Models In Epidemiology And Biostatistics
Gordon Hilton Fick

Classic Methods With Repeated Measures

Let us now consider a growth study. A measure of growth [based the distance [in mm] between the
centre of 2 teeth] was considered for a group of boys and girls. There were 16 boys and 11 girls in the
study. This measure [dist] was recorded for each child at ages 8, 10, 12 and 14 years of age. The
primary objective was to determine if the boy growth “curves” were different from the girl growth
curves. The data is in pott.dta. One might be tempted to use the graph and analyses below.

graph box dist,over (age) over (sex)
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| Gender
Age (yr) | male female
__________ +___________________
8 | 22.875 21.18182
| 2.452889 2.124532
I
10 | 23.8125 22.22727
| 2.136001 1.902152
|
12 | 25.71875 23.09091
| 2.651847 2.36451
|
14 | 27.46875 24.09091
|

2.085416 2.437398

. regr dist age sex as

Source | ss df MS Number of obs = 108
————————————— L L F( 3, 104) = 25.39
Model | 387.935027 3 129.311676 Prob > F = 0.0000
Residual | 529.757102 104 5.09381829 R-squared = 0.4227
————————————— Fom e Adj R-squared = 0.4061
Total | 917.69213 107 8.57656196 Root MSE = 2.2569
dist | Coef. Std. Err. t P>|t| [95% Conf. Interval]
_____________ +________________________________________________________________
age | .784375 .1261673 6.22 0.000 .5341806 1.034569
sex | 1.032102 2.218797 0.47 0.643 -3.367855 5.43206
as | -.3048295 .1976661 -1.54 0.126 -.6968089 .08714098

|

16.34062 1.416224 11.54 0.000 13.5322 19.14905



One can see that the averages [or the medians] grow faster for the boys than the girls. The computed
standard deviations for each age/sex group are very similar. The Root MSE from the regression is
2.2569 which provides an estimate of the 'assumed constant' standard deviation. The coefficient
-0.3048295 provides an estimate of the difference between the mean slope for the girls and the mean
slope for the boys. The standard error of this estimate [0.1976661] is based on the Root MSE.

But the Root MSE is an estimate of the cross sectional standard deviation. Cross sectionally, each
computed standard deviation 'contains' differences among the children at any given age for each
gender. This is inevitable in cross sectional studies. This analysis above [the visuals, the tables and the
regression analysis] is incorrect but it may not be immediately clear why it is incorrect.

This type of study can be called a longitudinal study in that each child was followed up over a course of
6 years. Each child contributes 4 measurements once every 2 years. Clearly the measurements from the
same child are not independent while any 2 measurements from 2 different children are independent.
Further, any comparison between any 2 measurements from the same child can be viewed as a part of
the intra-child variability while any comparison between any 2 measurements from 2 different children
can be viewed as a part of the inter-child variability.

This type of study can also be called a split unit design in that the comparison between male and female
children must be a comparison between children [the whole unit comparisons] while a comparison
between 2 different years for a given child is a comparison within children [the split unit comparisons]
It can also be noted that such studies are sometimes also called repeated measures studies in that the
measure on a given child is repeated 4 times here.

Here is a more appropriate visualization of the data:
sort subject age
scatter dist age,connect(ascending) by (sex) mlabel (subject)
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The lines are drawn from two year period to two year period for a given child to aid the eye in
following the course of measurements for a given child. There were no measurements taken between
each 2 year period.



For the moment, let us assume that the growth curves are lines. Rather than considering distance as the
primary outcome, perhaps we should consider a different outcome. If we were to determine the rate of
change of distance per year for each child, then we would have one value [one slope] for each child.
Then we could just compare expected slope conditional on gender. If normality of slopes is plausible
then a simple t test for the difference in mean slope (and confidence interval for this difference) would
do the trick. This is called a response feature analysis. It is certainly the simplest approach and has
much to recommend it. It is easy to explain and interpret. In many investigations, we get a clear and,
perhaps, definitive result. In a way, we have changed our definition of the primary outcome and
formulated our objectives and hypotheses in terms of this [computed] outcome.

gen blist=.

quietly forval num = 1/27 {

regr dist age if subject=="num'

replace blist= b[age] if subject=="num'
}

by subject: replace blist=. if n!=1
ttest blist, by (sex)

Two-sample t test with equal variances

Group | Obs Mean Std. Err Std. Dev [95% Conf. Interval]
_________ +____________________________________________________________________
male | 16 .784375 .1015729 .4062917 .5678775 1.000873
female | 11 .4795455 .066214 .2196071 .3320114 .6270795
_________ +____________________________________________________________________
combined | 27 6601852 .0712533 .3702429 .513722 .8066484
_________ +____________________________________________________________________
diff | 3048295 .1347353 .0273369 .5823222
diff = mean(male) - mean(female) t = 2.2624
Ho: diff =0 degrees of freedom = 25
Ha: diff < 0O Ha: diff !'= 0 Ha: diff > 0
Pr(T < t) = 0.9837 Pr(|T| > |t|) = 0.0326 Pr(T > t) = 0.0163

This bit of Stata code and output provides evidence (p=0.0326) that the slopes are steeper for the boys
than the slopes for the girls. So growth appears to be faster for the boys compared to the girls. The
boxplot of slopes reveals a troublesome lad.

graph box blist, over(sex) marker(l,mlabel (subject))
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Analysis of the slopes could consider other 'between subjects' characteristics using regression. For
example, to assess whether growth depends on initial distance [at age 8] as either a modifier or a
confounder:

gen sd = sex*dist
regr blist sex dist sd

Source | SS df MS Number of obs = 27
————————————— Fomm e F( 3, 23) = 5.48
Model | 1.48603663 3 .495345542 Prob > F = 0.0054
Residual | 2.07803761 23 .090349461 R-squared = 0.4169
————————————— Fmm e Adj R-squared = 0.3409
Total | 3.56407424 26 .137079778 Root MSE = .30058
blist | Coef Std. Err t P>|t]| [95% Conf. Interval]
_____________ +________________________________________________________________
sex | -2.681152 1.198251 -2.24 0.035 -5.159922 -.202382
dist | -.0986842 .0316402 -3.12 0.005 -.1641369 -.0332315
sd | .1042985 .0547978 1.90 0.070 -.0090594 .2176565
cons | 3.041776 .72766 4.18 0.000 1.536497 4.547056

regr blist sex dist
Source | SS df MS Number of obs = 27
————————————— e L L e L e Lt F( 2, 24) = 5.78
Model | 1.15872976 2 .579364882 Prob > F = 0.0089
Residual | 2.40534447 24 .100222686 R-squared = 0.3251
————————————— Fmm e Adj R-squared = 0.2689
Total | 3.56407424 26 .137079778 Root MSE = .31658
blist | Coef Std. Err t P>|t]| [95% Conf. Interval]
_____________ +________________________________________________________________
sex | -.4130445 .1322775 -3.12 0.005 -.6860518 -.1400372
dist | -.0639122 .0272079 -2.35 0.027 -.1200666 -.0077578
cons | 2.246367 .6273935 3.58 0.002 .9514901 3.541243

So there is no evidence that age8 distance modifies [p=0.070] but, perhaps, some indication that age8
confounds [-0.413 vs -0.305]

There are, inevitably, many aspects of a response curve that could have been selected for study.
Perhaps, it would be best if your literature provided some guides to such features [before analysis
begins].

Another candidate would be change in distance [final — baseline]. Change scores are widely seen in
health research. One way to carry out this analysis involves 'reshaping' the data:

by subject:gen ct=n

drop blist sd

reshape wide dist age alin aquad acub gal gaq gac as,i(subject) j(ct)
gen cs=dist4-distl

graph box cs,over (sex) marker (1l,mlabel (subject))

ttest cs,by (sex)

regr cs sex

regr cs sex distl

regr dist4 sex distl



The last two analyses provide the same B,
V=Bt Bk S+P ¥y, +e
Vo= Y1 =Bo+BxS+[B,—1]*y,+e

The analysis of variance provides a definitive 'classical' assessment here since each child was measured
at all 4 time points. The time points are [assumed] the same for each child and there are no missing
values.

First separate out whole unit [between subject] differences from split unit [within subject] differences,
by:

anova dist subject

Number of obs = 108 R-squared = 0.5649
Root MSE = 2.22031 Adj R-squared = 0.4252
Source | Partial SS df MS F Prob > F
""" Model |  518.37963 26 19.0376781  4.04  0.0000
subject : 518.37963 26 19.9376781 4.04 0.0000
Residual : 399.3125 81 4.92978395
""" Total | 917.69213 107 s.s7es6106
Then we identify the age, gender and interaction components:
anova dist c.age sex c.age#sex,sequential
Number of obs = 108 R-squared = 0.4227
Root MSE = 2.25695 Adj R-squared = 0.4061
Source | Seq. SS df MS F Prob > F
""" Model | 387.035027 3 129.311676 25.35  0.0000
age : 235.356019 1 235.356019 46.20 0.0000
sex | 140.464857 1 140.464857 27.58 0.0000
age*sex | 12.1141519 1 12.1141519 2.38 0.1261
Residual : 529.757102 104 5.09381829
""" Total | 917.69213 107 s.s7ese106

The age and interaction comparisons are within subject comparisons but the gender comparison is a
between subjects comparison. Comparisons that are between subjects but within gender provide a
between subjects error sum of squares [ 518.37963 - 140.464857 = 377.91477 ] with 26-1 =25 degrees
of freedom while comparisons that are within subjects but not a part of age or interaction comparisons
provide a within subjects error sum of squares [399.3125 - 235.356019 - 12.1141519 = 151.84233 ] With
81-1-1 =79 degrees of freedom. It is instructive to carry out this part of the analysis of variance 'by
hand'. Such calculation makes it clearer what is going on in this rather complicated situation.
Nevertheless, Stata will do the analysis in one step. Figuring out the syntax of the command takes just
about as long as doing the 2 simple analyses and then doing the hand calculation :-)

Here is the analysis of variance separating out the linear components of age and age*sex.



anova dist sex / subject|sex c.age c.age#sex,sequential

Number of obs = 108 R-squared = 0.8345
Root MSE = 1.38638 Adj R-squared = 0.7759
Source | Seq. SS df MS F Prob > F
____________ gy gy gy gy gy My S Sy
Model | 765.8498 28 27.3517786 14.23 0.0000
|
sex | 140.464857 1 140.464857 9.29 0.0054
subject|sex | 377.914773 25 15.1165909
____________ +____________________________________________________
age | 235.356019 1 235.356019 122.45 0.0000
sexffage | 12.1141519 1 12.1141519 6.30 0.0141
|
Residual | 151.84233 79 1.9220548
____________ Fmm— e ——————
Total | 917.69213 107 8.57656196

This approach provides a very similar statement to the response feature analysis based on mean slope
comparison. (p=0.0141)

Split unit studies are often a strong choice at the design stage in part because the key comparison (in
this case, the age*sex interaction term ) is estimated with the higher precision (being a within subject
comparison). The 'main effect' of gender is estimated with lower precision (since it is a between subject
comparison) but such a comparison would rarely be of interest in any case.

The above analyses have assumed that the distance/age relationship is linear. An assessment of this
assumption proceeds as follows:

gen a2 age*age
gen a3 = a2*age

anova dist c.age c.a2 c.a3 sex c.ageffsex c.a2#sex c.a3#sex,sequential
Number of obs = 108 R-squared = 0.4268
Root MSE = 2.29356 Adj R-squared = 0.3867
Source | Seq. SS df MS F Prob > F
___________ +____________________________________________________
Model | 391.649516 7 55.9499309 10.64 0.0000
I
age | 235.356019 1 235.356019 44.74 0.0000
a2 | 1.44675926 1 1.44675926 0.28 0.6011
a3 | .389351852 1 .389351852 0.07 0.7861
sex | 140.464857 1 140.464857 26.70 0.0000
sexftage | 12.1141519 1 12.1141519 2.30 0.1323
sex#a2 | 1.19954756 1 1.19954756 0.23 0.6340
sex#fa3 | .678829966 1 .678829966 0.13 0.7202
I
Residual | 526.042614 100 5.26042614
___________ +____________________________________________________
Total | 917.69213 107 8.57656196

Then you can do the subtractions as before.
Tests for nonlinearity can be done with single degree of freedom tests or by pooling the quadratic and
cubic components for 2 degree of freedom tests. You can separate all the pieces out and possibly pool:



anova dist sex / subject|sex c.age c.a2 c.a3

Source

sex
subject|sex
age
a2
a3
sexitage
sexf#a2
sex#a3

Residual

Or you can 'ask' for an incomplete subdivision [below] and subtract off the linear parts to get the 2

I
+
I
I
I
I
+
I
I
I
I
I
I
I
I
+
I

Number of obs

Root MSE

|
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c.ageftsex c.a2fisex c.a3#fsex,sequential

0.8386
0.7697

769.564289

140.464857
377.914773

235.356019
1.44675926
.389351852
12.1141519
1.19954756
.678829966

148.127841

917.69213

degree of freedom components.
anova dist sex / subject|sex age ageilsex,sequential

Source

sex
subject|sex
age
agefsex

Residual

We can see that 13.9925295 - 12.1141519 = 1.19954756 +.678829966
The test for nonlinearity is based on F = 1.8783775/2 / 1.97503788
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Number of obs

Root MSE

769.564289

140.464857
377.914773

237.19213
13.9925295

148.127841

917.69213

108 R-squared
.40536 Adj R-squared
MS F
24.048884 12.18
140.464857 9.29
15.1165909
235.356019 119.17
1.44675926 0.73
.389351852 0.20
12.1141519 6.13
1.19954756 0.61
.678829966 0.34
1.97503788
8.57656196

= 108 R-squared = 0.8386
= 1.40536 Adj R-squared = 0.7697
df Ms F Prob > F
32 24.048884 12.18 0.0000
1 140.464857 9.29 0.0054
25 15.1165909
3 79.0640432 40.03 0.0000
3 4.66417649 2.36 0.0781
75 1.97503788
107 8.57656196
= 1.8783775
= 0.47552949

which would be compared with an ', ;5 distribution.

disp 1 - F(2,75,0.47552949)

.62341697

disp invF(2,75,0.95)
3.1186421

We can construct a regression model that removes all the between subject differences and then includes

age and age*sex since they are both within subject comparisons:

27
E(y)=B,+ Z B8 ,+Bgage+Byage*sex where &; is the indicator for the jth subject. The first
j=2

16 indicators o, 0,..

. 8¢ are forthe boysand 6,; 83... 8, are for the girls.



For example:
For id==3 [boy] : E(y)=Bo+B;+Bxage
For id==18 [girl]: E(y)=Bo+B s+ (Bt Br)age

...so that B, 1is the difference between the mean girl slope and the mean boy slope

The [rather unwieldy] results look like:

gen as=age*sex

regr dist i.subject age as

i.subject _Isubject_1-27 (naturally coded; _Isubject 1 omitted)
Source | ss df MS Number of obs = 108
————————————— R L L L L L ety F( 28, 79) = 14.23
Model | 765.8498 28 27.3517786 Prob > F = 0.0000
Residual | 151.84233 79 1.9220548 R-squared = 0.8345
------------- Fom Adj R-squared = 0.7759
Total | 917.69213 107 8.57656196 Root MSE = 1.3864
dist | Coef Std. Err t P>|t| [95% Conf. Interval]
_____________ +________________________________________________________________
_Isubject_2 | -4.375 .9803201 -4.46 0.000 -6.326278 -2.423722
_Isubject 3 | -3.5 .9803201 -3.57 0.001 -5.451278 -1.548722
_Isubject 4 | -1.125 .9803201 -1.15 0.255 -3.076278 .8262783

[snip]

_Isubject 25 | -3.271875 1.656784 -1.97 0.052 -6.569622 .0258718
_Isubject_26 | -5.896875 1.656784 -3.56 0.001 -9.194622 -2.599128
_Isubject 27 | 1.978125 1.656784 1.19 0.236 -1.319622 5.275872
age | .784375 .0775011 10.12 0.000 .6301129 .9386371
as | -.3048295 .1214209 -2.51 0.014 -.5465118 -.0631473
cons | 19.12187 1.098768 17.40 0.000 16.93483 21.30892

...and so we get the same p-value as the analysis of variance. We get the same estimated difference
between the 2 slopes as we got in the response feature analysis last class only now we get, arguably, the
'correct' standard error for this estimate.

Notice here that the sex comparison is not listed as it is a part of the between subject comparisons. In
this study, we have no interest in this comparison since we clearly detected an interaction. So the
absence of the sex comparison in the regression analysis is of no consequence.

The assessment that includes possible nonlinearity could be done with the actual polynomials or with
orthogonal polynomials.

regr dist i.subject age a2 a3 c.agefisex c.a2j#isex c.a3fsex

Source | ss df MS Number of obs = 108
————————————— e e aniatatalat] F( 32, 75) = 12.18
Model | 769.564289 32 24.048884 Prob > F = 0.0000
Residual | 148.127841 75 1.97503788 R-squared = 0.8386
------------- Fom e Adj R-squared = 0.7697
Total | 917.69213 107 8.57656196 Root MSE = 1.4054
dist | Coef Std. Err t P>|t| [95% Conf. Interval]
_____________ +________________________________________________________________

subject |
2 | -4.375 .9937399 -4.40 0.000 -6.354631 -2.395369

[ 3 to 26 deleted]

27 | -41.5483 64.15452 -0.65 0.519 -169.3506 86.25406

|



age
a2
a3

sexfic.age
female

sex#fc.a2
female

sexiic.a3
female

-8.648437
.8242187
-.0234375

11.54238

-1.04581

.0300663

54.09375

11.65447 -0.74
1.08112 0.76
.0327342 -0.72
18.25905 0.63
1.69379 -0.62
.0512846 0.59
40.94997 1.32

o o

.460
.448
.476

.529

.539

-31.86534
-1.329483
-.0886473

-24.83151

-4.420013

-.0720979

-27.48277

14.56846
2.977921
.0417723

47.91627

2.328393

.1322305

135.6703

Then you would remove c.a3#sex and then c.a2#sex.

regr dist i.subject alin aquad acub c.alin#sex c.aquad#sex c.acub#sex

Source

Model
Residual

769.564289
148.127841

—_ . —— 4+ —

Number of obs
F( 32, 75)
Prob > F
R-squared

Adj R-squared

Root MSE

108
12.18
0.0000
0.8386
0.7697
1.4054

alin
aquad
acub

sexf{c.alin
female

sex#{c.aquad
female

sexf{c.acub
female

-4.375

-1.375

.203125
-.05625

-.3048295
-.2144886

|

+

|

|

t

|

|

I .784375
|

|

|

|

|

|

|

|

|

|

I .0721591
|
|

deleted]

df MS

32 24.048884

75 1.97503788
107 8.57656196
Std. Err t
.9937399 -4.40
.9937399 -1.38
.078562 9.98
.1756701 1.16
.078562 -0.72
.1230831 -2.48
.2752221 -0.78
.1230831 0.59
.7026802 39.49

.171

.000
.251
.476

.016

.438

-6.354631
-3.354631
.6278714

-.1468277
-.2127536

-.5500236

-.7627591

.1730349

26.35019

-2.395369
.6046313
.9408786

.5530777
.1002536

-.0596355

.3337819

.3173531

29.14981

With orthogonal polynomials, you can test the cubic and quadratic directly without the need to refit.



Now let us move to a look at another type of repeated measures study; the cross over study. We will
see that these types of designs have 2 error terms like split unit studies. This time, we will see that for
cross over studies, the factors - treatment and order are within subject comparisons while the
order*treatment interaction is a between subject comparison.

Lets take a 'simple' example. A group of 12 children with asthma were randomized to one of 2
sequence groups: A: Formoterol (F) first; Salbutamol (S) second or B: Salbutamol first; Formoterol
second. The outcome is peak expiratory flow (PEF). The data is in forsal.dta

[pef0 =pef for F, pefl =pef for S; grp=0 for A grp=1 for B) Notice that, since the same number of
subjects received the A order as the B order, the treatment comparison does not reflect any order
differences. Our error term for testing treatment differences should not reflect either subject differences
or order differences. If the data is shaped as ...

list pef0 pefl grp

1. | 310 270 1|
2. | 385 370 0 |
3. | 400 310 0 |
4. | 310 260 1]
5. | 410 380 0 |
R !

6. | 370 300 1]
7. | 410 390 1]
8. | 380 350 1|
9. | 320 290 0 |
10. | 250 210 1]
| === !

11. | 330 365 0 |
12. | 340 260 0 |
e e e +

... one might be tempted to perform a paired t test. This method would provide a standard error that
does not reflect subject differences but would not remove order differences from the standard error.
ttest pefl=pef0

Paired t test

Variable | Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]
_________ +____________________________________________________________________
pefl | 12 312.9167 16.63396 57.62174 276.3056 349.5278
pefl | 12 351.25 14.25053 49.36529 319.8848 382.6152
_________ +____________________________________________________________________
diff | 12 -38.33333 9.541245 33.05184 -59.33347 -17.33319
mean (diff) = mean(pefl - pef0) t = -4.0176

Ho: mean(diff) = 0 degrees of freedom = 11
Ha: mean(diff) < 0 Ha: mean(diff) !'= 0 Ha: mean(diff) > 0
Pr(T < t) = 0.0010 Pr(|T| > |t|) = 0.0020 Pr(T > t) = 0.9990

If we adopt a notation of  y;; : the PEF for treatment i [0=F, 1=S], order j [0=first, I=second] and
group k [0=A, 1=B], we have:
A B
Y00 Y10 Yon Y101

we can see that  d ;= — Vi is the treatment comparison that does not reflect subject differences.
Now d; is the second period PEF — the first period PEF and
d ;, is the first period PEF — the second period PEF



We then get a t test for order:
gen diff=(pefl-pef0)/2
ttest diff,by (grp)

Two-sample t test with equal variances

Group | Obs Mean Std. Err Std. Dev [95% Conf. Interval]
_________ +____________________________________________________________________
0 | 6 -17.5 9.309493 22.80351 -41.43081 6.430815
1| 6 -20.83333 3.515837 8.612007 -29.87108 -11.79559
_________ +____________________________________________________________________
combined | 12 -19.16667 4.770622 16.52592 -29.66674 -8.666597
_________ +____________________________________________________________________
diff | 3.333333 9.95127 -18.83948 25.50615
diff = mean(0) - mean(1l) t = 0.3350
Ho: diff = 0 degrees of freedom = 10
Ha: diff < 0 Ha: diff !'= 0 Ha: diff > 0
Pr(T < t) = 0.6277 Pr(|T| > |t|) = 0.7446 Pr(T > t) = 0.3723
And, with this little trick:
replace diff=-diff if grp==
(6 real changes made)
... we get a t test for treatments
ttest diff,by (grp)
Two-sample t test with equal variances
Group | Obs Mean Std. Err Std. Dev [95% Conf. Interval]
_________ +____________________________________________________________________
0 | 6 -17.5 9.309493 22.80351 -41.43081 6.430815
1| 6 20.83333 3.515837 8.612007 11.79559 29.87108
_________ +____________________________________________________________________
combined | 12 1.666667 7.476816 25.90045 -14.78969 18.12303
_________ +____________________________________________________________________
diff | -38.33333 9.95127 -60.50615 -16.16052
diff = mean(0) - mean(1) t = -3.8521
Ho: diff =0 degrees of freedom = 10
Ha: diff < 0 Ha: diff !'= 0 Ha: diff > 0
Pr(T < t) = 0.0016 Pr(|T| > |t]) = 0.0032 Pr(T > t) = 0.9984

Here is a test to compare the 2 groups. We will see that this the test of whether the treatment

comparison depends on the order given [below]
gen sp=(pefO+pefl) /2

ttest sp,by(grp)

Two-sample t test with equal variances

Group | Obs Mean Std. Err Std. Dev [95% Conf. Interval]
_________ +____________________________________________________________________
0 | 6 346.6667 15.56795 38.13354 306.648 386.6854
1| 6 317.5 25.05827 61.37996 253.0857 381.9143
_________ +____________________________________________________________________
combined | 12 332.0833 14.73514 51.04402 299.6515 364.5152
_________ +____________________________________________________________________
diff | 29.16667 29.50047 -36.56448 94.89781
diff = mean(0) - mean(1) t = 0.9887
Ho: diff =0 degrees of freedom = 10
Ha: diff < 0 Ha: diff !'= 0 Ha: diff > 0
Pr(T < t) = 0.8269 Pr(|T| > |t|) = 0.3461 Pr(T > t) = 0.1731

The paired t-test is not a correct analysis here.



The next t test assesses whether there is an order difference. In other words,whether mean PEF for first

in order is different from mean PEF for second in order (ignoring the treatment).

Then the next t test assesses whether there is a treatment difference. In other words, whether mean PEF

for those on active is different from mean PEF for those on placebo (ignoring order)

Lastly, we have a t test comparing the two groups. This is sometimes called the validity test.
[explanation below]
Now reshape the dataset as long and add a variable for the order [ord]

gen id = n

reshape l;hg pef, i(id) j(tr)

gen ord = tr

replace ord = l-ord if grp==

list id grp pef tr ord

oo +
| id grp pef tr ord |
| ===m=mmmmmmmmm oo |
1.1 1 1 270 1 1|
2.1 1 1 310 0 0 |
3. | 2 0 370 1 0 |
4. | 2 0 385 0 1|
5. | 3 0 400 0 1|

| ===mmm == |
6. | 3 0 310 1 0 |
7.1 4 1 310 0 0 |
8. | 4 1 260 1 1|
9. | 5 0 410 0 1|

10. | 5 0 380 1 0 |
| === === |

11. | 6 1 370 0 0 |

12. | 6 1 300 1 1|

13. | 7 1 390 1 1|

14. | 7 1 410 0 0 |

15. | 8 1 380 0 0 |
| ======mmmmmmmmmmmoooeo o |

16. | 8 1 350 1 1|

17. | 9 0 290 1 0 |

8. | 9 0 320 0 1|

19. | 10 1 250 0 0 |

20. | 10 1 210 1 1|
| =====mmmmmm oo |

21. | 11 0 365 1 0 |

22. | 11 0 330 0 1|

23. | 12 0 340 0 1|

24. | 12 0 260 1 0 |
B e et e T +

The little table below may help to see the issues now.

Group A Group B
comparison F first S second F second S first
treatment -1 1 -1 1
order -1 1 1 -1
treat X order 1 1 -1 -1




anova pef grp /id|grp tr ord

Number of obs = 24 R-squared = 0.9176
Root MSE = 24.3755 Adj R-squared = 0.8106
Source | Partial SS df MS F Prob > F
___________ gy gy gy gy gy My S Sy
Model | 66204.1667 13 5092.62821 8.57 0.0009
I
grp | 5104.16667 1 5104.16667 0.98 0.3461
id|grp | 52216.6667 10 5221.66667
___________ +____________________________________________________
tr | 8816.66667 1 8816.66667 14.84 0.0032
ord | 66.6666667 1 66.6666667 0.11 0.7446
I
Residual | 5941.66667 10 594.166667
___________ +____________________________________________________
Total | 72145.8333 23 3136.77536

Notice that the F test here is the same as the t test shown above. This analysis of variance looks much
like the one we saw with the split unit studies only now both the treatment comparison and the order
comparison are within subject comparisons. We can see that the order*treatment interaction is in fact
identical to the the comparison between Group A and Group B and is indeed a between subject
comparison.

At first blush, this can be quite concerning. If the comparison between the two treatments in the second
phase is different from the comparison between the two treatments in the first phase, then the study is
in trouble. But this comparison is precisely the order*treatment interaction and this comparison is a part
of the between subject comparisons and is not estimated as precisely as either the treatment

comparison or the order comparison.

In designing such studies, it is crucial then to configure the study in such ways as to avoid this trouble.
A lengthy wash out period may be required between the first and second phases [this may be difficult
to reconcile if the asthma patients cannot be 'on placebo' for long!] There is considerable debate in the
biostatistics/epidemiology literature as to whether the investigator should test for order*treatment
interaction. Perhaps the absence of such an interaction should be a part of the assumptions for the use
of such a design. Certainly a non-significant test for this interaction is problematic given that such a test
may well have very low power and the study may not have been designed in such a way that detection
such an interaction was a priority, in any case.

A regression analysis gives [almost] the same information as the analysis of variance:

regr pef i.id tr ord

Source | SS df MS Number of obs = 24
------------- e F( 13, 10) = 8.57
Model | 66204.1667 13 5092.62821 Prob > F = 0.0009
Residual | 5941.66667 10 594.166667 R-squared = 0.9176
————————————— Fmm Adj R-squared = 0.8106
Total | 72145.8333 23 3136.77536 Root MSE = 24.376
pef | Coef Std. Err t P>|t]| [95% Conf. Interval]
_____________ +________________________________________________________________

id |
2 | 87.5 24.37553 3.59 0.005 33.18793 141.8121

[3 to 11 deleted]

12 | 10 24.37553 0.41 0.690 -44.31207 64.31207

|
tr | -38.33333 9.95127 -3.85 0.003 -60.50615 -16.16052
ord | 3.333333 9.95127 0.33 0.745 -18.83948 25.50615
cons | 307.5 18.61712 16.52 0.000 266.0185 348.9815

disp (38.3333/9.95127)%2
14.838684



Notice that the square of the t statistic is the same as the F from the analysis of variance. So both
methods yield the same main result. This regression approach does not provide for the order X
treatment interaction as this comparison is buried within the comparisons between the subjects.

Notice, also, that the residual sum of squares here is the same as the within subjects sum of squares
from the analysis of variance. The regression analysis gives us identical results to the two t tests done
earlier.



Now lets consider a cross over study with an ordinal outcome. This example is taken from Rosner
(2011 7" Ed p686). The data is in pain.dta. Participants with tennis elbow were randomized to either
Group A: active then placebo or Group B: placebo then active. The outcome is from a pain scale: 1-
worse 2-same 3-slight improvement 4-moderate improvement 5- mostly improved 6- completely
improved.

Rosner gives an analysis approach like the asthma study treating the ordinal outcomes as though they

are interval outcomes:

reshape wide ove imp ord, i(id) j(tr)
gen diff=(ovel-ove0)/2

ttest diff,by (grp)

replace diff=-diff if grp==

ttest diff,by(grp)

gen sump=(oveO+ovel) /2

ttest sump,by(grp)

The data from each group looks like:

Group A: active first/placebo second
I active

placebo | 1 2 3 4 5 6
__________ Fm————— - -

6 | 1 4 1
5 | 3 2 4 3
4 | 3 1 1
3| 1 2 3
2 | 2 3 2 4
1| 1 1

Group B: placebo first/active second

| active
placebo| 1 2 3 4 5 6
__________ +________________________________
6 |
5 | 1 3 3
4 | 2 1
3 | 1 1 3 5
2 | 6 4 3 5 3
1| 1

You might want to consider a series of proportional odds models:
ologit ove ord grp tr

ologit ove ord tr

ologit ove tr

...except these are not correct either.

Lets take a look at these 2 tables above. With group A, we can see that 18 participants did 'better' with
placebo while 17 participants did better with active (7 participants said change from baseline was the
'same'). With group B, we can see that 2 participants did better with placebo while 30 participants did
better with active (10 participants said change from baseline was the same). There was apparently a 2
week 'wash-out' between the 2 periods.

For each group, a simple sign test [or maybe a signed rank test] delivers the obvious. [try them] For
those assigned to Group A, there is no difference in the scale between active and placebo while for
Group B, there is a difference [active appears to be superior to placebo]

Alternately, suppose we consider the outcome [imp] given by score > 3 (i.e. moderately, mostly or
completely = 1; worse, no change or slight =0). To use mcc, we interpret 'case' as active, 'control' as
'placebo’; 'exposed' as improve [imp=1] 'not exposed' as not improve [imp=0]. The groups are coded
A: grp=1 ; B:grp=2



mcc impl impO0 if grp==

| Controls |
Cases | Exposed Unexposed | Total
_________________ +________________________+____________
Exposed | 14 12 | 26
Unexposed | 9 7 | 16
_________________ +________________________+____________
Total | 23 19 | 42
McNemar's chi2 (1) = 0.43 Prob > chi2 = 0.5127
Exact McNemar significance probability = 0.6636
Proportion with factor
Cases .6190476
Controls .547619 [95% Conf. Interval]
difference .0714286 -.1651367 .3079938
ratio 1.130435 .7829503 1.632138
rel. diff. .1578947 -.275903 .5916925
odds ratio 1.333333 .5156253 3.583017 (exact)
mcc impl impO0 if grp==
| Controls |
Cases | Exposed Unexposed | Total
_________________ +________________________+____________
Exposed | 9 20 | 29
Unexposed | 1 12 | 13
_________________ gy g gy T Wy S g e
Total | 10 32 | 42
McNemar's chi2 (1) = 17.19 Prob > chi2 = 0.0000
Exact McNemar significance probability = 0.0000
Proportion with factor
Cases .6904762
Controls .2380952 [95% Conf. Interval]
difference .452381 .2642126 .6405493
ratio 2.9 1.71136 4.914221
rel. diff. .59375 .4148524 .7726476
odds ratio 20 3.198859 828.9558 (exact)

Again, we get the same message. Here the odds ratio is the odds of improvement for those receiving
active divided by the odds of improvement for those receiving placebo. For group A, the estimated
odds ratio is 1.33 [0.51 3.59] while for Group B, the estimated odds ratio is 20 [3.19, 828.96]

We have an indication that validity is questionable. The 2 odds ratio estimates are very different. WE
do not have a test of significance [yet].

In situations like this, it is often argued that only the first period data can be used in which case a 6 by 2
table can be determined based on placebo first versus active first.

tab tr ove if ord==0,exact

| ove

tr | 1 2 3 4 5 6 | Total
___________ +__________________________________________________________________+__________
0 | 1 21 10 3 7 0 | 42
1| 0 8 8 10 15 1| 42
___________ +__________________________________________________________________+__________
Total | 1 29 18 13 22 1| 84

Fisher's exact = 0.005

ologit ove tr if ord==



tab tr imp if ord==0,exact

I imp
tr | 0 1| Total
___________ +______________________+__________
0 | 32 10 | 42
1| 16 26 | 42
___________ +______________________+__________
Total | 48 36 | 84
Fisher's exact = 0.001
l-sided Fisher's exact = 0.000

The first table using the actual ordinal outcome while the second table uses imp [whether or not score
>3]. So we have a salvage job in this instance.

If we consider conditional logistic regression, we then might consider tr (O=placebo; 1=active) ord
(O=first 1; 1=second) and grp (1=A; 2=B)

clogit imp tr ord grp,group(id) or

note: multiple positive outcomes within groups encountered.

note: 42 groups (84 obs) dropped due to all positive or
all negative outcomes.

note: grp omitted due to no within-group variance.

Conditional (fixed-effects) logistic regression Number of obs = 84
LR chi2(2) = 21.50

Prob > chi2 = 0.0000

Log likelihood = -18.361396 Pseudo R2 = 0.3693
imp | Odds Ratio Std. Err. z P>|z]| [95% Conf. Interval]
_____________ +________________________________________________________________
tr | 5.163978 2.880329 2.94 0.003 1.73064 15.40855

ord | 3.872983 2.160247 2.43 0.015 1.29798 11.55642

Oh, Oh... grp has been omitted and grp is the order*treatment interaction. But then we must remember
that grp is a between subject comparison. Like linear regression, clogit is unable to assess such a
comparison [in this instance because the conditioning process is analogous to the removal of between
subject comparisons in an analysis of variance]

Accordingly, this model and the corresponding fit is suspect [indeed, it is surely discredited]. This is a
decent example of a situation is which you cannot ignore a note: message. We must rethink our
process.

Alas, all we can do is reproduce our 'classical' analysis.

clogit imp tr if grp==1,group(id) or

note: multiple positive outcomes within groups encountered.

note: 21 groups (42 obs) dropped due to all positive or
all negative outcomes.

Conditional (fixed-effects) logistic regression Number of obs = 42
LR chi2 (1) = 0.43

Prob > chi2 = 0.5120

Log likelihood = -14.34107 Pseudo R2 = 0.0148
imp | Odds Ratio Std. Err. z P>|z]| [95% Conf. Interval]

_____________ e ——————————
tr | 1.333333 .5879447 0.65 0.514 .561816 3.164341



clogit imp tr if grp==2,group(id) or

note: multiple positive outcomes within groups encountered.

note: 21 groups (42 obs) dropped due to al
all negative outcomes.

Conditional (fixed-effects) logistic regre

Log likelihood = -4.0203257

1l positive or

ssion Number of obs =

42
21.07
0.0000
0.7238

imp | Odds Ratio Std. Err.

Interval]

_____________ e

tr | 20 20.4939 2.

149.0226

cci 26 10 16 32,exact

Exposed Unexposed

I
_________________ +________________________
Cases | 26 10
Controls | 16 32
_________________ +________________________
Total | 42 42
|
| Point estimate
I ________________________
Odds ratio | 5.2
Attr. frac. ex. | .8076923
Attr. frac. pop | .5833333
+ ________________________

l-sided
2-sided

logit imp tr if ord==0,or

Logistic regression

Log likelihood = -50.962919

LR chi2 (1) =

Prob > chi2 =

Pseudo R2 =

z P>|z| [95% Conf.
92 0.003 2.684157
Proportion
Total Exposed

36 0.7222

48 0.3333

84 0.5000

1.844848 15.02845
.45795 .9334595

Fisher's exact P = 0.0004
Fisher's exact P = 0.0008

Number of obs =

(exact)
(exact)

84
12.80
0.0003
0.1116

imp | Odds Ratio Std. Err.

Interval]

_____________ B N A A R A R A N I A e A i A

tr | 5.2 2.505793 3.

LR chi2 (1) =

Prob > chi2 =

Pseudo R2 =
z P>|z| [95% Conf.
42 0.001 2.022198

13.37159



