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Session 12 :
Count Data, Incidence, Person-Time
& Models for Counts



A famous cohort study

In a famous age-specific study of coronary
disease deaths among male British doctors,
Doll and Hill (1966) reported the following data

Age

35-44
45-54
55-64
65-74

75-84

32

104

206

186

102

Smokers

Deaths Person-years

52,407
43,248
28,612
12,663

5,317

2

12

28

28

31

Nonsmokers

Deaths Person-years

18,790
10,673
5,710
2,585

1,462

Stratifying on age, the estimates of the incidence rate ratios
(IRR) would be:



e et et +
| agecat smokes deaths pyears |
R |
1. | 1 1 32 52,407 |
2. | 2 1 104 43,248 |
3. | 3 1 206 28,612 |
4. | 4 1 186 12,663 |
5. | 5 1 102 5,317 |

R e e |
6. | 1 0 2 18,790 |
7. | 2 0 12 10,673 |
8. | 3 0 28 5,710 |
9. | 4 0 28 2,585 |

10. | 5 0 31 1,462 |
o +

ir deaths smokes pyears, by (agecat)

Crude
M-H combined

5.736638
2.138812
1.46824
1.35606
.9047304

1.719823
1.424682

Test of homogeneity (M-H)

[95% Conf.

1.463557
1.173714
.9863624
.9081925
.6000757

1.391992
1.154703

chi2 (4) =

10.41

Interval]

49.40468
4.272545
2.264107
2.096412
1.399687

2.14353
1.757784

Pr>chi2

M-H Weight

1.472169
9.624747
23.34176
23.25315
24.31435

= 0.0340

(exact)
(exact)
(exact)
(exact)
(exact)

(exact)



The ‘classical' analysis...

.... suggests that age [category] modifies the
incidence rate - smoking relationship. Indeed,
the highest estimated incidence rate ratio
estimate is with the youngest age category. The
incidence rate ratio estimates decline with age
category.

The [omnibus] test for homogeneity of
incidence rate ratios has p-value of 0.0340 also
indicating evidence of modification



Model based method

If y is the number of deaths and PY is the
corresponding person-years, then the incidence

rate is: E (y)
PY

E
One can model log ;;/)—logE( )—log (PY)
with:

log E(y)—log(PY) Z B.x,

i=0
k

log E (y)=log(PY)+ ) B,x
i=0



Offset

Notice the addition of the term log(PY) on the
right hand side of the equation.

This term does not have a regression
coefficient in front of it. Such terms appear in
many other situations and are typically called
'offsets’.

Stata adds the offset using the “exposure’
option. Using this option, one does not take the
logarithm of PY (Stata does this for you)



Log of Expected Number of Deaths

The regression coefficients, here, now involve
the log of the incidence rate and accordingly a
difference between 2 log incidence rates is the
log of the incidence rate ratio.

The distribution for the counts (the deaths,
here) is 'typically' taken as the Poisson
distribution:

AN

f(y)=e 7 where E(y)=A



The Poisson assumption

Consider the Binomial distribution with a large
number trials (n) and small probability (p) with
success on any trial. Let the expected value be:

A=np sothat p=A\/n

so that

n
Y

(») ?\y ?\n—y (y) ?\—y ?\n?\y

n— n n
pl=p) 7 =—(=) (I-—) =—=F{0-—) (I-—) —
vl n n n n nooy:

n

now (1——) getscloseto e = when n is large .
n



Mean linked to Variance

From the Binomial distribution, we know that

A A A

Var(y)=np(1=p)=n—(1-—)=N(1-—)

which will be A for large n.

So that, for the Poisson distribution, E(y)=Var(y)

Using this distribution to fit a model in E(y)
completely determines the distribution.



gen ageg=6-agecat

. poisson deaths smokes##i.ageg, exposure (pyears) irr

Poisson regression

Log likelihood =

-27.53397

Number of obs

10
935.07
0.0000
0.9444

1. smokes

ageg

N

bW

smokesi#ageg
12
13
14
15
pyears

.510838
.2312638
.053025
.0050198

1.498855
1.622848
2.364032
6.340714

(exposure)

.1331832

.060294

.0180278
.0036623

.4322128
.4664966
.8686353
4.801021

NNRBR

.58
.62
.64
.26

.40
.68
.34
.44

O O oo

O O OO

LR chi2 (9) =
Prob > chi2 =
Pseudo R2 =
[95% Conf.
.625 .6052658
.010 .3064517
.000 .1387352
.000 .0272322
.000 .0012014
.160 .851737
.092 .923837
.019 1.150508
.015 1.437576

Interval]

.1855513

1.35236

.8515384
.3855038
.1032472
.0209745

2.63763
2.850758
4.857549
27.96698

disp 6.340714*0.9047304

5.7366367



The Modeling Process

All of the techniques developed for modeling
can be used here.

Adding the option 'irr' takes the exponent of the
coefficients enabling the direct viewing of
estimates of incidence rate ratios (and as
always) ratios of incidence rate ratios.

A likelihood ratio test is the model based
equivalent for the test for homogeneity. The
procedure is the same as always.



More distributions for counts

Fitting with the poisson distribution, forces the
Variance to be the same as the Mean.

In health research contexts, this often turns out
to be a poor distribution choice.

A much more flexible distribution is now seeing
considerable use in health research.

The Negative Binomial (or sometimes called the
Polya) distribution is now quite easily used.



Negative Binomial

The Negative Binomial distribution comes from
the focus of attention on the distribution of the
number of failures needed to achieve r
SUCCEeSSES.

Allowing r to take on any positive number, one
will see this distribution called the Polya
distribution.

E(y)zri and Vazr(y)zr—q2
pP p



Dispersion

Dispersion is the ratio of the variance to the
mean: Var(y)

E(y)

For the Poisson distributions, the dispersion is
always one.

For the Negative Binomial distributions, the
dispersion is always greater than one.




Constant Dispersion: These models allow for varying
(conditional) means but fixed estimable dispersion

With this approach, using nbreg, one models

log (u Z B,x, and estimates & where 1+ 1s the dispersion

E<y)=u and Var(y)=p(1+5)

then r:% and sz

1+6
1 1

or p=r(——1) and 6=—-1
P P

A test for 'overdispersion' 1s enabled with testing & >0



Mean Dispersion: These models allow for varying means
and varying dispersion dependent on the mean

With this approach, using nbreg, we model:

k

log (u Z B,x, and estimate @« where 1+op 1s the dispersion
i=0

E(y)=n and Var(y)=p(l+ap)
1

then r:l and p=

X |+ p
or u:r(l—l) and (le
p r
Notice here that: log (x)=—log(r)

Now, testing o«>0 1s testing for 'overdispersion'



Generalized Mean Dispersion

For this approach, using gnbreg, one models both:
k

log(u)=Zlel and log(x Zyl z;

i=0
where 1+op 1sthe dlspersmn
Here, the varying dispersion may be modelled by a
(possibly different) set of 'covariates'.

At this time, there is no test for overdispersion
available with gnbreg



It 1s not uncommon to posit a Poisson regression model and

observe a lack of model fit. The following data appeared in
Rodriguez (1993):

. use http://www.statapress.com/data/rll/rod93


http://www.statapress.com/data/r11/rod93

16.
17.
18.
19.
20.

21.

cohort age mos deaths exposure
1 0.5 168 278.4
1 2.0 48 538.8
1 4.5 63 794 .4
1 9.0 89 1,550.8
1 18.0 102 3,006.0
1 42.0 81 8,743.5
1 90.0 40 14,270.0
2 0.5 197 403.2
2 2.0 48 786.0
2 4.5 62 1,165.3
2 9.0 81 2,294.8
2 18.0 97 4,500.5
2 42.0 103 13,201.5
2 90.0 39 19,525.0
3 0.5 195 495.3
3 2.0 55 956.7
3 4.5 58 1,381.4
3 9.0 85 2,604.5
3 18.0 87 4,618.5
3 42.0 70 9,814.5
3 90.0 10 5,802.5



Very briefly, to start out: Stata examples :

. poisson deaths i.cohort, exposure (exposure)

estat gof
nbreg deaths i.cohort,exposure (exposure)

nbreg deaths i.cohort,exposure (exposure) dispersion (constant)

gnbreg deaths age mos, lnalpha(i.cohort) exposure (exposure)

test 2.cohort 3.cohort



UCLA Website

Another example with annotation can be found at:

http://www.ats.ucla.edu/stat/stata/output/stata_nbreg output.htm

Caveat: The terminology used here is based on the conventions
adopted by Stata. Other software systems, notably R and SAS, use
different conventions and definitions for negative binomial modelling


http://www.ats.ucla.edu/stat/stata/output/stata_nbreg_output.htm

Zero Counts :
Inflation or Truncation

Sometimes the zero counts need special
consideration

Inflation: There can be two regimes : one
regime that contributes only zeroes and another
regime that may be handled by the Poisson or
the Negative Binomial [number of surfaces with
tooth decay]

Truncation: A zero count may be excluded
[days in the ICU]



Zero Inflation

We can model each regime with explanatory
variables [with commands : zip or zinb]

We can assess whether there is zero inflation
with the Vuong test]

ndications of zero inflation can be seen with:
plausible regimes from the context

very high zero counts and sometimes
overdispersion



Prenatal visit data

the data is in bwb5k.dta

the rate of visits per week is to be modelled
with:

white : mother's race (0=no , 1=yes)

mage 28 : mother's age [centred at 28 yrs)
tbo 1 : parity (0=1°, 1=2" ...)

mother's education



use bwSk.dta

// from www.cdc.gov/nchs

gen mage 28=mage-28

gen tbo_ l=tbo-1

gen white=(mrace c3==2)

spikeplot previs

// notice the 'bump' at zero visits

zinb previs white mage 28 tbo 1 i.meduc c4, inflate(i.meduc c4) exposure(gest) vuong
// following Dohoo, Martin & Stryhn



Frequency
400 600 800 1000

200

0

| l I | ] | W I 1 = =

|.|||H
0

20
# of prenatal visits

30

40



Number of obs 5000

Zero-inflated negative binomial regression

Nonzero obs = 4953
Zero obs 47
Inflation model = logit LR chi2 (6) = 103.49
Log likelihood = -13560.19 Prob > chi2 = 0.0000
previs | Coef. Std. Err z P>|z| [95% Conf. Interval]
_____________ +________________________________________________________________
previs |
white | .031533 .0095333 3.31 0.001 .012848 .050218
mage 28 | .0037196 .0009207 4.04 0.000 .0019151 .005524
tbo 1 | -.0120256 .0034051 -3.53 0.000 -.0186995 -.0053517
I
meduc_c4 |
hs dip | .0440167 .0141647 3.11 0.002 .0162544 .071779
some col | .0632298 .0150188 4.21 0.000 .0337936 .0926661
univ deg | .0618504 .0150638 4.11 0.000 .032326 .0913748
I
_cons | -1.265611 .0130318 -97.12 0.000 -1.291153 -1.240069
In(gest) | 1 (exposure)
_____________ +________________________________________________________________
inflate |
meduc_c4 |
hs dip | -1.097442 .4259315 -2.58 0.010 -1.932252 -.2626317
some col | -1.048664 .4458699 -2.35 0.019 -1.922553 -.1747748
univ deg | -1.04811 .3650916 -2.87 0.004 -1.763676 -.3325433
I
cons | -3.909495 .2323357 -16.83 0.000 -4.364865 -3.454125
_____________ +________________________________________________________________
/lnalpha | -4.700879 2119302 -22.18 0.000 -5.116254 -4.285503
_____________ +________________________________________________________________
alpha | .0090873 0019259 .0059984 .0137667
Vuong test of zinb vs. standard negative binomial: z 5.77 Pr>z = 0.0000



A recent use of Zero Inflated methods

Measuring the short-term impact of fluoridation
cessation on dental caries in Grade 2 children
using tooth surface indices [2016]

Lindsay McLaren et al

Community Dentistry and Oral Epidemiology



Truncation

If a zero count for the outcome [y] is not
possible, then one analysis option is to subtract
one from the outcome

Then, y-1 might be assumed Poisson or
Negative Binomial [poisson or nbreg]

You could then add one back to the confidence
intervals for E(y) = E(y-1)+1

You can use tpoisson or ztnb to analyze y
directly [the distributional assumption is not the
same]



A study of length of hospital stay

use hospital stay.dta
tab stay

gen stayml=stay-1
nbreg stayml age hmo died
ztnb stay age hmo died

The analyses are quite similar here. The choice
might be dictated by your literature review.



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

