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Session 17 : The Basics of Missing Data

Introduction [ adapted from http://www.ats.ucla.edu/stat/Stata/modules/missing.html ]

We will now explore the basics of missing data in Stata, focusing on numeric missing data. It will
describe how to indicate missing data in your raw data files, as well as how missing data are handled in
Stata logical commands and assignment statements.

We will illustrate some of the missing data properties in Stata using data from a reaction time study
with eight subjects indicated by the variable id , and the subjects reaction times were measured at three
time points (triall trial2 trial3). The input data file is shown below.

input id triall
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You might notice that some of the reaction times are coded using a single . as is the case for subject 2.
The person measuring time for that trial did not measure the response time properly, therefore the data
for the second trial is missing.
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How Stata handles missing data in Stata procedures

As a general rule, Stata commands that perform computations of any type handle missing data by
omitting the missing values. However, the way that missing values are omitted is not always consistent
across commands, so let's take a look at some examples.


http://www.ats.ucla.edu/stat/stata/modules/missing.html

First, let's summarize our reaction time variables and see how Stata handles the missing values.

summarize triall trial2 trial3

As you see in the output below, summarize computed means using 4 observations for triall and trial2
and 6 observations for trial3. In short, the summarize command performed the computations on all the
available data.

Variable | Obs Mean Std. Dev Min Max
_____________ +________________________________________________________
triall | 4 1.675 .2061553 1.5 1.9
trial2 | 4 1.875 .3201562 1.4 2.1
trial3 | 6 1.866667 .233809 1.6 2.2

A second example, shows how the tabulation or tabl command handles missing data. Like summarize,
tabl uses just available data. Note that the percentages are computed based on the total number of non-
missing cases.

tabl triall trial2 trial3

-> tabulation of triall

triall | Freq. Percent Cum.

____________ +-——_——_—_—_— = =

1.5 | 2 50.00 50.00

1.8 | 1 25.00 75.00

1.9 | 1 25.00 100.00

____________ +-——_——_—_—_— = =
Total | 4 100.00

trial2 | Freq Percent Cum

____________ +-——_——_—_—_— = =

1.4 | 1 25.00 25.00

2 | 2 50.00 75.00

2.1 | 1 25.00 100.00

____________ +-——_——_—_—_— = =
Total | 4 100.00

trial3 | Freq Percent Cum

____________ +-——_——_—_—_— = =

1.6 | 2 33.33 33.33

1.9 | 2 33.33 66.67

2 | 1 16.67 83.33

2.2 | 1 16.67 100.00

____________ +___________________________________
Total | 6 100.00

It is possible that you might want the percentages to be computed out of the total number of
observations, and the percentage missing for each variable shown in the table. This can be achieved by
including the missing option after the tabulation. command,



tabl triall trial2 trial3, m

-> tabulation of triall

triall | Freq. Percent Cum.

____________ +___________________________________

1.5 | 2 28.57 28.57

1.8 | 1 14.29 42 .86

1.9 | 1 14.29 57.14

| 3 42 .86 100.00

____________ +___________________________________
Total | 7 100.00

-> tabulation of trial2

trial2 | Freq Percent Cum

____________ +-——_——_—_—_———e— = =

1.4 | 1 14.29 14.29

2 | 2 28.57 42.86

2.1 | 1 14.29 57.14

| 3 42.86 100.00

____________ +___________________________________
Total | 7 100.00

-> tabulation of trial3

trial3 | Freq Percent Cum

____________ +___________________________________

1.6 | 2 28.57 28.57

1.9 | 2 28.57 57.14

2 | 1 14.29 71.43

2.2 | 1 14.29 85.71

| 1 14.29 100.00

____________ +___________________________________
Total | 7 100.00

Let's look at how the correlate command handles missing data. We would expect that it would perform
the computations based on the available data, and omit the missing values. Here is an example
command.

corr triall trial2 trial3

The output is show below. Note how the missing values were excluded. Stata will perform listwise
deletion and only display correlation for observations that have non-missing values on all variables
listed.

corr triall trial2 trial3
(obs=3)

| triall trial2 trial3

_____________ +___________________________
triall | 1.0000

trial2 | 0.9939 1.0000

trial3 | 1.0000 0.9939 1.0000

Stata also allows for pairwise deletion. Correlations are displayed for the observations that have non-
missing values for each pair of variables. This can done using the pwcorr command. We use the obs
option to display the number of observation used for each pair, as you can see, they differ depending
on the amount of missing.



pwcorr triall trial2 trial3, obs

triall trial2 trial3

I
_____________ +___________________________
triall | 1.0000
| 3
I
trial2 | 0.9939 1.0000
I 3 4
I
trial3 | 0.7001 0.6439 1.0000
I

4 4 6
Summary of how missing values are handled in Stata procedures
summarize : For each variable, the number of non-missing values are used.

tabulation : By default, missing values are excluded and percentages are based on the number of non-
missing values. If you use the missing option on the tab command, the percentages are based on the
total number of observations (non-missing and missing) and the percentage of missing values are
reported in the table.

corr : By default, correlations are computed based on the number of pairs with non-missing data
(pairwise deletion of missing data). The pwcorr command can be used to request that correlations be
computed only for observations that have non-missing data for all variables listed after the pwcorr
command (listwise deletion of missing data).

regress, logit, ologit, mlogit [all modeling commands] If any of the variables listed after the modeling
command are missing, the observations missing that value(s) are excluded from the analysis (i.e.,
listwise deletion of missing data).

For other procedures, see the Stata manual for information on how missing data are handled.
Missing values in assignment statements

It is important to understand how missing values are handled in assignment statements. Consider the
example shown below.

gen suml = triall + trial2 + trial3

The list command below illustrates how missing values are handled in assignment statements. The
variable suml is based on the variables triall trial2 and trial3. If any of those variables were missing,
the value for sum1 was set to missing. Therefore sum1 is missing for observations 2, 3 and 4, as is the
case for observation 7.



list

1.1 1 1.5 1.4 1.6 4.5 |
2.1 2 1.5 1.9 |
3.1 3 2 1.6 |
4. | 4 ) 2.2 o
5.1 5 1.9 2.1 2 6 |

| = |
6. | 6 1.8 2 1.9 5.7 |
7.1 7 |

e e e L +

As a general rule, computations involving missing values yield missing values. For example,

2 + 2 yields 4
2 + . yields .
2 / 2 yields 1
./ 2 yields .
2 * 3 yields 6
2 * | yields

whenever you add, subtract, multiply, divide, etc., values that involve missing data, the result is
missing.

In our reaction time experiment, the total reaction time suml is missing for four out of seven cases. We
could try totaling the data for the non-missing trials by using the rowtotal function as shown in the
example below.

egen sum2 = rowtotal (triall trial2 trial3)

list

The results below show that sum2 now contains the sum of the non-missing trials.

1. ] 1 1.5 1.4 1.6 4.5 4.5 |
2. | 2 1.5 1.9 3.4 |
3.1 3 2 1.6 3.6 |
4. | 4 ) 2.2 . 2.2 |
5.1 5 1.9 2.1 2 6 6 |

| === e |
6. | 6 1.8 2 1.9 5.7 5.7 |
7.1 7 0|

e +

Note that the rowtotal function treats missing as a zero value. When summing several variables it may
not be reasonable to treat missing as zero if an observations is missing on all variables to be summed.

The rowtotal function with the missing option will return a missing value if an observation is missing

on all variables.



egen sum3 = rowtotal (triall trial2 trial3) , missing

1. ] 1 1.5 1.4 1.6 4.5 4.5 4.5 |
2. | 2 1.5 1.9 3.4 3.4 |
3.1 3 2 1.6 3.6 3.6 |
4. | 4 : 2.2 . 2.2 2.2 |
5.1 5 1.9 2.1 2 6 6 6 |

| == |
6. | 6 1.8 2 1.9 5.7 5.7 5.7 |
7.1 7 : 0 |

e e e L L e e e +

Other statements work similarly. For example, observed what happened when we try to create an
average variable without using a function (as in the example below). If any of the variables triall, trial2
or trial3 are missing, the value for avgl are set to missing.

gen avgl = (triall + trial2 + trial3)/3

Alternatively, the rowmean function averages the data for the non-missing trials in the same way as the
rowtotal function.

egen avg2 = rowmean (triall trial2 trial3)

Note: Had there been large number of trials, say 50 trials, then it would be annoying to have to type
avg=rowmean(triall trial2 trial3 trial4 ...). Here is a shortcut you could use in this kind of situation:

egen avg3 = rowmean (triall - trial3)

list

1. ] 1 1.5 1.4 1.6 1.5 1.5 1.5 |
2.1 2 1.5 1.9 1.7 1.7 |
3.1 3 2 1.6 1.8 1.8 |
4. | 4 ) 2.2 . 2.2 2.2 |
5.1 5 1.9 2.1 2 2 2 2 |

Rt |
6. 1 6 1.8 2 1.9 1.9 1.9 1.9 |
7.1 17 |

e o +

Finally, you can use the rowmiss and rownomiss functions to determine the number of missing and the
number of non-missing values, respectively, in a list of variables. This is illustrated below.

egen miss = rowmiss(triall - trial3)
egen nomiss = rownonmiss(triall - trial3)
list

For variable nomiss, observations 1, 5 and 6 had three valid values, observations 2 and 3 had two valid
values, observation 4 had only one valid value and observation 7 had no valid values. The variable miss
shows the opposite, it provides a count of the number of missing values.



1.1 1 1.5 1.4 1.6 0 3 |
2. 2 1.5 1.9 1 2 |
3.1 3 ) 2 1.6 1 2 |
4. | 4 ) 2.2 2 1|
5.1 5 1.9 2.1 2 0 3 |

| == !
6. | 6 1.8 2 1.9 0 3 |
7.1 1 ) 3 0 |

e e L L P e R +

Missing values in logical statements

It is important to understand how missing values are handled in logical statements. For example, say
that you want to create a 0/1 variable for triall that is 1 ifitis 1.5 or less, and 0 if it is over 1.5. We
show this below (incorrectly, as you will see).

gen newvarl =(trial2 <1.5)

list trial2 newvarl

It appears that something went wrong with our newly created variable newvarl! The observations with
missing values for trial2 were assigned a zero for newvarl.

1. | 1.4 1|
2. | . 0 |
3. | 2 0 |
4. | 0 |
5. | 2.1 0 |

e |
6. | 2 0 |
7. | . 0 |

Fom - +

Let's explore why this happened by looking at the frequency table of trial2.

As you can see in the output, missing values are at the listed after the highest value 2.1 This is because
Stata treats a missing value as the largest possible value (e.g., positive infinity) and that value is greater
than 2.1, so then the values for newvarl become 0.

tab trial2, missing

trial2 | Freq Percent Cum

____________ +-——_——_—_—_— = =

1.4 | 1 14.29 14.29

2 | 2 28.57 42.86

2.1 | 1 14.29 57.14

| 3 42.86 100.00

____________ +___________________________________
Total | 7 100.00

Now that we understand how Stata treats missing values, we will explicitly exclude missing values to
make sure they are treated properly, as shown below.



gen newvar2 =(trial2 <1.5) if trial2 !=.

list trial2 newvarl newvar2

As you can see in the Stata output below, the new variable newvar2 has missing values for observations
that are also missing for trial2.

1. | 1.4 1 1
2. | . 0 .
3. | 2 0 0|
4. | 0 .
5. | 2.1 0 0|

| === |
6. | 2 0 0|
7.1 . 0 .

e +

Missing values in logical statements

When creating or recoding variables that involve missing values, always pay attention to whether the
variable includes missing values.

Missing values are handled quite differently in R. For example, in R, missing values are represented by
the symbol NA (not available). Impossible values (e.g., dividing by zero) are represented by the symbol
NaN (not a number). There are many online tutorials on missing values in R. This is a big topic with
many subtle differences between software. The above material in this session is, in places, quite
specific to Stata and can be very different in R.



Old Approaches to Missing Data: [ adapted from CK Anders 'Applied Missing Data Analysis' |

Listwise and pairwise deletion might seem like a sensible if pragmatic way to analyses with missing
data. Deletion methods have serious limitations that preclude their use in most situations. Most
importantly, these approaches make assumptions about the available data and can produce distorted
parameter estimates. There is little to recommend these techniques unless the proportion of missing
data is trivially small.

Listwise Deletion:

Listwise deletion (also known as complete-case analysis) discards the data for any case that has one or
more missing values. Relative to pairwise deletion, listwise deletion also has the advantage of
producing a common set of cases for all analyses. In most situations, the disadvantages of listwise
deletion far outweigh its advantages. The primary problem with listwise deletion is that it requires
assumptions about the available data and can produce distorted parameter estimates when these
assumptions do not hold.

As an example, consider a study where the participants in the lower half of the 1Q distribution have
missing job performance ratings. By virtue of this selection process, listwise deletion discards the entire
lower half of the 1Q distribution. Because 1Q scores and job performance ratings are presumably
associated, listwise deletion also excludes cases from the lower tail of the job performance distribution
(i.e., the cases with low IQ scores). Not surprisingly, the remaining cases are unrepresentative of the
hypothetically complete data set. They have higher scores on both variables. Consequently, with
listwise deletion, estimates of the mean are too high. In addition, the restriction of range that results
from discarding the lower tails of the distributions makes the estimates of the variability of the data

too small and would understimate the correlation between these two variables. Bias aside, listwise
deletion is potentially very wasteful, particularly when the discarded cases have data on a large number
of variables. Deleting the incomplete data records can produce a dramatic reduction in the total sample
size, the magnitude of which increases as the missing data rate or number of variables increases. For
example, consider a data set with 10 variables, each of which has 2% of its observations missing in a
completely random fashion. Although the proportion of missing data on any single variable is relatively
small, listwise deletion could eliminate [ an expected percentage of ]18% of the data records. With 20
variables, the expected percentage of complete cases drops to about 67%.

Pairwise Deletion

Pairwise deletion (also known as available-case analysis) attempts to mitigate the loss of data by
eliminating cases on an analysis-by-analysis basis. It is common to find published research articles that
report varying sample sizes across a set of analyses. Using as much of the data as possible might sound
like a good idea. Alas, the issues discussed with listwise deletion afflict pairwise deletion as well.
Further, pairwise deletion also has a number of unique problems. Using different subsets of participants
poses subtle problems with many analyses. For example, one might have two logistic regression
analyses that, on the basis of their model formulations, would appear to be nested but if the fits are
based on different sets of participants, the models are not in fact nested.

Single Imputation

So-called single imputation methods attempt to fill in the missing data with the actual data prior to
analysis. By single imputation we mean approaches generate a single replacement value for each
missing data point. This is in contrast to multiple imputation, which creates several copies of the data
set and imputes each copy with different plausible estimates of the missing values. Imputation then
gives us a complete [but not real] data set. Imputation then enables the use of data that deletion



approaches would otherwise discard. Single imputation techniques have potentially serious drawbacks.
Bias in the estimates remain [for the most part] an issue. In addition, single imputation techniques
attenuate standard errors. Analyzing a single imputed data set effectively treats the filled-in values as
real data, so single imputation techniques result in analyses that underestimate standard errors. Multiple
imputation can often address this problem.

Imputation is the process of replacing missing data with substituted values.

im-pute [origin: 16™ century]

1. To relate (something, usually something bad) to a particular cause or source; place the fault or
responsibility for: imputed the rocket failure to a faulty gasket; kindly imputed my clumsiness to
inexperience. See Synonyms at attribute.

2. To assign as a characteristic; credit: the gracefulness so often imputed to cats.

1. to attribute or ascribe (something dishonest or dishonourable, esp a criminal offence) to a person
2. to attribute to a source or cause: [ impute your success to nepotism.

3. (Commerce) commerce to give (a notional value) to goods or services when the real value is
unknown

Arithmetic Mean Imputation

Arithmetic mean imputation (also referred to as mean substitution and unconditional mean imputation)
takes the seemingly appealing tack of filling in the missing values with the arithmetic mean of the
available cases. The idea of replacing missing values with the mean is an old one that methodologists
often attribute to Wilks (1932). In essentially all settings, this approach severely distorts the resulting
parameter estimates. Mean imputation will attenuate the standard errors. This approach has been
studied at length [from the 70's onwards]. In fact, many of these studies suggest that mean imputation is
possibly the worst missing data handling method available. Consequently, in no situation is mean
imputation defensible, and you should absolutely avoid this approach.

Regression Imputation

Regression imputation (also known as conditional mean imputation) replaces missing values with
predicted scores from a regression equation. Like arithmetic mean imputation, regression imputation
has a long history that dates back many years (Buck, 1960). The basic idea behind this approach is
intuitively appealing: use information from the complete variables to fill in the incomplete variables.
The first step of this imputation process is to estimate a set of regression equations. A complete-case
analysis usually generates these estimates. The second step is to generate "predicted' values for the
incomplete variables. These predicted scores fill in the missing values and produce a complete data set.
This approach has been studied at length as well [1970's onwards]. [Different] biases abound. For a
time it was thought that 'corrections' could be made to these techniques to repair the bias issues. With
the advent of much more secure [Multiple Imputation] methods in recent times, regression imputation
is not recommended.

Stochastic Regression Imputation

Stochastic regression imputation also uses regression equations to predict the incomplete variables
from the complete variables, but there is an extra step of simulating a value using the regression
equation. This step can take the form of adding an error term [in the case of linear regression] or
creating a [0/1] outcome using a threshold [as in logistic regression]. This method addresses some of
the problems discussed above but the estimation of standard errors remains problematic.



Hot Deck Imputation

Hot-deck imputation is a collection of techniques that impute the missing values with scores from
“similar” respondents. Statisticians at the US Census Bureau originally developed the hot-deck to deal
with missing data in public-use data sets, and the procedure has a long history in survey applications
(Scheuren, 2005). This procedure has received a good deal of attention in the survey literature.
Methodologists have proposed several variations of hot-deck imputation. The basic premise is to
impute missing values with the scores of other respondents. In its simplest incarnation, a random draw
from the observed data replaces each missing value. The more typical application of hot-deck
imputation replaces each missing value with a random draw from a subsample of respondents that
scored similarly on a set of matching variables. For example, consider a general population survey in
which some respondents refuse to disclose their income. The hot-deck procedure classifies respondents
into cells based on demographic characteristics such as gender, age, race, and marital status. It then
replaces the missing values with a random draw from the income distribution of respondents that
shared the same constellation of demographic characteristics as the individual with missing data. Note
that the background variables need not be categorical, and some hot-deck algorithms match individuals
on continuous variables (e.g., nearest neighbour hot deck). Hot-deck imputation generally preserves the
univariate distributions of the data and does not attenuate the variability of the filled-in data to the same
extent as other imputation methods. Like other single imputation procedures, hot deck underestimates
standard errors, although researchers have proposed corrective procedures (e.g., the jackknife) for
estimating standard errors.

Similar Response Pattern Imputation

Similar response pattern imputation is a technique to impute each missing value with the score from
another individual (i.e., a “donor” case) who has a similar score profile on a set of matching variables.
The similar response pattern approach closely resembles a variant of hot-deck imputation known as
nearest neighbour hot deck. Similar response pattern imputation does not necessarily produce a
complete data set, and there are a number of nuances to implementing this approach. For example,
identifying a set of matching variables with complete data may be a significant obstacle in and of itself.
Although it is possible for incomplete variables to serve as matching variables, imputation will fail if
there are no donor cases with complete data on the matching variables. Consequently, using incomplete
variables as matching variables can reduce the pool of donors to the point where imputation becomes
impossible, at least for a subset of cases. Similar response pattern imputation has no known theoretical
foundation, so it is difficult to predict the procedure’s performance.

Averaging The Available Items

Researchers in many disciplines use multiple-item questionnaires to measure complex con- structs. For
example, psychologists routinely use several questionnaire items to measure depression, each of which
taps into a different depressive symptom (e.g., sadness, lack of energy,sleep difficulties, feelings of
hopelessness). Rather than analyzing the individual item responses, researchers typically compute a
scale score by summing or averaging the items that measure a common theme. The resulting scale
score reflects each respondent’s overall standing on the construct of interest (e.g., a higher numeric
value indicates more depressive symptoms). It is often the case that respondents answer some, but not
all, of the items on a questionnaire. Rather than discard the incomplete questionnaires, researchers
frequently compute scale scores by averaging the available items. For example, if a respondent
answered 8 out of 10 items on a depression questionnaire, his scale score would be the average of those
8 items. The missing data literature sometimes describes this procedure as person mean imputation, but
researchers in other disciplines sometimes refer to it as a prorated scale score. It may not be
immediately obvious, but averaging the available items is equivalent to imputing the missing values
with the mean of a respondent’s complete items—thus the name “person mean imputation.” Very few



empirical studies have the properties of examined person mean imputation. Averaging the available
items is probably the most common approach for dealing with item-level missing data on
questionnaires. Test manuals often give instructions for computing prorated scale scores with missing
data, yet they may not offer cautionary statements about the biases that can result from this procedure.

Last Observation Carried Forward

Last observation carried forward is a missing data technique that is specific to longitudinal designs. As
its name implies, the procedure imputes missing repeated measures variables with the observation that
immediately precedes dropout. For example, if a participant drops out after the fifth week of an 8-week
study, his week five score fills in the remaining waves of data. This strategy has been applied to the
cases that permanently drop out as well as to the cases with intermittent missing data. Researchers still
routinely use this method in medical studies and clinical trials. This technique effectively assumes that
scores do not change after the last observed measurement or during the intermittent period where
scores are missing. Research has shown that this imputation scheme can attenuate or exaggerate group
differences at the end of a study. The direction and the magnitude of the bias are difficult to predict and
depend on specific characteristics of the data and last observation carried forward will produce
distorted parameter estimates. Despite its frequent use in medical studies and clinical trials, a growing
number of empirical studies suggest that this approach is poor strategy for dealing with longitudinal
missing data (Cook et al., 2004; Liu & Gould, 2002; Mallinckrodt et al., 2001; Molenberghs et al.,
2004; Shao & Zhong, 2004). These same studies generally recommend the newer methods like
multiple imputation.

Researchers have been studying missing data for decades and have proposed dozens of techniques to
address the problem. Many of these approaches have enjoyed widespread use, while others are now
little more than a historical footnote. The above methods are a few of the more common “traditional”
missing data handling methods that you are likely to encounter in published research articles. They are
all obsolete.



Multiple Imputation Using Chained Equations

Multiple Imputation Using Chained Equations is now regarded as THE approach for analyzing
incomplete data.

This procedure:

1) replaces missing values with multiple sets of simulated values to complete the data,
2) applies standard analyses to each completed dataset,

and 3) adjusts the obtained parameter estimates for missing-data uncertainty

The objective is not to predict missing values as closely as possible to the true ones but to handle
missing data in a way resulting in defensible statistical inferences.

This procedure has been available with Stata since Release 12.

The process is far from elementary and involves several steps each involving a number of decisions
that impact on the form of the analysis.

Within Stata, one can see what is involved by:
help mi

This procedure is receiving many current [ as of 2016 ] statistical reviews and many of these reviews
are fraught with challenges, debate and, yes, controversy.

Perhaps the most challenging matter relates to the proportion of missing data relative to the actual data.
There are many proposals for such percentages but none that seem definitive or completely detailed.



