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Models With Time-To-Event

Now that we have introduced a majority of the key definitions and implications appropriate to time-to-
event studies, we can proceed to discuss the many different types of models used in such studies.

The models first divide into those for discrete outcomes and those for continuous outcomes. The most
familiar methods for continuous outcomes have been available in software since the 1980's. Methods
for discrete outcomes have been implemented in most software much more recently. Most references
begin with the continuous case first. We will take this option.

Modelling Continuous Time-To-Event Outcomes

In health research, the modelling of the log of the hazard dominates the literature. [Hazard models] In
certain specific situations, one sees modelling of the log of time itself. [Accelerated Failure Time
models]

Models for the hazard will have regression coefficients as usual but then separate into two classes:
1) models that assume that the log of a 'baseline' hazard function assumes forms determined by
parameters.

2) models that do not require the baseline hazard function assumes any parametric form.

The second type of model that does not need a determination the baseline hazard now dominates in the
health literature. The development of these methods began with the remarkable work of DR Cox in the
1970's. Such models are now almost always called Cox models.

The next major separation is based on the assumption of proportional hazards. Again, proportional
hazards models are widely seen along with techniques to assess the proportional hazards assumption.
There are a very wide range of models that relax the proportional hazards assumption in various ways.
The two [most often seen] use either stratification or time varying explanatory variables [or both
stratification and time varying]

Lets start with proportional hazards models.
We could consider a model like:

logh(t)=log h,(t +Z Bx;
We can think of a 'basehne hazard 7,(¢) and, then, additive contributions on the logarithmic scale
are like relative contributions on the original scale. In other words, the model above is then a fairly
general example of a proportional hazards model. Depending on the software, an estimate of an
apparent [, may be listed. This number is a part of the log of the baseline hazard function. The
examples below will clarify this.

Now, think of a baseline hazard function and 3 other groups with proportional hazards. On the log
hazard scale, we might have curves like:
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The log of the baseline hazard might be the blue curve (the lowest curve) and, then, with each other
groups, there is a fixed additive difference that does not depend on time. This is analogous to the notion
that 'analysis time' does not modify the group comparisons on the log hazard scale. So then 5, (¢) is

3
the blue curve and z B8, determines the spacings between the curves. For this picture, k=3 and we
i=1
could think of 3 indicator variables &, 6, &8; for groups 1, 2 and 3 respectively. Now, for say group
0, there is a baseline curve (the log of the baseline hazard). For this model, each regression coefficient
is an assumed common difference between the curves.

B, :betweenred and blue, B, :between green and blue and B, : between orange and blue
Each of these coefficients would be positive indicating increased log hazard for each group compared
with the baseline group.

Let us now suppose that in:

group 0, participants had exposure to neither £, nor E,
group 1, participants had exposure to £, only

group 2, participants had exposure to £, only

group 3, participants had exposure to both £, and £,

The model: logh(t)=logh,(t)+B, E,+B,E,+B;E,E, would have a 'large' B, since:

When E, is present, the comparison between those with and without £, is B,+8;
When E, is absent, the comparison between those with and without £, is B,

So we see that B, reflects the interaction of the two exposures:

[orange minus green] minus [red minus blue].

So, while there is an assumption of additivity among the log hazard curves, one can still explore
notions of modification, interaction and so on using the regression coefficients as always.

Indeed, we can reexpress the model as:



h(t
logh(t)—logh,(t)=log (1) :Z B,x;

ho(t ) =1
So the regression coefficients can be interpreted as in logistic regression, for example, except that we
speak of the log of hazard ratios rather than the log of odds.

It is time for a small but illustrative example from a cancer drug trial.

. use cancer.dta
stset studytime died
sts graph, by (drug) cen (number)

. sts graph, na by(drug) cen (number)

Kaplan-Meier survival estimates, by drug Nelson-Aalen cumulative hazard estimates, by drug

a.

0 10 20 30 40
analysis time analysis time

The little numbers above the curves show us the number censored at those times. Only one censored
value among the placebo group and 16 censored in the active group. Also, we can see that there are
many 'ties'.

table studytime drug

drug =10 dmg=1| ‘ drug=10 dmg=1‘

Months to |
death or | Drug type
end of | (O=placebo)
exp | 0 1
__________ +___________
1| 2
2 | 1
3 | 1
4 | 2
5 | 2
6 | 3
7 | 1
8 | 4
9 | 1
10 | 2
11 | 2 1
12 | 2
13 | 1
15 | 1 1
16 | 1
17 | 1 1
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gen da=drug*age

Let us consider a Weibull proportional hazards model first:

logh(t)zloghwo(t)+2 B,x;=log(A)+log(p)+(p—1)log(t)+ > B,x,

streg drug age da,d(w) nohr

Number of obs

LR chi2(3) =
Prob > chi2 =

48

35.47
0.0000

-11.66974

.0149996
-.1221075
-15.82841

4.81188
.2067487
.1653405

-4.264704

1.275661
.4535619

2.204771
.7839071

Weibull regression -- log relative-hazard form
No. of subjects = 48
No. of failures = 31
Time at risk = 744
Log likelihood = -42.887722
_t | Coef Std. Err 4
_____________ +
drug | -3.42893 4.204572 -0.82
age | .1108742 .0489165 2.27
da | .0216165 .0733299 0.29
cons | -10.04656 2.949979 -3.41
_____________ +
/1n_ p | .5170442 .1395839 3.70
_____________ +
P | 1.677063 .234091
1/p | .5962805 .0832311
gen ac=age-56
gen dac=drug*ac
streg drug ac dac,d(w) nohr
Weibull regression -- log relative-hazard form
_t | Coef. Std. Err z
_____________ +
drug | -2.218406 .4196609 -5.29
ac | .1108742 .0489165 2.27
dac | .0216165 .0733299 0.29
cons | -3.837604 .6400264 -6.00
_____________ +
/1ln_p | .5170442 1395839 3.70
_____________ +
P | 1.677063 .234091
1/p | .5962805 .0832311

-3.040926

.0149996
-.1221075
-5.092032

-1.395886
.2067487
.1653405

-2.583175

1.275661
.4535619

2.204771
.7839071

The centring of age provides a 'meaningful’ interpretation for the baseline log hazard.



The estimates of log(A) and log(p) provide the 'intercept' when log(t)=0 or t=1. Notice that :
Bo=log(A\) here.

disp exp(-3.8376 +0.5170)

0.03613115
stcurve, hazard atl (drug=0 ac=0) yscale(log) xscale(log) xlabel(l 2 10 40) ylabel(0.03613

0.1 0.2)
Weibull regression

Hazard function

10 40

.03613
1

=
N

analysis time

This model suggests non-constant hazard since the estimate of p appears to be greater than one.
We can then see that the log hazard is linear in log time.

Then we can display the estimates of the regression coefficients [as usual]

. predict lhr,xb
. twoway (line lhr age if drug==0,legend(label (1l "Placebo")) ytitle("log hazard ratio")) (1

ine lhr age if drug==1,legend(label (2 "Active")))

log hazard ratio
5
1

T T
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Let us now consider a Cox proportional hazards model.
k

logh(t)=logh,(t) +z B ,x,; The method provides for estimates of the regression coefficients using

j=1
a 'Partial Likelihood' approach. [Cox 1971]. An 'estimate' of the function logh,(#) is not needed to



give us regression coefficient estimates using the method of Cox. Nevertheless, other methods can be

used to provide an estimate of the log hazard function using smoothing techniques.
stcox drug age da, nohr

Cox regression -- Breslow method for ties
No. of subjects = 48 Number of obs = 48
No. of failures = 31
Time at risk = 744
LR chi2 (3) = 33.33
Log likelihood = -83.245435 Prob > chi2 = 0.0000
_t | Coef. Std. Err z P>|z| [95% Conf. Interval]
_____________ +________________________________________________________________
drug | -3.934271 4.297017 -0.92 0.360 -12.35627 4.487727
age | .1013904 .0486087 2.09 0.037 .006119 .1966618
da | .0293675 .0745665 0.39 0.694 -.1167802 .1755152
stcox drug ac dac, nohr
Cox regression -- Breslow method for ties
No. of subjects = 48 Number of obs = 48
No. of failures = 31
Time at risk = 744
LR chi2 (3) = 33.33
Log likelihood = -83.245435 Prob > chi2 = 0.0000
_t | Coef. Std. Err. z P>|z| [95% Conf. Interval]
_____________ +________________________________________________________________
drug | -2.289689 .4695969 -4.88 0.000 -3.210082 -1.369296
ac | .1013904 .0486087 2.09 0.037 .006119 .1966618
dac | .0293675 .0745665 0.39 0.694 -.1167802 .1755152

stcurve, hazard atl (drug=0) at2(drug=1l) yscale(log) xscale(log)
gen plac=l-drug

Reverse coding the drug indicator indicates that the 'exposed' group is those without the active form of
treatment.

stcox plac ac

It is important to note when one does not use the nohr option, one is receiving estimates of the
exponent of the corresponding regression coefficients. Stata labels these estimates 'Haz. Ratio'.
Depending on the model one fits, only some of these estimates will be estimates of hazard ratios. The
number beside 'ac' is the exponent of the estimate provided with the nohr option. The unexponentiated
number is an estimated rate of change of a log hazard ratio per year of age assumed common to both
drug and placebo groups. The exponent has a rather specialized interpretation and is not as easy to
explain.

stcurve, surv atl(plac=0) at2(plac=1l)

stcurve, cumhaz atl(plac=0) at2(plac=1)

predict lhr,xb

lab var age "baseline age"

twoway (line lhr age if drug==0,legend(label (1 "Placebo")) ytitle("log hazard ratio")) (1
ine lhr age if drug==1,legend(label (2 "Active")))



The Cox model provides much the same message as the Weibull model and the Cox model does not
require an assumption as to the form of the baseline hazard function. There is considerable empirical
and theoretical support for the Cox model. The methods of estimation with the Cox model are typically
not impaired by the absence of the hazard function form assumption. The proportional hazard
assumption, though, is so critical here and is the key issue in many health research studies.

Methods are now available which enable the use of restricted cubic splines to provide a baseline
hazard. For example, for the Weibull hazard, we have that the log cumulative hazard is linear in log
time. Replacing the line with restricted cubic splines enables a wide range of hazard forms including
non-monotone forms. Implementations are available with Stata [stpm2] and with R [flexsurv]

stpm2 drug ac dac,df(l) scale (hazard)

Log likelihood = -42.887722 Number of obs = 48
| Coef Std. Err z P>|z| [95% Conf. Interval]
_____________ +________________________________________________________________
xb I
drug | -2.218406 .4196609 -5.29 0.000 -3.040926 -1.395885
ac | .1108742 .0489165 2.27 0.023 .0149996 .2067487
dac | .0216165 .0733299 0.29 0.768 -.1221075 .1653405
rcsl | 1.456171 .203258 7.16 0.000 1.057793 1.854549
cons | .2711763 .2306783 1.18 0.240 -.1809448 .7232974
stpm2 drug ac dac,df(4) scale (hazard)
Log likelihood = -42.299792 Number of obs = 48
| Coef. Std. Err z P>|z| [95% Conf. Interval]
_____________ +________________________________________________________________
xb I
drug | -2.349561 .4587812 -5.12 0.000 -3.248755 -1.450366
ac | .1059472 .0490748 2.16 0.031 .0097623 .202132
dac | .0309635 .0748127 0.41 0.679 -.1156667 .1775938
rcsl | 1.435409 .2085075 6.88 0.000 1.026741 1.844076
rcs2 | -.0610769 .1580855 -0.39 0.699 -.3709188 .2487651
rcs3 | -.0553187 .1019401 -0.54 0.587 -.2551177 .1444803
rcs4d | -.0691038 .0798791 -0.87 0.387 -.2256639 .0874563
cons | .3321558 .2397368 1.39 0.166 -.1377197 .8020312

When df=1, one gets the Weibull analysis. The single restricted cubic spline is just a location and scale
shift of log(t). rcs1(t) =a + b*log(t) and so rcsl and cons can be obtained as :

Bo+P,log(t) or a,+a,(a+blog(t)) andso o,=p,/b o,=P,—P,alb
Many authors suggest that using cubic splines in this way may be preferred to the Cox approach.
Perhaps there are arguments based on prediction and extrapolation matters, in particular.

Models for Subhazard
Now let us consider models in the competing events world. In particular, we will consider the Fine &
Gray Proportional Subhazards models [Fine & Gray 1999]. Now we will have:

k

logh,(t)=log 7110“)"‘2 B,x,

j=1



So the log of the subhazard function is expressed in terms of the log of the baseline subhazard plus the
usual linear combination of regression coefficients.

Interpretation of the subhazard is quite elaborate but it is instructive to consider the implied graphs of
the Failure functions and graphs showing log subhazard ratios versus our explanatory variables, as

usual.

. use byar.dta
gen tstage=stage-3
summ age,d

Age: years

Percentiles Smallest

1% 51 48

5% 56 49
10% 60 49 Obs 505
25% 70 50 Sum of Wgt. 505
50% 73 Mean 71.44158
Largest Std. Dev. 7.081516

75% 76 87
90% 78 87 Variance 50.14787
95% 80 88 Skewness -1.047976
99% 84 89 Kurtosis 4.080304

gen ac=age-73
gen tac=treatment*ac

stcrreg treatment ac tac tstage,compete(status == 3) noshr
Competing-risks regression No. of obs = 505
No. of subjects = 505
Failure event : status == 1 No. failed = 155
Competing events: status == 2 3 No. competing = 201
No. censored = 149
Wald chi2 (4) = 65.36
Log pseudolikelihood = -897.10587 Prob > chi2 = 0.0000

| Robust

_t | Coef. Std. Err. z P>|z| [95% Conf. Interval]
_____________ +________________________________________________________________
treatment | -.363127 .1736585 -2.09 0.037 -.7034913 -.0227626
ac | -.0337263 .0138147 -2.44 0.015 -.0608027 -.0066499
tac | .0327927 .020657 1.59 0.112 -.0076943 .0732797
tstage | 1.122175 .1664584 6.74 0.000 .7959226 1.448428

stcurve,cif atl (tstage=0 treatment=0) at2(tstage=1 treatment=0) at3(tstage=0 treatment=1)
at4d (tstage=1 treatment=1)
. predict 1lshr,xb
twoway (line lshr age if treat==0 & tstage==0) (line 1lshr age if treat==1 & tstage==0) (line
1shr age if treat==0 & tstage==1) (line lshr age if treat==1 & tstage==1), legend(off)

The estimates of the regression coefficients are available in the same way as Cox proportional hazards
models except that we have the log of the subhazard rather than the log of the hazard in the
descriptions. The graphs are then estimates of the Failure function using the proportional subhazards
assumption.

Discrete Time Models
Now we return to the study of discrete time-to-event. We will see that the software needed to construct,
fit and assess models in discrete time is not new to us. However, we will also see that there are a



number of new steps needed to prepare the data for the analysis. Most times, we will see the need for
two datasets. These two datasets are often called:

1) the 'person-level' dataset

2) the 'person-period' dataset

Typically, an investigator has the 'person-level' dataset first. Then one must construct the 'person-
period' dataset.

A collection of Stata commands [Dinno] can be very helpful with this construction. You can download
this family of commands from within Stata by typing findit dthaz

We will consider a study [by Capaldi, Crosby, and Stoolmiller’s (1996)] of the grade when a sample of
at-risk adolescents males had heterosexual intercourse for the first time. Among 180 boys tracked from
seventh grade, 54 (30.0%) were still virgins (were censored) when data collection ended in 12th grade.
The outcome is time to first sex. We will start our example by considering two explanatory variables pt
[parental transition before seventh grade] and pas [an index of the parent's antisocial behavior]. pt is
dichotomous and we will assume that the relationship between the outcome and pas is linear.

The person-level data is in capaldi_pl.dta and the person-period data is in capaldi_pp.dta

We will now be considering models of the form:
g(h (t))=Z:lj=1 0(jdj+2f:1 B,x, where g is a link function. [We will see two types of links: logit
and complementary log log]
The first piece of the 'right hand side": Zl, x.d, will take on the role of baseline hazard and is the
j=
part that is a function of time. The d; are the indicators for the time intervals. The second piece

k . . . . .
Z _, B,x, will give us the usual regression coefficients and the explanatory variables.

We have noted that, in the discrete time setting, h(t) is a probability. We can consider [first] the log of

the odds of this probability and use logistic regression.
. use capaldi_pp.dta
. logit event d7 d8 d9 d10 dll dl2 pt pas, nocons

Logistic regression Number of obs = 822
Wald chi2(8) = 269.81

Log likelihood = -314.57348 Prob > chi2 = 0.0000
event | Coef Std. Err 4 P>|z| [95% Conf. Interval]
_____________ +________________________________________________________________
d7 | -2.893237 .3206302 -9.02 0.000 -3.52166 -2.264813

d8 | -3.584759 .4231479 -8.47 0.000 -4.414114 -2.755404

d9 | -2.150233 .277458 -7.75 0.000 -2.694041 -1.606426

dio | -1.69318 .2646518 -6.40 0.000 -2.211888 -1.174472

dll | -1.517695 .2757453 -5.50 0.000 -2.058146 -.9772446

dl2 | -1.009884 .2811314 -3.59 0.000 -1.560891 -.4588762

pt | .6605301 .2367273 2.79 0.005 .1965532 1.124507

pas | .2963606 .1253784 2.36 0.018 .0506235 .5420976

. gen pas0 = -2.893237*d7 - 3.584759*d8 - 2.150233*d9 - 1.69318*d10 - 1.517695*d11l -
1.009884*d12 + .6605301*pt

. gen pasl = pas0O + .2963606



. gen pasnegl = pas0 - .2963606
collapse (mean) pasO pasl pasnegl, by (period pt)

twoway (line pasl period if pt==0) (line pasl period if pt==1) (line pasO0 period if pt==0)
(line pas0 period if pt==1) (line pasnegl period if pt==0) (line pasnegl period if
pt==1) ,xtitle("Grade") ytitle("Fitted Log Odds of Hazard") legend(ring(0) pos(10) col(1l)
lab(1 "PAS=1l, PT = 0") lab(2 "PAS=1, PT = 1") lab(3 "PAS=0, PT = 0") lab(4 "PAS=0, PT = 1")
lab(5 "PAS=-1, PT = 0") lab(6 "PAS=-1, PT = 1"))

It has been shown [Prentice & Gloeckler (1978)] that the likelihood from a [continuous time]
proportional hazards model is the same as a [discrete time] model with the cloglog link. The regression
coefficients from these two models have identical interpretations.

cloglog event d7 d8 d9 d10 d11 d12 pt pas, nocons

Complementary log-log regression Number of obs = 822
Zero outcomes = 696

Nonzero outcomes = 126

Wald chi2 (8) = 344.98

Log likelihood = -314.55927 Prob > chi2 = 0.0000
event | Coef. Std. Err z P>|z| [95% Conf. Interval]
_____________ +________________________________________________________________
d7 | -2.876523 .3001068 -9.58 0.000 -3.464722 -2.288325

d8 | -3.551336 .4071691 -8.72 0.000 -4.349373 -2.753299

d9 | -2.207147 .2535697 -8.70 0.000 -2.704135 -1.71016

dlo | -1.792702 .2363678 -7.58 0.000 -2.255975 -1.32943

dll | -1.638841 .2452343 -6.68 0.000 -2.1194091 -1.158191

dl2 | -1.194946 .238931 -5.00 0.000 -1.663242 -.7266496

pt | .5953676 .2138192 2.78 0.005 .1762897 1.014446

pas | .2572451 .1088811 2.36 0.018 .043842 .4706481

Comparing the logit link with the cloglog link:
clear

set obs 1001

range p 0 1

gen lgp=log(p/(1-p))

gen cllp=log(-log(l-p))
line 1gp cllp p

line 1gp cllp p if p<0.2
gen diff=1lgp-cllp

line diff p

line diff p if p<0.2
line diff p,yline(0.2)
line 1gp cllp p

line 1gp cllp p if p>0.2
line 1gp cllp p if p>0.8

For values of p < 0.2, the differences are 'small' but for p>0.8 the differences are 'large’.

So for 'small' h(t), the logit analysis and the cloglog analysis aught to be 'close'. The analogy between
the discrete cloglog and the continuous log, may give an edge to a cloglog choice, especially if one can
conceptualize time as continuous but one can only observe time in grouped form. Both are seen quite
widely though, so one may wish to choose based on your content area literature.



