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Assuming No Modification

Let us consider the study of a disease (levels: 0 and 1) – exposure (levels: 0 and 1) relationship with a 
single potential modifier/confounder that we will call the 'strata' (levels: 0 and 1). The stratum specific 
probabilities of disease will be called: p ij for the ith exposure and the jth stratum. For this 
illustration, we will suppose that these population characteristics are not troubled by further 
confounding or modification.

Rate differences:

If there is no RD modification, then p10− p00= p11−p01 which is then the rate difference RD.  This 
is the 'correct' RD.

Now we are obliged to consider 'crude' determinations. We wish to consider 2 weighted sums:

w0 p011−w0 p00 and w1 p111−w1 p10

where, for the study under consideration, w0 is the proportion among the unexposed of subjects in 
strata 1 and w1 is the proportion among the exposed of subjects in strata 1. We will choose to think 
of these proportions as specific to the study at hand and not necessarily related to any population.

The challenge is to determine whether these 2 weighted sums distort the message that is available from 
the stratum specific analogues.

We can note that:

p10=RD p00 and p11=RD p01 since there is no RD modification.

Accordingly we wish to consider: 

w0 p011−w0 p00 and w1RD p011−w1RD p00

Taking the second minus the first gives us [say cRD] :

RDw1−w0 p01−p00

Notice that the stratum specific difference RD differs from the comparison of the 2 weighted sums by:

w1−w0 p01−p00

So both the terms w1−w0 and  p01− p00 must be nonzero, to have a nonzero difference. 

This observation is the same as the common statement that:

1) the weights must be different in the 2 exposure groups



and 
2) the 'risk' in the absence of exposure must be different in the 2 strata.
Notice that since there is no RD modification, this statement is the same for those exposed.
 p11− p10= p01− p00

RD Example 1
Using: p00=0.1 p01=0.6 p10=0.4 p11=0.9 so that RD=0.3
Now consider w0=0.9w1=0.1
Then RDw1−w0 p01−p00=0.30.1−0.9∗0.6−0.1=0.3−0.8∗0.5=−0.1
The visual below illustrates this matter.

Naming p i w = p i1w p i01−w 
So, without modification we have p1w=RD p0w

To see a sign change in cRD, the weights satisfy w1−w0− RD
p01− p00

In the example, w1−w0−0.3/0.5=−0.6 where w1 could be as small as zero and w0 could be 
as large as one.

To see cRD = k* RD we have w1−w0=k−1 RD
p01− p00

Rate Ratios:
If there is no RR modification, then p10 / p00= p11 / p01 which is then the rate ratio RR. 
We can note that:

p10=RR∗p00 and p11=RR∗ p01 since there is no modification.

Accordingly we wish to consider: 



w0 p011−w0 p00 and w1RR∗ p011−w1RR∗p00

Taking the second divided by the first gives us [say cRR]:

RR∗
w1 p011−w1 p00

w0 p011−w0 p00

which equals RR when w1−w0 p01−p00 = 0. 

This is the same condition as for the RD. 
Since  p11− p10=RR∗ p01− p00 we have a similar statement as with RD.

Now we have log p1w=log RRlog p0w

RR Example 1
Using: p00=0.01 p01=0.225 p10=0.04 p11=0.9 so that RR=4
The graph shows a case when cRR=1.

Odds Ratios:

If there is no OR modification, then 
p10/1− p10
p00/1− p00

=
p11 /1− p11
p01/1− p01

which is the odds ratio OR.  

p10/1−p10=OR∗p00/1− p00

p11 /1− p11=OR∗p01/1− p01

But we do not have log
p1w

1−p1w 
=log ORlog

p0w
1− p0w



In fact, log
p1(w )

1− p1(w)
 - log

p0(w )
1− p0(w )

is a function of w.

OR Example 1

Using: log
p00

1−p00

=−9   log
p10

1− p10

=−8  log
p01

1−p01

=−2   log
p11

1− p11

=−1 so that log OR =1

So there is no OR modification but but there is modification with RD, RR and HR. RD0=.000212 
RD1=.149738 RR0=2.717706 RR1=2.256165 HR0=.999788 HR1=.829997 

Now let us graph the red line minus the blue line :

    



So log
p1(w)

1− p1(w)
 - log

p0(w )
1− p0(w)

is not equal to the assumed common log OR of 1 but can less than 

0.85 in this example. Notice, then, that this phenomenon is not confounding. It goes by many names. 

Maybe calling it attenuation would be the clearest name for it. It can be shown that the difference

log
p1(w)

1− p1(w)
 - log

p0(w)
1− p0(w)

will always be less than the assumed common log OR.

Other names seen in the literature are 'non-collapsibility' and even 'non-linearity'. Sometimes this non-
constant difference is illustrated with examples where modification is also present. This makes the 
issue harder to parse.

The first publication on this matter appears to be :
Myra L. Samuels : Biometrika, Vol. 68, No. 3 (Dec., 1981), pp. 577-588.

Myra Samuels (1940-1992) was a member of the Department of Veterinary Pathobiology at Purdue 
University. She completed her PhD (Statistics) University of California, Berkeley with
supervisor Jerzy Neyman.

In her paper, Samuels 'applied' Jensen's inequality. Very cool !
Many authors have written about this matter since Samuels. 

The study of the magnitude of the attenuation is an active area of research.
So when will the attenuation matter?
If the HR is “near” one, then attenuation will be “minor”.

Let pij=x q ij    For given qij , the RR will be constant    As x ↓0,   HR→1and so OR → RR

Recently, Diego Nobrega and I have developed a formula for the maximum attenuation.

With  a= p00   b= p10   c= p01   d= p11

e=bc−ad   f =(1−b)(1−c)−(1−a)(1−d)
g=(c−a)(d−b)  h=ef / g

r=(d−c )−(b−a)

 we get that :

Amax=log(((1−w)a+w c)−1−1)−log(((1−w)b+wd )−1−1)

when  w  =  
√h−(b−a)

r

Here is another even more extreme example :



All of the development in this session is for the population domain. 

With actual data,
1) We get estimates of the probabilities.
2) We get the “actual” fractions.
3) There are finite sets of possibilities for the estimates and the actual fractions.
4) There are the practical issues of modification and confounding.
5) There are the merits and demerits for exploring counterfactuals.


