[from 'help binreg' in Stata]
 binreg fits generalized linear models for the binomial family.  It
    estimates odds ratios, risk ratios, health ratios, and risk differences.
    The available links are

                Option    Implied link                Parameter
                -----------------------------------------------
                or               logit     odds ratios = exp(b)
                rr                 log     risk ratios = exp(b)
                hr      log complement   health ratios = exp(b)
                rd            identity     risk differences = b

    Note that estimates of odds, risk, and health ratios are obtained by
    exponentiating the appropriate coefficients.  The option or produces the
    same results as Stata's logistic command, and or coefficients yields the
    same results as the logit command.  When no link is specified or implied,



    or is assumed.

The 'link'  g is a function of the probability – p.  Generally, then, 
g  p=01E2 A3G 4 AG5 EA6 EG7EAG

when g(p) = log(p/(1-p)), we have binomial regression with a logit link (logistic regression)
when g(p)= log(p), we have binomial regression with a log link (rate ratio regression)
and when g(p)=p, we have binomial regression with an identity link (rate difference regression).

Anytime Stata gives an 'note' or a 'warning' message, you need to take heed. The matters leading to 
notes and warnings can occur more often with the (non-logit link based ) binomial regressions.

Lets take a brief look at a part of a NASCET dataset ( courtesy M.E.) and a start at an analysis based on
risk ratios (risk of stroke for those with elevated stenosis over the  risk of stroke for those without 
elevated stenosis)

. gen sten=(stengrp>1)

. gen stro=stroke-1

. egen genage=group(sex agegp)

. cs stro sten,by(sex agegp)

       sex agegp |       RR       [95% Conf. Interval]   M-H Weight
-----------------+-------------------------------------------------
             1 1 |    .4720497     .1493356   1.492149     3.833333 
             1 2 |    .8939394     .2683331   2.978118     2.563107 
             1 3 |    1.403509     .3951443   4.985108     1.628571 
             2 1 |    1.468421     .7497855   2.875837      6.06383 
             2 2 |    2.509804     1.362044   4.624751     6.181818 
             2 3 |    1.501235     .7506118   3.002491     4.879518 
-----------------+-------------------------------------------------
           Crude |    1.559672     1.126613   2.159194              
    M-H combined |    1.516141     1.095846   2.097634
-------------------------------------------------------------------
Test of homogeneity (M-H)      chi2(5) =    7.325  Pr>chi2 = 0.1976

. cs stro sten,by(genage)

group(sex agegp) |       RR       [95% Conf. Interval]   M-H Weight
-----------------+-------------------------------------------------
               1 |    .4720497     .1493356   1.492149     3.833333 
               2 |    .8939394     .2683331   2.978118     2.563107 
               3 |    1.403509     .3951443   4.985108     1.628571 
               4 |    1.468421     .7497855   2.875837      6.06383 
               5 |    2.509804     1.362044   4.624751     6.181818 
               6 |    1.501235     .7506118   3.002491     4.879518 
-----------------+-------------------------------------------------
           Crude |    1.559672     1.126613   2.159194              
    M-H combined |    1.516141     1.095846   2.097634
-------------------------------------------------------------------
Test of homogeneity (M-H)      chi2(5) =    7.325  Pr>chi2 = 0.1976

log  p=01E2G23G 34G45G56G67EG 28 EG39 EG410EG511EG6

binreg stro i.sten#i.genage,rr
i.sten            _Isten_0-1          (naturally coded; _Isten_0 omitted)
i.genage          _Igenage_1-6        (naturally coded; _Igenage_1 omitted)
i.sten*i.genage   _IsteXgen_#_#       (coded as above)

Generalized linear models                          No. of obs      =       724
Optimization     : MQL Fisher scoring              Residual df     =       712
                   (IRLS EIM)                      Scale parameter =         1
Deviance         =  645.2029024                    (1/df) Deviance =  .9061839
Pearson          =  723.9978177                    (1/df) Pearson  =  1.016851

Variance function: V(u) = u*(1-u)                  [Bernoulli]



Link function    : g(u) = ln(u)                    [Log]

                                                   BIC             = -4043.169

------------------------------------------------------------------------------
             |                 EIM
        stro | Risk Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
    _Isten_1 |   .4720497   .2771857    -1.28   0.201     .1493364    1.492141
  _Igenage_2 |   .5520581   .2848628    -1.15   0.250     .2007999    1.517771
  _Igenage_3 |   1.017857   .6335083     0.03   0.977     .3005412    3.447225
  _Igenage_4 |   .7004608   .3046172    -0.82   0.413     .2986842    1.642689
  _Igenage_5 |   .5816327   .2541579    -1.24   0.215     .2469998    1.369623
  _Igenage_6 |   1.285714    .576907     0.56   0.575     .5335876    3.098013
_IsteXgen_~2 |    1.89374   1.608883     0.75   0.452     .3582258    10.01115
_IsteXgen_~3 |   2.973223   2.597107     1.25   0.212     .5366655    16.47218
_IsteXgen_~4 |   3.110734   2.115319     1.67   0.095     .8204279    11.79466
_IsteXgen_~5 |   5.316821   3.534987     2.51   0.012     1.444492    19.56992
_IsteXgen_~6 |   3.180247   2.179971     1.69   0.091     .8298237     12.1881
------------------------------------------------------------------------------

Some parts of this output use slightly different namings. Deviance is -2*log-likelihood. So that the iteration 
sequence showing deviance going down is analogous to log-likelihood going up. 

The red highlighted rows in the above table show the estimated risk ratio for young females of 0.4720 as 
obtained from the stratified analysis. The number 5.3168 is in fact an estimated ratio of risk ratios. The we get 
that the estimated RR for middle aged males is 0.4720*5.3168 = 2.5098 which the estimated RR for middle aged
males in the stratified analysis.

Here is a similar analysis of risk differences:
p=01 E2G23G3 4G 45G56G67EG 28 EG39 EG410EG511EG6

binreg stro i.sten#i.genage,rd
i.sten            _Isten_0-1          (naturally coded; _Isten_0 omitted)
i.genage          _Igenage_1-6        (naturally coded; _Igenage_1 omitted)
i.sten*i.genage   _IsteXgen_#_#       (coded as above)

Generalized linear models                          No. of obs      =       724
Optimization     : MQL Fisher scoring              Residual df     =       712
                   (IRLS EIM)                      Scale parameter =         1
Deviance         =  645.2029024                    (1/df) Deviance =  .9061839
Pearson          =          724                    (1/df) Pearson  =  1.016854

Variance function: V(u) = u*(1-u)                  [Bernoulli]
Link function    : g(u) = u                        [Identity]

                                                   BIC             = -4043.169

------------------------------------------------------------------------------
             |                 EIM
        stro | Risk Diff.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
    _Isten_1 |   -.097254     .07537    -1.29   0.197    -.2449765    .0504685
  _Igenage_2 |  -.0825156   .0741823    -1.11   0.266    -.2279103     .062879
  _Igenage_3 |   .0032895   .1160868     0.03   0.977    -.2242365    .2308154
  _Igenage_4 |  -.0551783   .0718546    -0.77   0.443    -.1960106    .0856541
  _Igenage_5 |  -.0770677   .0693455    -1.11   0.266    -.2129823     .058847
  _Igenage_6 |   .0526316   .0933337     0.56   0.573    -.1302991    .2355623
_IsteXgen_~2 |   .0864682   .0954321     0.91   0.365    -.1005753    .2735116
_IsteXgen_~3 |   .1729119   .1593979     1.08   0.278    -.1395023    .4853261
_IsteXgen_~4 |   .1576954   .0922259     1.71   0.087     -.023064    .3384549
_IsteXgen_~5 |   .2590187   .0904812     2.86   0.004     .0816789    .4363586
_IsteXgen_~6 |   .2159675   .1246157     1.73   0.083    -.0282748    .4602097
       _cons |   .1842105   .0628861     2.93   0.003     .0609561     .307465
------------------------------------------------------------------------------

Notice that we are seeing a very similar finding. The estimated risk difference for middle aged males is:
-0.0972+0.2590= 0.1617



which is the same as the stratified analysis:

. cs stro sten if genage==5

                 | sten                   |
                 |   Exposed   Unexposed  |      Total
-----------------+------------------------+------------
           Cases |        32          12  |         44
        Noncases |        87         100  |        187
-----------------+------------------------+------------
           Total |       119         112  |        231
                 |                        |
            Risk |  .2689076    .1071429  |   .1904762
                 |                        |
                 |      Point estimate    |    [95% Conf. Interval]
                 |------------------------+------------------------
 Risk difference |         .1617647       |    .0636449    .2598845 
      Risk ratio |         2.509804       |    1.362044    4.624751 
 Attr. frac. ex. |         .6015625       |    .2658095    .7837721 
 Attr. frac. pop |            .4375       |
                 +-------------------------------------------------
                               chi2(1) =     9.79  Pr>chi2 = 0.0018

. disp -0.097254+0.2590187

.1617647


