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Session 13 :
Linear Regression — Studying Conditional Means

Up to now, we have been exploring the range of methods for studying an outcome that takes on a short
list of possibilities. Indeed, we were concerned with the simplest possible outcome: Yes or No, Success
or Failure, Alive or Dead... the outcome with only two possible values.[coded 0 and 1]

We have addressed outcomes with more than two values. The implication [maybe not said] was that the
list of possible values is short enough so that direct study of each of these possible values has merit. All
our approaches involved rates or odds; ratios or differences to make statements about each of the
possible values of the outcome.

Continuity:

Let us now focus our attention on outcomes with a potentially long list of values. It may be valuable to
think about outcomes that are said to be absolutely continuous in that there are so many possible values
that is becomes impossible to speak of the probability that an outcome takes on an exact value. A
person's exact age [in days, say] is the easiest example. A person's systolic blood pressure (sbp)

[ mmHg] is another. Of course, the measurement of either age or sbp is done with finite accuracy and
inevitably involves round off or grouping into intervals. Even so, there are typically so many such
intervals that direct study of all possible intervals is out of the question.

A return to the methods of earlier classes:

Often a credible option for analysis to to decide on thresholds or intervals that determine a new
outcome that has a small list of values. For example, one might wish to consider models for “sbp >130
mmHg” rather than attempt to directly study sbp. Another example from diabetes research involves a
characteristic called AER [ albumin excretion rate: an indicator for kidney trouble]. Researchers can
study AER directly but will often use 2 thresholds to yield 3 intervals: AER<20 (normal);
20<AER<200 (microalbuminuria) and AER>200 (macroalbuminuria). Often such a construction of a
new' outcome is judged to be more 'practical' or 'more clinically relevant'. On the other hand,
specialists argue about the merits of such thresholds: their cutoff values and the number of such cutoffs.
The decision to adopt cutoffs/thresholds/intervals does not necessarily lead to inferior assessment
compared to the methods of this chapter. There are some writers who might argue that it is always to
advantage to use the actual values rather than to use intervals. Such uncategorical statements serve little
purpose. Alas, it would seem that most of the time, it depends....

The conditional distribution of the outcome.

Now we imagine a collection of possible exposures and confounders/modifiers and the decision has
been made to attempt to study the distribution of the outcome given [or conditional on] such
exposures/confounders/modifiers. We will, for the time being, suppose that these conditional
distributions are all symmetrical. With this symmetry, we can usually speak meaningfully about the
mean of such a distribution in so far as such a mean reflects the 'centre' of the distribution and is the
same as the median and [for unimodal distributions] the mode. Accordingly, for the time being, we will
focus on the conditional mean [ sometimes called the conditional expectation and also called the
regression|

Case Control Studies
Notice that for case-control studies, we may wish to directly study an absolutely continuous exposure
variable as a primary outcome. For example [from the endometrial cancer study], we may wish to study



the length of time a woman was receiving estrogens. For this type of study, we then wish to study the
distribution of exposure given [ or conditional on] case/control status, confounders and modifiers.

Symmetry Assessment

As we shall see, the assumption of symmetry is typically critical to meaningful interpretation. We will
also see that the assessment of the assumption of symmetry must wait until we can understand the
nature of the distributional form as though there were no dependency of the conditional mean on the
respective conditions. [Hard to appreciate just now... sometimes a rereading can help... witness the
phenomenon of statistics wannabees reading and rereading RA Fisher over and over and over....]

...s0 we launch into the BIG topic of Linear Regression. We will see that primary to this topic is clearly
appreciating that we are always making conditional statements: statements about a conditional mean
and the when and how such means depend on the condition(s). We will soon see that the 'distribution
form' of variables on the 'right hand side of the regression equation' is not relevant.

Linear regression means that the conditional mean is linear in the predictor variables

k

E(y)=2_8,x

j=0

As we did with logistic regression, we won't explicitly list the conditions in the expectation (left hand
side). Some might say that it is clearer to write:

k

E(ylxy x; x; .. xk):ZBixi

Jj=0

We will not take this path. For us, a mean is ALWAYS a conditional mean just as odds ratio is always
a conditional odds ratio. The list of conditions [ the x,’s ] are the exposures, the confounders, the
modifiers and other explanatory variables. As previously, we need to make clear the distinction
between linearity, additivity, interaction, confounding, modification and the complicated forms of
confounding and modification. All of these issues carry forward to linear regression. Indeed, in so far
as we are interpreting the coefficients, we now need to speak of means or estimates of means rather
than speaking of log of odds and/or estimates of log of odds [or the others...]. The examples will help
out.

As before, lets us start with the simplest scenario. One predictor variable (x): 0= standard drug 1=test
drug. Suppose the outcome (y) is change in systolic blood pressure (baseline value — follow up value).
We, then, have:

E(y)=By+Bx
For x=0, we have E(y)=B, and forx=1, we have E(y)=B,+B, and so:

B, is the expected change in sbp for those receiving the test drug minus the expected change in sbp
for those receiving the standard drug.
Now let us suppose that gender is thought to be a potential confounder or modifier (g=0 (female) g=1
(male)). We can, then, consider:

E(y)=Bo+Bix+B,g+Bsgx
so that, for example,

B, is, for the females, the expected change in sbp for those receiving the test drug minus the
expected change in sbp for those receiving the standard drug. Sound familiar? All our development of
models from the past classes carries forward with appropriate changes in the description of the



characteristic of the outcome.

k k
If E(y)= Z B .x. ,then we consider possible fits: Y = Z b, x; and assess the fit by computing the

J
Jj=0 =0

residual: e,=y,—Y, for the ith observation. Then, we adopt the principle of least squares seeking to

minimize the residual sum of squares Z ef . The least squares solution gives us 'fitted values' Y,
i=1

for every observation and the solution gives us unbiased estimates b, of the population

characteristics B ;

Now, suppose we assume that all the »; are statistically independent and that the [conditional]
variance of the observations is constant Var(y,)=c” (i.e. the conditional variance does not depend

on the conditions [the explanatory variables] and, implicitly, does not depend on  E(y,) , then the
least squares estimate is the 'Best Linear Unbiased' estimate. Exactly what this BLUE term means we
will skip over. Sounds good though, doesn't it?

So far we have discussed three of the assumptions about the conditional distribution. The independence
assumption. The mean of the conditional distribution [the conditional mean aka the regression] must a
linear function of the explanatory variables and the variance of the conditional distribution [the
conditional variance aka the variance about regression] must be constant. Add to these three
assumptions our opening argument that the conditional distribution should be symmetrical [to provide
meaning and context for the conditional mean] and you have the key ingredients for a standard
application of linear regression.

Notice that the homogeneity of conditional variances and the symmetry of the conditional distributions
were not required assumptions for any of the binomial regressions or their extensions.

Testing and confidence intervals proceed in ways similar to our earlier work. With linear regression,
the Wald tests are replaced with t tests and the likelihood ratio tests are now replaced with F tests. Two
sided t tests now give identical p-values to the corresponding one sided F tests.

If we now add one more assumption: that the conditional distributions are normal distributions, then the
p-values and confidence intervals are exact. If the conditional distributions are not exactly normally
distributed, then the p-values and confidence intervals are approximate as before.

It is worth noting here that these approximations can be valid with large sample sizes even if the
conditional distributions are neither normal or symmetrical. Here one is applying the infamous
[notorious] Central Limit Theorem. Such p-values and/or confidence limits may well adequately serve
the study of the conditional means but one needs to ask if such conditional means are worth studying if
the relevant conditional distributions are skewed.

Error

The model discussed above with all the assumptions can be written in an alternate way that can serve
the understanding of the issues and challenges of the application of linear regression analysis.

k
yzz B,x,+oz
j=0



k
This equation covers a lot of territory: The right hand side can be written as Z B;x; plusthe
Jj=0
independent standard normal error z scaled by the constant o

Sometimes, you will also see the model written as:
k
y=2 Bjx,te
j=0

The only difference between this alternate and the first one is that we now note the errors € are
independent normal with mean zero and variance o . These 2 formulations are identical for us.

It can be helpful to note that the fit can be expressed in multiple ways as well.

k
Y=Zbl.xl.
j=0 "

k
or y=z b;x,+e . The [raw] residual is e. [ This is just a rearrangement of ¢ =y —Y ] The ¢'s are
j=0
the fit analogue of the € 's.

k

or y= Z b;x,+sr . A [standardized] residual is r. The standardized residuals (r) are usually scaled

j=0
so that they have variance of 1. That way, if the model assumptions hold up, then the standardized
residuals should look like standard normal values with mean 0 and variance 1. The r's are the fit
analogue of the z's. We see that s is the estimate of O The standardized residuals are slightly
correlated but this is not usually an issue of concern in so far as their graphical assessment is not
troubled by this lack of independence . [This can be confusing. The errors € are assumed to be

independent but the residuals e are not [quite] independent]

“No aphorism is more frequently repeated in connection with field trials, than that we must ask Nature
few questions or, ideally, one question, at a time. The writer is convinced that this view is wholly
mistaken. Nature, he suggests, will best respond to a logical and carefully thought out questionnaire;
indeed, if we ask her a single question, she will often refuse to answer until some other topic has been
discussed.” (R.A. Fisher)

The Analysis of Variance

Back in the 1920's, RA Fisher devised a method to test a hypothesis comparing [2 or more] conditional
means by means of an ingenious process that involved the comparison of 2 estimates of [the assumed
constant] variance. He constructed a test based on the difference between the logarithms of the 2
estimates of variance. Other authors [Snedecor?] suggested that one need not bother with the
logarithms and that the test could be based on the ratio of the 2 estimates of variance. And so the F ratio
was born. F is for Fisher. Such methods based on the comparison of estimates of variance came to be
called the analysis of variance.

The analysis of variance provided considerable clarity in understanding the mechanisms behind a
typically complex hierarchy of testing and, for certain [so-called orthogonal] experiments, the
calculations could all be done with relative ease compared with the [at the time] almost impossible
calculations required for a regression analysis. Unfortunately, the orthogonality [or sometimes called
balance] typically required that, for every combination of factors under study, one needed to have



exactly the same number of subjects. This meant designing exact balance and then hoping that there
would be no withdrawals or lost-to-follow-ups. Any loss of orthogonality meant tedious [and
sometimes fruitless] additional calculations.

We will now consider a reasonably elaborate application of the analysis of variance and then show that
a regression analysis can done, in this case, that reproduces all the key elements of this analysis of
variance. We will see a direct relationship here with our earlier work in the assessment of potential
confounders/modifiers that are each assumed to take on a finite set of levels.

Consider now the randomized clinical trial starting on page 77 of Rabe-Hesketh & Everitt on treating
hypertension. Please read their description of the study, the data management, the data reshaping, the
description and their analyses. The data is in bp.dta

. anova bp drug diet biofeed diet*drug diet*biofeed drug*biofeed diet*drug*biofeed

Number of obs = 72 R-squared = 0.5840
Root MSE = 12.5167 Adj R-squared = 0.5077
Source | Partial SS df MS F Prob > F
__________________ +____________________________________________________
Model | 13194 11 1199.45455 7.66 0.0000
I
drug | 3675 2 1837.5 11.73 0.0001
diet | 5202 1 5202 33.20 0.0000
biofeed | 2048 1 2048 13.07 0.0006
diet*drug | 903 2 451.5 2.88 0.0638
diet*biofeed | 32 1 32 0.20 0.6529
drug*biofeed | 259 2 129.5 0.83 0.4425
diet*drug*biofeed | 1075 2 537.5 3.43 0.0388
|
Residual | 9400 60 156.666667
__________________ Sy
Total | 22594 71 318.225352

Lets use slightly different labels for the values of the variables:

Drug: 1=X2=Y 3=Z

Diet: O=normal 1=special

Biofeedback: 0=no biofeedback (nobf) 1=biofeedback (yesbf)

Perhaps it is best, here, to view drug, diet and biofeedback as 'exposures'. Alternatively, one might view

drug as the exposure and diet and biofeedback as potential confounders/modifiers.
. lab list
dl:
0 normal
1 special
bl:
0 nobf
1 yesbf
drl:
1X
2Y
32z
. gen Y=(drug==2)
. gen Z=(drug==3)
. gen S=diet
. gen B=biofeed
. gen YS=Y*S
. gen ZS=Z*S
. gen YB=Y*B
. gen ZB=Z*B
. gen SB=S*B
. gen YSB=YS*B
. gen ZSB=ZS*B
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. table drug diet biofeed, c(mean bp)

| = nobf ----- = ----- yesbf ----

drug | normal special normal special
__________ g gy gy S g e
X | 188 173 168 169

Y | 200 187 204 172

Z | 209 182 189 173

. regress bp Y Z S B YS ZS YB ZB SB YSB ZSB

Source | SS df MS Number of obs = 72
------------- e F( 11, 60) = 7.66
Model | 13194 11 1199.45455 Prob > F = 0.0000
Residual | 9400 60 156.666667 R-squared = 0.5840
————————————— Fmm Adj R-squared = 0.5077
Total | 22594 71 318.225352 Root MSE = 12.517

bp | Coef Std. Err t P>|t]| [95% Conf. Interval]
_____________ +________________________________________________________________
Y | 12 7.226494 1.66 0.102 -2.455141 26.45514

zZ | 21 7.226494 2.91 0.005 6.544859 35.45514

S | -15 7.226494 -2.08 0.042 -29.45514 -.5448589

B | -20 7.226494 -2.77 0.007 -34.45514 -5.544859

YS | 2 10.21981 0.20 0.846 -18.44266 22.44266

zS | -12 10.21981 -1.17 0.245 -32.44266 8.442657

YB | 24 10.21981 2.35 0.022 3.557343 44.44266

ZB | 9.38e-14 10.21981 0.00 1.000 -20.44266 20.44266

SB | 16 10.21981 1.57 0.123 -4.442657 36.44266

YSB | -35 14.45299 -2.42 0.018 -63.91028 -6.089718

ZSB | -5 14.45299 -0.35 0.731 -33.91028 23.91028

cons | 188 5.109903 36.79 0.000 177.7787 198.2213

. test YSB=ZSB=0

(1) ¥YSB - ZSB =0
(2) ¥YSB =0

F( 2, 60)
Prob > F

3.43
0.0388

E(y)=By+B, Y +B,Z+B;S+B4sB+Bs YS+BsZS +B,YB+BsZB+BySB+B,,YSB+B,, ZSB
The regression coefficients are simply differences among means:

Bi : for those receiving normal diet and no biofeed , mean bp for those receiving drug Y minus mean
bp for those receiving drug X [ estimated by 200-188 = 12 ]

B> : for those receiving normal diet and no biofeed , mean bp for those receiving drug Z minus mean
bp for those receiving drug X [ estimated by 209-188 =21 |

Bs : for those receiving X and no biofeed , mean bp for those receiving special diet minus mean bp
for those receiving normal diet [estimated by 173-188 =-15 ]

B4+ : for those receiving X and normal diet, mean bp for those receiving biofeed minus mean bp for
those receiving no biofeed. [estimated by 168-188 = -20 ]

Bs : for those with no biofeed , mean bp for those receiving drug Y minus mean bp for those
receiving drug X for those receiving special diet minus mean bp for those receiving drug Y minus
mean bp for those receiving drug X for those receiving normal diet [ estimated by (187-173) — (200-
188) = 2]

Bio :..avery long sentence :-) [estimated by ((172-169) — (204-168)) - ((187-173) — (200-188))=
-35]

...and so on. It is instructive to complete these interpretations and the estimates. The estimates are based



on differences among averages here in part because there are the same number of participants [6] in
each of the 12 groups. Compare this situation with logistic regression and the model with 8 terms. Now
we have estimates of means [or estimates of expectations] rather than estimates of log odds.

It is also worthy to notice that the analysis of variance [as detailed above] provides an incomplete break
down of the degrees of freedom in that there are several rows in the table with more than one degree of
freedom. The regression analysis provides a complete break down with the added decision to view
those receiving drug X as the comparison group.

Notice that the F tests from the analysis of variance are not necessarily the same as the corresponding t
tests from the regression analysis. The null hypotheses can be different. In this example, the analysis of
variance test corresponding to 'diet' has an F=33.20. This test is displayed to consider the null
hypothesis that the 'main effect' [sic] of diet [i.e. comparing the diets ignoring drug and biofeedback.
Irrelevant here because we are statistically decent :-) ] is zero. The arithmetic looks like:

yspecial B ynormal 193 — 176 2 2
t= = =5.762 t"=(5.762)"=33.20
s\(1/364+1/36) 12.517/(1/18) ( )

(Notice, here, that s=+/(Mean Square Residual) from the regression analysis)

While the corresponding t test from the regression analysis has a t =-2.08. This test is displayed to
consider the null hypothesis that a simple comparison of diets [i.e. for those receiving drug X and no
biofeedback. ] is zero. Notice that the test ignoring drug and biofeedback has no meaning here but the
'simple' test [specific to drug X and no biofeedback] does mean something.

If we had used the two degree of freedom F test for the three factor interaction, then the p-value is
0.0388. [This test is same whether determined from the analysis of variance or from the regression
analysis. See the test command after the regress command above] There is evidence [at the 5% level]
that the drug-mean blood pressure associations depend on the combinations of diet and biofeedback.
[i.e there are complex interactions that require detailed study] If we were to view the drug comparisons
as primary, then we might say that diet and biofeedback modify the drug - mean blood pressure
association .

If we had decided apriori to use the t tests from the regression analysis, then we could note that since
the p-value [for YSB] = 0.0118, there is evidence that the comparison between Y and X depends on the
combinations of diet and biofeedback. If we proceed to drop ZSB and then assess this model, we get
no evidence for SB but modest evidence for ZS [Try this out!]. We might then note that the comparison
between Z and X depends on diet (but not on biofeedback). All of this is getting complicated. Time to
reconsider the boxplots above given the testing carried out.

You will have noticed that Stata's command for the analysis of variance is anova. The abbreviation
ANOVA [ANalysis Of VAriance] was apparently first used by John Tukey. There are many
statisticians [me included] who do not like to use these abbreviations. ANOVA [ spoken A No Va]
seems to have crept into the English language now. Sigh.....



Lets now consider wells.dta from Hamilton(1992) pages 86 to 92. The data is in wells.dta

Hamilton argues that both chlorine and distance from the road should analyzed on the logarithmic
scale. We will not debate or discuss this matter here. We will take a future class for a discussion of the
issue of data transformations. We will transform both variables as in Hamilton. We will construct an
indicator W for the depth of the well [0O=shallow 1=deep]. We will describe the log of the distance from
the road as the exposure and the depth of the well as a potential confounder/modifier.

use wells.dta
lab drop deeplbl

lab def d1 0 "s" 1 "D"
rename deep well
lab val well dl
rename droad road
gen lc=log(chlor)
gen W=well
gen R=log (road)
gen WR=W*R
regr lc W R WR
Source | Ss df MS Number of obs = 52
————————————— Fomm F( 3, 48) = 3.81
Model | 18.4831272 3 6.1610424 Prob > F = 0.0157
Residual | 77.5390714 48 1.61539732 R-squared = 0.1925
------------- Fom e Adj R-squared = 0.1420
Total | 96.0221986 51 1.88278821 Root MSE = 1.271
lc | Coef Std. Err t P>|t]| [95% Conf. Interval]
_____________ +________________________________________________________________
W | -6.717366 2.094713 -3.21 0.002 -10.92907 -2.505663
R | -1.109424 .3844204 -2.89 0.006 -1.882354 -.3364954
WR | 1.255847 .4268777 2.94 0.005 .3975521 2.114143
cons | 9.073459 1.879384 4.83 0.000 5.294704 12.85221
predict lch
sort W R
twoway (scatter lc R if W==0) (scatter lc R if W==1) (line lch R if W==0) (line lch R if

W==1) ,1legend(order (1 "Shallow" 2 "Deep" 3 "S line" 4 " D line"))

Here, we can see that the rate of change of the mean of the log of the chlorine per unit change in the log
of the distance of well from the road depends on the depth of the well. (p=0.005) Given this detection
of the depth of the well as a modifier, we would argue that a regression analysis that excludes WR
would be inappropriate and irrelevant. Hamilton does show the other fits for illustrative purposes but,
in the end, he notes:
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“Among deep bedrock wells, we see virtually no relationship between distance and chlorine. [snip] The
closer a shallow well is to the road, the higher its chlorine concentration tends to be.” - Hamilton p 90
He also offers a plausible explanation for this finding.

The same fit can be determined using S as the indicator for shallow wells. This regression analysis
explicitly displays the estimated rate of change of the mean log(chlorine) per unit change of
log(distance)[0.1464] and the p-value of 0.434 for the deep wells. While the first analysis gave us the
estimate for the shallow wells [-1.1094] with p-value of 0.006

. gen S = 1-W

. gen SR = S*R

. regr lc S R SR

Source | Ss df MS Number of obs = 52
------------- e e F( 3, 48) = 3.81
Model | 18.4831272 3 6.1610424 Prob > F = 0.0157
Residual | 77.5390714 48 1.61539732 R-squared = 0.1925
------------- Fom e Adj R-squared = 0.1420
Total | 96.0221986 51 1.88278821 Root MSE = 1.271

lc | Coef. Std. Err. t P>|t]| [95% Conf. Interval]
_____________ +________________________________________________________________
S | 6.717366 2.094713 3.21 0.002 2.505663 10.92907

R | .1464229 .1855951 0.79 0.434 -.2267411 .5195869

SR | -1.255847 .4268777 -2.94 0.005 -2.114143 -.3975521

cons | 2.356093 .9250614 2.55 0.014 .496132 4.216053



A regression analysis that begins with the assessment of a variable as a modifier and then possibly
proceeding to an assessment of this variable as a confounder is very familiar to us from our work with
stratified analyses.

Other Characteristics of the Conditional Distributions

It is worth emphasizing the 'Linear' Regression is concerned with the study of conditional means. We
are assuming that the conditional variances do not depend on the condition(s) and [rather implicitly]
assuming that all of our interest is with the mean of these distributions.

One can [in principle] study any percentile of these distributions. The Stata command 'qreg' allows the
investigator to specify any percentile. The most commonly considered percentile is the median
[quantile = 0.5]. One now sees the explicit study of the quartiles [quantile = 0.25 or 0.75] and, in some
health research contexts [notably health sociology], other percentiles are studied to considerable
advantage.

We can have models like:
0 q( y)zz B, x; where O, is the qth quantile of the conditional distribution
Typically, the regression coefficients will depend on q.

As a very brief example, consider:

Qo.s(y):[50+ﬁ1 W+B,R+pB; WR
. qreg lc W R WR,quantile(0.5)

Median regression Number of obs = 52
Raw sum of deviations 51.74384 (about 2.3025851)

Min sum of deviations 44.52187 Pseudo R2 = 0.1396

1lc | Coef Std. Err t P>|t| [95% Conf. Interval]

_____________ +________________________________________________________________

W | -7.563186 2.672955 -2.83 0.007 -12.93752 -2.18885

R | -1.215242 .4887267 -2.49 0.016 -2.197893 -.2325915

WR | 1.243673 .5440056 2.29 0.027 .1498762 2.337469

cons | 9.764691 2.389528 4.09 0.000 4.960222 14.56916

Now, for this example, the interpretation is in terms of conditional medians rather than conditional
means. So, for the shallow wells, the estimate of the rate of change of the median log(concentration)
per unit change in log (distance) is -1.2152

The tests are Wald tests and likelihood ratio tests. One is assuming that the conditional distributions
have constant scale and shape. All that changes [as a function of the explanatory variables] is the
location.

The help file on qreg is 'helpful'. There are several books entirely devoted to quantile regression. The
book by Koenker (2005) and chapter 7 in Cameron & Trivedi (2009) give the theory and examples.



