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Matching

Lets consider a study of cancer patients
designed to compare 5 year survival rates with
2 treatments: chemotherapy (C) and surgery
(S). The patients were grouped into pairs based
on characteristics thought to be possible
confounders: age, gender and clinical condition.
Then, within each pair, one patient receives C
and one receives S; this assignment made at
random.
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Comparing within pairs: Intra-pair comparisons

Then, after 5 years, the survival of each patient is determined.
We will assume there was no censoring and no loss to follow up
and, further, we will assume that just whether or not a patient
has died is of interest.

Then, for each pair, we will know whether the C patient lived or
died and whether the S patient lived or died.

For a given pair, age, gender and condition are the same.

For a given pair, if both patients lived, we learn nothing about
the difference in survival rates for 2 patients with the same age,
gender and condition. Similiarly for a pair in which both patients
died. Pairs of these types are called concordant pairs.

If, for a given pair, one patient lived and other patient died, then
we have a [so-called] discordant pair.
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Discordant pairs

If there is a higher proportion of  discordant pairs where S died
and C lived compared the pairs where S lived and C died, then
we would judge C to have a better survival rate than S. 

For every discordant pair, the comparison is based entirely on 2
patients with the same  age, gender and condition. In a real
way, we have “adjusted” for age, gender and condition as
[potential] confounders by a design method as opposed to an
analysis method.

We then count up the number of pairs where S lived and C died
and compare this number to the number of pairs where S died
and C lived
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Independence and correlation

It is then assumed that the set of
determinations for every discordant pair of
patients is like a collection of independent
“trials”. One trial for each discordant pair.

While, since we matched on age, gender and
condition, the 2 outcomes in a given pair are
most likely correlated, this correlation has no
bearing on the assessment of whether a pair is
discordant of one form or the other.
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An example

Consider a study where 621 pairs of patients
were followed for 5 years.

If we were to incorrectly ignore the matching
process in the design , we would get...
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...an incorrect unmatched analysis

          Survival         survival rate

         Y          N

A     106       515     106/621 = 0.171

B      95        526       95/621 = 0.153

p-value: 2 sided Fisher's exact test = 0.441

          = 1.14 ;  CI for OR is   [0.83, 1.57]
[The odds of survival for those receiving chemotherapy is

estimated to be only 1.14 times the odds of survival for those
receiving surgery]

̂ OR 
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...but the correct analysis is to construct:

                         Survival for Patient S

                               Y            N

  Survival        Y     90           16    

for Patient C  N       5          510

The number of [independent] trials is 21. 

The estimated odds ratio is 16/5 = 3.2

The p-value is from the binomial distribution.
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Correct p-value and correct CI for OR

p-value = 2* P(16 or more successes | n=21 p=0.5)

where p= P(discordant pair has C surviving and S dying)
. bitesti 21 16 0.5

       N   Observed k   Expected k   Assumed p   Observed p

       21         16         10.5       0.50000      0.76190

  Pr(k <= 5 or k >= 16) = 0.026604  (two-sided test)

. cii 21 16

    Variable |        Obs        Mean    Std. Err.       [95% Conf. Interval]

             |         21    .7619048    .0929429        .5283402    .9178241

. disp .7619048/(1-.7619048)= 3.20000

. disp .5283402/(1-.5283402)= 1.12017

. disp .9178241/(1-.9178241)= 11.1690

                      and CI for OR is [1.12, 11.17]ÔR=3.2
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Reshaping a data set

Datasets for studies with matching can be
configured 2 distinct ways.

If each row contains the data for an individual, we
call the dataset long.

If each row contains the data for a [matched] pair,
we call the dataset wide.

Long datasets require a variable to determine the
pair while wide datasets require an exposure for
each member of the pair.
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Long dataset : One row per person

    Row            pair      chemo       surv

       1                1            0               0

       2                1            1               0

       3                2            0               1

       4                2            1               0

       . 

       .

       .

 1242            621
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Wide Dataset : One row per matched set

   Row          pair      surv0    surv1

    1               1              0         0

    2               2              1         0

    3               3

    .

    .

    .

 621            621
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Choice depends on analyst's requirements

Both wide and long formats contain the same
information.

The wide format has data in which each row is
a matched set

The long format retains to “usual” approach of
having one row for each member of a set.

The long/wide format option is also seen in
longitudinal studies, studies with clustering
and , indeed, the entire group of study types
with repeated outcomes
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Switching from long to wide 
and switching from wide to long

In Stata, if we have a long format file as
illustrated, then:

reshape wide surv, i(pair) j(chemo)

changes the dataset to wide format.

i(pair) identifies the pair

j(chemo) instructs Stata to replace the variable
surv with surv0 [surv for those with chemo=0]
and with surv1 [surv for those with chemo=1]
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If the dataset is in long format, we can carry out
the incorrect analysis

. cc surv chemo,exact

                                                         Proportion

                 |   Exposed   Unexposed  |      Total     Exposed

           Cases |       106          95  |        201       0.5274

        Controls |       515         526  |       1041       0.4947

           Total |       621         621  |       1242       0.5000

                 |                        |

                 |      Point estimate    |    [95% Conf. Interval]

      Odds ratio |         1.139622       |    .8327338    1.560771 (exact)

                                  2-sided Fisher's exact P = 0.4411

The mcc command [part of the epitab group of Stata commands]
wants the dataset in wide format so...
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...we reshape the dataset

. reshape wide surv,i(pair) j(chemo)

(note: j = 0 1)

Data                               long   ->   wide

-----------------------------------------------------------------------------

Number of obs.                     1242   ->     621

Number of variables                   3   ->       3

j variable (2 values)             chemo   ->   (dropped)

xij variables:

                                   surv   ->   surv0 surv1

-----------------------------------------------------------------------------

surv0 -> survival for those receiving surgery [chemo=0]

surv1 -> survival for those receiving chemo [chemo=1]
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...then try the mcc command

. mcc surv1 surv0

                 | Controls               |

Cases            |   Exposed   Unexposed  |      Total

-----------------+------------------------+------------

         Exposed |        90          16  |        106

       Unexposed |         5         510  |        515

-----------------+------------------------+------------

           Total |        95         526  |        621

McNemar's chi2(1) =      5.76    Prob > chi2 = 0.0164 ** chi2 is approx **

Exact McNemar significance probability       = 0.0266 ** exact is Binomial **

** some rows deleted**

        odds ratio       3.2      1.120172   11.16902   (exact)

...giving us the correct analysis
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Decoding the output from mcc

The table from mcc is generic:

Notice that, here, 

those 'exposed' are those that survived

while those 'not exposed' did not survive.

The 'cases' are those receiving chemo

while the 'controls' are those receiving surgery.
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Approximation to binomial ?

The normal approximation to the binomial is:

which, for this data, is:

which is the same as:

Keep in mind that the exact [and correct] p-value is based on the
binomial distribution. 

Stata calls this exact p-value the “exact McNemar significance
probability”

The so-called McNemar       is nothing more than the square of the
uncorrected normal approximation to the binomial distribution.

z= p− p
se  p16 /21−1/2

1/2∗1/2∗1 /21
≈2.4

P( |z| > 2.4)≈0.0164

P(1
22.42=5.76 )≈0.0164

2
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A matched case-control study: 4 controls per case

A study of endometrial cancer was designed with 63 sets
of 5 participants. Each set of 5 had 1 case [with
endometrial cancer] and 4 matched controls [each
without this cancer]. Then, the researchers determined
the presence or absence of a number of different
exposures by looking at records from the past including
'use of estrogens', hypertension, obesity and others...
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Incorrect analysis

. cc cc est,exact
                                                        Proportion
                 |   Exposed   Unexposed  |     Total     Exposed
-----------------+------------------------+----------------------
           Cases |        56           7  |        63      0.8889
        Controls |       127         125  |       252      0.5040
-----------------+------------------------+----------------------
           Total |       183         132  |       315      0.5810
                 |                        |
                 |      Point estimate    |  [95% Conf. Interval]
                 |------------------------+----------------------
      Odds ratio |         7.874016       |   3.38601    21.15736  (exact)
 Attr. frac. ex. |             .873       |  .7046671    .9527351  (exact)
 Attr. frac. pop |             .776       |
                 +-----------------------------------------------
                                1-sided Fisher's exact P = 0.0000
                                2-sided Fisher's exact P = 0.0000
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Classical analysis

. drop row

. sort quint cc

. by quint: gen otf=_n

. reshape wide  cc age gbd hyp obe est conj dur ned , i(quint) j(otf)
(note: j = 1 2 3 4 5)

Data                               long   ->   wide
-----------------------------------------------------------------------------
Number of obs.                      315   ->      63
Number of variables                  11   ->      46
j variable (5 values)               otf   ->   (dropped)
xij variables:
                                     cc   ->   cc1 cc2 ... cc5
                                    age   ->   age1 age2 ... age5
                                    gbd   ->   gbd1 gbd2 ... gbd5
                                    hyp   ->   hyp1 hyp2 ... hyp5
                                    obe   ->   obe1 obe2 ... obe5
                                    est   ->   est1 est2 ... est5
                                   conj   ->   conj1 conj2 ... conj5
                                    dur   ->   dur1 dur2 ... dur5
                                    ned   ->   ned1 ned2 ... ned5
-----------------------------------------------------------------------------
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A new table

. gen sumcon=est1+est2+est3+est4

. gen sumcas=est5

. table sumcas sumcon

----------------------------------------
          |            sumcon           
   sumcas |    0     1     2     3     4
----------+-----------------------------
        0 |          4     1     1     1
        1 |    3    17    16    15     5
----------------------------------------

There are 5 concordant matched sets. [ sumcas=1 and sumcon=4 ]
Exact p-values are based on the Binomial p= 1/5, 2/5, 3/5 and 4/5
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Components to the p-value
. bitesti 7 3 .2

        N   Observed k   Expected k   Assumed p   Observed p
------------------------------------------------------------
        7          3          1.4       0.20000      0.42857

  Pr(k >= 3) = 0.148032  (one-sided test)
  Pr(k <= 3) = 0.966656  (one-sided test)
  Pr(k >= 3) = 0.148032  (two-sided test)

  note: lower tail of two-sided p-value is empty

. bitesti 18 17 .4

        N   Observed k   Expected k   Assumed p   Observed p
------------------------------------------------------------
       18         17          7.2       0.40000      0.94444

  Pr(k >= 17) = 0.000002  (one-sided test)
  Pr(k <= 17) = 1.000000  (one-sided test)
  Pr(k >= 17) = 0.000002  (two-sided test)

  note: lower tail of two-sided p-value is empty

return list
scalars:
                 r(p) =  1.92414534861e-06
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Next 2 p-values

. bitesti 17 16 .6

        N   Observed k   Expected k   Assumed p   Observed p
------------------------------------------------------------
       17         16         10.2       0.60000      0.94118

  Pr(k >= 16)           = 0.002088  (one-sided test)
  Pr(k <= 16)           = 0.999831  (one-sided test)
  Pr(k <= 3 or k >= 16) = 0.002539  (two-sided test)

. bitesti 16 15 .8

        N   Observed k   Expected k   Assumed p   Observed p
------------------------------------------------------------
       16         15         12.8       0.80000      0.93750

  Pr(k >= 15)            = 0.140737  (one-sided test)
  Pr(k <= 15)            = 0.971853  (one-sided test)
  Pr(k <= 10 or k >= 15) = 0.222425  (two-sided test)
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Correct p-value

TITLE
      STB-49 sbe28.  Meta-analysis of p values.

DESCRIPTION/AUTHOR(S)
      STB insert by Aurelio Tobias, Statistical Consultant, Madrid, Spain.
      Support:  bledatobias@ctv.es
      After installation, see help metap.

INSTALLATION FILES                                  (click here to install)
      sbe28/metap.ado
      sbe28/metap.hlp

ANCILLARY FILES                                     (click here to get)
      sbe28/fleiss.dta
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An unweighted combining 
of p-values

. input pvar

          pvar
  1. 0.148032
  2. 1.92414534861e-06
  3. 0.002539
  4. 0.222425
  5. end

. metap pvar

Meta-analysis of p_values

------------------------------------------------------------
 Method             |   chi2         p_value      studies
--------------------+---------------------------------------
 Fisher             |   45.101012    3.521e-07    4
------------------------------------------------------------
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Estimating the Odds Ratio

The tables:

                                     Number of Controls Exposed:

Number                      0      1       2       3       4       5       6

of Cases      0                   

Exposed:   1

    

       is the number of matched sets where the control is exposed
and the number exposed is exactly i

       is the number of matched sets where the case is exposed and
the number exposed is exactly i

f 01

f 11

f 02 f 03 f 04 f 05 f 06

f 12 f 13 f 14 f 15 f 16

f 0i

f 1i
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If there are M matched controls and exactly i are exposed
in the matched set, then

 Null Probabilities and Odds:

  M           1           2                   3                          4

   i            1       1      2        1     2     3         1     2    3     4

   p         1/2    1/3    2/3    1/4   2/4  3/4     1/5  2/5  3/5  4/5

p/(1-p)     1      1/2     2       1/3   1     3       1/4   2/3  3/2  4

  M                 5                                      6

   i            1     2    3    4     5       1     2     3      4     5     6

   p       1/6  2/6 3/6 4/6 5/6     1/7  2/7   3/7  4/7  5/7  6/7

p/(1-p)   1/5  2/3  1  3/2  5       1/6   2/5  3/4  4/3  5/2   6
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The logarithm of the conditional likelihood

So  if p=i/(M+1) and p/(1-p)= i/(M+1-i) =        And if we let

 

It can then be shown that the log likelihood is:

This looks kinda complicated but the likelihood can be easily
graphed in this case  (there is only one      , here the log(OR) ).
See the graph later....

l =∑
i=1

M

{ f 1i log
ai e



wi e
1

 f 0i log
ai

wi e
1

}



wi
ai=1/M1−i
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For 4 to 1 matched design we get:

In general, with: 

...and, for the endometrial cancer study, we get

l = f 11 log a /a4 f 01 log 1/a4
           f 12 log a /2a3 f 02 log 1 /2a3
           f 13 log a /3a2 f 03 log 1/3a2
           f 14 log a /4a1 f 04 log 1 /4a1

a=e

l =3log a /a44 log 1/a4
          17 log a /2a3log 1 /2a3
          16 log a /3a2log 1/3a2
          15 log a /4a1log 1 /4a1
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The equation

The maximum of the conditional likelihood is the solution to this
equation

For a 4 to 1 design, we get:

For the example, we get:

∑ {
w i a

w i a1
 f 01 f 1i− f 1i }=0

1
4
a

1
4
a1

 f 01 f 11− f 11

2
3
a

2
3
a1

 f 02 f 12− f 12

3
2
a

3
2
a1

 f 03 f 13− f 13

4
1
a

4
1
a1

 f 04 f 14− f 14=0

1
4
a

1
4
a1

7−3

2
3
a

2
3
a1

18−17

3
2
a

3
2
a1

17−16

4
1
a

4
1
a1

16−15=0
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How about logistic regression? You might be
thinking..

... that you could try a model like:

where                  is a sum over (all but one of) the
621 matched sets. The       being the indicator
for the ith matched set.

It turns out (math excluded!) that there are WAY
too many parameters (unknowns) and further, it
has been shown (more math!) that the estimate
of        is biased. 

log p /1− p=0∑ i i1D

∑ i i
 i

1
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You will recall that, in order to carry out the 'correct analysis', we
constructed 'discordant sets' and then made calculations based on

conditional probabilities [conditional on being discordant]

A correct model based approach requires a [rather complicated]
conditioning process.

We, then, obtain something called a 'conditional' likelihood and the
process returns us to the 'familiar' territory in so far as we can
then maximize this likelihood, use LR tests, use Wald tests,
confidence intervals and much of the related paraphernalia. 

Guess who was the innovator of this conditioning argument?
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RA Fisher
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Conditional Logistic Regression...

.... requires special type of conditional likelihood.
A related [but actually quite different] likelihood
was developed for survival analysis by DR Cox
[1975]. In fact, algorithms for conditional logistic
regression were initially developed from the Cox
approach. But I digress....
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One more digression

At about the same time [mid 1970s], the
econometricians [McFadden] were developing a
model for an apparently unrelated topic. 

The model McFadden developed and applied was
the same (!) as the conditional logistic model.

Enough of this history. Lets now see the
substance.
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Conditional logistic regression version of the
correct classical analysis

. clogit exp cc,group(pair)
note: multiple positive outcomes within groups encountered.
note: 600 groups (1200 obs) dropped due to all positive or
      all negative outcomes.

Conditional (fixed-effects) logistic regression   Number of obs   =         42
                                                  LR chi2(1)      =       6.06
------------------------------------------------------------------------------
         exp |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
          cc |   1.163151   .5123475     2.27   0.023     .1589681    2.167334
------------------------------------------------------------------------------

. clogit exp cc,group(pair) or
note: multiple positive outcomes within groups encountered.
note: 600 groups (1200 obs) dropped due to all positive or
      all negative outcomes.

Conditional (fixed-effects) logistic regression   Number of obs   =         42
                                                  LR chi2(1)      =       6.06
------------------------------------------------------------------------------
         exp | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
          cc |        3.2   1.639512     2.27   0.023     1.172301    8.734961

P-values / CIs are based on the normal approximation to the binomial.
600 concordant pairs are correctly  ‘dropped’
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4 matching controls per case

Now let us return to the study of endometrial cancer.
We found that, for a crude disease/exposure
relationship, the classical analysis provided us with a
test, a maximum likelihood estimate but not a direct
strategy for analysis beyond the simplest of
situations.
More elaborate classical analyses were developed.
They are clearly [but technically] explained in Breslow
& Day [Volume 1]
Conditional logistic regression now provides all of the
analyses.
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Conditional logistic regression 

. clogit est cc,group(quint)
note: multiple positive outcomes within groups encountered.
note: 5 groups (25 obs) dropped due to all positive or
      all negative outcomes.

Conditional (fixed-effects) logistic regression   Number of obs   =        290
                                                  LR chi2(1)      =      35.35
------------------------------------------------------------------------------
         est |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
          cc |    2.07376   .4208244     4.93   0.000     1.248959    2.898561
------------------------------------------------------------------------------

. clogit est cc,group(quint) or
note: multiple positive outcomes within groups encountered.
note: 5 groups (25 obs) dropped due to all positive or
      all negative outcomes.

Conditional (fixed-effects) logistic regression   Number of obs   =        290
                                                  LR chi2(1)      =      35.35
                                                  Prob > chi2     =     0.0000
Log likelihood = -99.934552                       Pseudo R2       =     0.1503

------------------------------------------------------------------------------
         est | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
          cc |   7.954675   3.347522     4.93   0.000     3.486712      18.148
------------------------------------------------------------------------------



41

The conditional likelihood and the parabolic
approximation

In Stata, we can create the actual conditional likelihood and the
approximation:
. set obs 1001

. range beta 1 3

. gen loglike=3*log(exp(beta)/(exp(beta)+4))+4*log(1/(exp(beta)+4))+17*log(exp(beta)/
(2*exp(beta)+3))+log(1/(2*exp(beta)+3))+16*log(exp(beta)/(3*exp(beta)+2))+log(1/
(3*exp(beta)+2))+15*log(exp(beta)/(4*exp(beta)+1))+log(1/(4*exp(beta)+1))

. gen approx= -75.6744- (beta-2.07376)^2 /(2*0.4208244^2)

. twoway (line loglike beta) (line approx beta),xline(2.07376) xline(1.2489442)

xline(2.8985758) yline(-75.6744) scheme(s2 mono)
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Assessment of potential confounder

. clogit est hyp cc,group(quint) or
note: multiple positive outcomes within groups encountered.
note: 5 groups (25 obs) dropped due to all positive or
      all negative outcomes.

Iteration 0:   log likelihood = -93.816541  
Iteration 1:   log likelihood = -93.775297  
Iteration 2:   log likelihood = -93.775233  
Iteration 3:   log likelihood = -93.775233  

Conditional (fixed-effects) logistic regression   Number of obs   =        290
                                                  LR chi2(2)      =      47.66
                                                  Prob > chi2     =     0.0000
Log likelihood = -93.775233                       Pseudo R2       =     0.2026

------------------------------------------------------------------------------
         est | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
         hyp |   3.175014   1.099597     3.34   0.001     1.610462    6.259518
          cc |   7.423919   3.149142     4.73   0.000     3.232684    17.04917
------------------------------------------------------------------------------
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Assessment of age as a potential modifier (even though
age was a part of the matching criteria)

. gen ac=age*cc

. clogit est cc hyp ac,group(quint)
note: multiple positive outcomes within groups encountered.
note: 5 groups (25 obs) dropped because of all positive or
      all negative outcomes.

Conditional (fixed-effects) logistic regression

                                                Number of obs     =        290
                                                LR chi2(3)        =      47.67
                                                Prob > chi2       =     0.0000
Log likelihood = -93.774338                     Pseudo R2         =     0.2027

------------------------------------------------------------------------------
         est |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
          cc |   1.805899   4.715429     0.38   0.702    -7.436171    11.04797
         hyp |   1.154741   .3466582     3.33   0.001     .4753032    1.834178
          ac |   .0027714   .0655007     0.04   0.966    -.1256076    .1311505
------------------------------------------------------------------------------
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Notice…

…that age*cc is included in the model even
though age is not included.
This is one of the special cases where we
CAN interpret a model with a 'product' term
even though one of the constituents of this
product is not included in the model.
Matching enables a design-based way to
address confounding, but not modification.
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